blob: 56b93e8dfdb9db0fb7ebce5504ab4415398df8c1 [file] [log] [blame]
/*
* STMicroelectronics sensors core library driver
*
* Copyright 2012-2013 STMicroelectronics Inc.
*
* Denis Ciocca <denis.ciocca@st.com>
*
* Licensed under the GPL-2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <asm/unaligned.h>
#include <linux/iio/common/st_sensors.h>
#define ST_SENSORS_WAI_ADDRESS 0x0f
static inline u32 st_sensors_get_unaligned_le24(const u8 *p)
{
return (s32)((p[0] | p[1] << 8 | p[2] << 16) << 8) >> 8;
}
static int st_sensors_write_data_with_mask(struct iio_dev *indio_dev,
u8 reg_addr, u8 mask, u8 data)
{
int err;
u8 new_data;
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (reg_addr <= 0) {
err = -EINVAL;
goto st_sensors_write_data_with_mask_error;
}
err = sdata->tf->read_byte(&sdata->tb, sdata->dev, reg_addr, &new_data);
if (err < 0) {
printk("SUN-5941: %s read_byte %d\n", __PRETTY_FUNCTION__, err);
goto st_sensors_write_data_with_mask_error;
}
new_data = ((new_data & (~mask)) | ((data << __ffs(mask)) & mask));
err = sdata->tf->write_byte(&sdata->tb, sdata->dev, reg_addr, new_data);
if (err < 0)
printk("SUN-5941: %s write_byte %d\n", __PRETTY_FUNCTION__, err);
st_sensors_write_data_with_mask_error:
return err;
}
static int st_sensors_match_odr(struct st_sensor_settings *sensor_settings,
unsigned int odr, struct st_sensor_odr_avl *odr_out)
{
int i, ret = -EINVAL;
for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) {
if (sensor_settings->odr.odr_avl[i].hz == 0)
goto st_sensors_match_odr_error;
if (sensor_settings->odr.odr_avl[i].hz == odr) {
odr_out->hz = sensor_settings->odr.odr_avl[i].hz;
odr_out->value = sensor_settings->odr.odr_avl[i].value;
ret = 0;
break;
}
}
st_sensors_match_odr_error:
return ret;
}
int st_sensors_set_odr(struct iio_dev *indio_dev, unsigned int odr)
{
int err;
struct st_sensor_odr_avl odr_out = {0, 0};
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = st_sensors_match_odr(sdata->sensor_settings, odr, &odr_out);
if (err < 0)
goto st_sensors_match_odr_error;
if ((sdata->sensor_settings->odr.addr ==
sdata->sensor_settings->pw.addr) &&
(sdata->sensor_settings->odr.mask ==
sdata->sensor_settings->pw.mask)) {
if (sdata->enabled == true) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->odr.addr,
sdata->sensor_settings->odr.mask,
odr_out.value);
} else {
err = 0;
}
} else {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->odr.addr,
sdata->sensor_settings->odr.mask,
odr_out.value);
}
if (err >= 0)
sdata->odr = odr_out.hz;
st_sensors_match_odr_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_odr);
static int st_sensors_match_fs(struct st_sensor_settings *sensor_settings,
unsigned int fs, int *index_fs_avl)
{
int i, ret = -EINVAL;
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if (sensor_settings->fs.fs_avl[i].num == 0)
goto st_sensors_match_odr_error;
if (sensor_settings->fs.fs_avl[i].num == fs) {
*index_fs_avl = i;
ret = 0;
break;
}
}
st_sensors_match_odr_error:
return ret;
}
static int st_sensors_set_fullscale(struct iio_dev *indio_dev, unsigned int fs)
{
int err, i = 0;
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = st_sensors_match_fs(sdata->sensor_settings, fs, &i);
if (err < 0)
goto st_accel_set_fullscale_error;
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->fs.addr,
sdata->sensor_settings->fs.mask,
sdata->sensor_settings->fs.fs_avl[i].value);
if (err < 0)
goto st_accel_set_fullscale_error;
sdata->current_fullscale = (struct st_sensor_fullscale_avl *)
&sdata->sensor_settings->fs.fs_avl[i];
return err;
st_accel_set_fullscale_error:
dev_err(&indio_dev->dev, "failed to set new fullscale.\n");
return err;
}
int st_sensors_set_enable(struct iio_dev *indio_dev, bool enable)
{
u8 tmp_value;
int err = -EINVAL;
bool found = false;
struct st_sensor_odr_avl odr_out = {0, 0};
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (enable) {
tmp_value = sdata->sensor_settings->pw.value_on;
if ((sdata->sensor_settings->odr.addr ==
sdata->sensor_settings->pw.addr) &&
(sdata->sensor_settings->odr.mask ==
sdata->sensor_settings->pw.mask)) {
err = st_sensors_match_odr(sdata->sensor_settings,
sdata->odr, &odr_out);
if (err < 0)
goto set_enable_error;
tmp_value = odr_out.value;
found = true;
}
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->pw.addr,
sdata->sensor_settings->pw.mask, tmp_value);
if (err < 0)
goto set_enable_error;
sdata->enabled = true;
if (found)
sdata->odr = odr_out.hz;
} else {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->pw.addr,
sdata->sensor_settings->pw.mask,
sdata->sensor_settings->pw.value_off);
if (err < 0)
goto set_enable_error;
sdata->enabled = false;
}
set_enable_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_enable);
int st_sensors_set_axis_enable(struct iio_dev *indio_dev, u8 axis_enable)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
return st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->enable_axis.addr,
sdata->sensor_settings->enable_axis.mask,
axis_enable);
}
EXPORT_SYMBOL(st_sensors_set_axis_enable);
void st_sensors_power_enable(struct iio_dev *indio_dev)
{
struct st_sensor_data *pdata = iio_priv(indio_dev);
int err;
/* Regulators not mandatory, but if requested we should enable them. */
pdata->vdd = devm_regulator_get_optional(indio_dev->dev.parent, "vdd");
if (!IS_ERR(pdata->vdd)) {
err = regulator_enable(pdata->vdd);
if (err != 0)
dev_warn(&indio_dev->dev,
"Failed to enable specified Vdd supply\n");
}
pdata->vdd_io = devm_regulator_get_optional(indio_dev->dev.parent, "vddio");
if (!IS_ERR(pdata->vdd_io)) {
err = regulator_enable(pdata->vdd_io);
if (err != 0)
dev_warn(&indio_dev->dev,
"Failed to enable specified Vdd_IO supply\n");
}
}
EXPORT_SYMBOL(st_sensors_power_enable);
void st_sensors_power_disable(struct iio_dev *indio_dev)
{
struct st_sensor_data *pdata = iio_priv(indio_dev);
if (!IS_ERR(pdata->vdd))
regulator_disable(pdata->vdd);
if (!IS_ERR(pdata->vdd_io))
regulator_disable(pdata->vdd_io);
}
EXPORT_SYMBOL(st_sensors_power_disable);
static int st_sensors_set_drdy_int_pin(struct iio_dev *indio_dev,
struct st_sensors_platform_data *pdata)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
switch (pdata->drdy_int_pin) {
case 1:
if (sdata->sensor_settings->drdy_irq.mask_int1 == 0) {
dev_err(&indio_dev->dev,
"DRDY on INT1 not available.\n");
return -EINVAL;
}
sdata->drdy_int_pin = 1;
break;
case 2:
if (sdata->sensor_settings->drdy_irq.mask_int2 == 0) {
dev_err(&indio_dev->dev,
"DRDY on INT2 not available.\n");
return -EINVAL;
}
sdata->drdy_int_pin = 2;
break;
default:
dev_err(&indio_dev->dev, "DRDY on pdata not valid.\n");
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_OF
static struct st_sensors_platform_data *st_sensors_of_probe(struct device *dev,
struct st_sensors_platform_data *defdata)
{
struct st_sensors_platform_data *pdata;
struct device_node *np = dev->of_node;
u32 val;
if (!np)
return NULL;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!of_property_read_u32(np, "st,drdy-int-pin", &val) && (val <= 2))
pdata->drdy_int_pin = (u8) val;
else
pdata->drdy_int_pin = defdata ? defdata->drdy_int_pin : 1;
return pdata;
}
#else
static struct st_sensors_platform_data *st_sensors_of_probe(struct device *dev,
struct st_sensors_platform_data *defdata)
{
return NULL;
}
#endif
int st_sensors_init_sensor(struct iio_dev *indio_dev,
struct st_sensors_platform_data *pdata)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
struct st_sensors_platform_data *of_pdata;
int err = 0;
/* If OF/DT pdata exists, it will take precedence of anything else */
of_pdata = st_sensors_of_probe(indio_dev->dev.parent, pdata);
if (of_pdata)
pdata = of_pdata;
if (pdata) {
err = st_sensors_set_drdy_int_pin(indio_dev, pdata);
if (err < 0)
return err;
}
err = st_sensors_set_enable(indio_dev, false);
if (err < 0)
return err;
/* Disable DRDY, this might be still be enabled after reboot. */
err = st_sensors_set_dataready_irq(indio_dev, false);
if (err < 0)
return err;
if (sdata->current_fullscale) {
err = st_sensors_set_fullscale(indio_dev,
sdata->current_fullscale->num);
if (err < 0)
return err;
} else
dev_info(&indio_dev->dev, "Full-scale not possible\n");
err = st_sensors_set_odr(indio_dev, sdata->odr);
if (err < 0)
return err;
/* set BDU */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->bdu.addr,
sdata->sensor_settings->bdu.mask, true);
if (err < 0)
return err;
err = st_sensors_set_axis_enable(indio_dev, ST_SENSORS_ENABLE_ALL_AXIS);
return err;
}
EXPORT_SYMBOL(st_sensors_init_sensor);
static int st_sensors_set_ths(struct iio_dev *indio_dev, unsigned int ths)
{
int err;
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->ths.addr,
sdata->sensor_settings->ths.mask,
ths);
if (err < 0)
return err;
return 0;
}
static int st_sensors_set_dur(struct iio_dev *indio_dev, unsigned int dur)
{
int err;
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->dur.addr,
sdata->sensor_settings->dur.mask, dur);
if (err < 0)
return err;
return 0;
}
int st_sensors_set_dataready_irq(struct iio_dev *indio_dev, bool enable)
{
int err;
u8 drdy_mask;
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (!sdata->sensor_settings->drdy_irq.addr)
return 0;
/* Set non-latched mode as data-ready is anyways going to flood
* us with interrupts */
if (sdata->sensor_settings->lir1.addr > 0) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->lir1.addr,
sdata->sensor_settings->lir1.mask,
(int)0x0);
if (err < 0)
goto st_accel_set_dataready_irq_error;
}
/* Clear any pending latched interrupts */
if (sdata->sensor_settings->int1_src.addr > 0) {
u8 data;
err = sdata->tf->read_byte(&sdata->tb, sdata->dev,
sdata->sensor_settings->int1_src.addr, &data);
if (err < 0)
goto st_accel_set_dataready_irq_error;
}
/* Disable {XYZ}{HL}IE INT1 interrupt generation bits */
if (sdata->sensor_settings->int1_cfg.addr > 0) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->int1_cfg.addr,
sdata->sensor_settings->int1_cfg.mask,
(int)sdata->sensor_settings->int1_cfg.value_off);
if (err < 0)
goto st_accel_set_dataready_irq_error;
}
/* Reset HP Filter settings */
if (sdata->sensor_settings->hp_filter_mode.addr > 0) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->hp_filter_mode.addr,
sdata->sensor_settings->hp_filter_mode.fds_mask,
false);
if (err < 0)
goto st_accel_set_dataready_irq_error;
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->hp_filter_mode.addr,
sdata->sensor_settings->hp_filter_mode.hpis1_mask,
false);
if (err < 0)
goto st_accel_set_dataready_irq_error;
}
/* Enable/Disable the interrupt generator 1. */
if (sdata->sensor_settings->drdy_irq.ig1.en_addr > 0) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->drdy_irq.ig1.en_addr,
sdata->sensor_settings->drdy_irq.ig1.en_mask,
(int)enable);
if (err < 0)
goto st_accel_set_dataready_irq_error;
}
if (sdata->drdy_int_pin == 1)
drdy_mask = sdata->sensor_settings->drdy_irq.mask_int1;
else
drdy_mask = sdata->sensor_settings->drdy_irq.mask_int2;
/* Enable/Disable the interrupt generator for data ready. */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->drdy_irq.addr,
drdy_mask, (int)enable);
st_accel_set_dataready_irq_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_dataready_irq);
int st_sensors_set_wakeup_irq(struct iio_dev *indio_dev, bool enable)
{
int err;
u8 data;
struct st_sensor_data *sdata = iio_priv(indio_dev);
/* Map AOI1 interrupt on INT1 line */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->aoi1_irq.addr,
sdata->sensor_settings->aoi1_irq.mask,
(int)enable);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Enable/Disable latched interrupt for INT1 */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->lir1.addr,
sdata->sensor_settings->lir1.mask,
(int)enable);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Clear any pending latched interrupts */
err = sdata->tf->read_byte(&sdata->tb, sdata->dev,
sdata->sensor_settings->int1_src.addr, &data);
if (err < 0)
goto st_set_wakeup_irq_error;
if (enable) {
/* Set HP Filter enable on AOI function on INT1 */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->hp_filter_mode.addr,
sdata->sensor_settings->hp_filter_mode.hpis1_mask,
true);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Set HP Filter enable on sensor_settings data */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->hp_filter_mode.addr,
sdata->sensor_settings->hp_filter_mode.fds_mask,
true);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Set threshold */
err = st_sensors_set_ths(indio_dev,
(unsigned int)sdata->int_thres);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Set duration */
err = st_sensors_set_dur(indio_dev,
(unsigned int)sdata->int_dur);
if (err < 0)
goto st_set_wakeup_irq_error;
/*
* Force dummy read of HP_FILTER_ENABLE. This forces the HP
* Filter to current acceleration value, i.e. sets the reference
* acceleration value
*/
err = sdata->tf->read_byte(&sdata->tb, sdata->dev,
sdata->sensor_settings->ref_data.addr, &data);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Set "OR" combination INT1 irq generation for XH, YH and ZH */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->int1_cfg.addr,
sdata->sensor_settings->int1_cfg.mask,
(int)((sdata->ev_l_enable_state[0] <<
sdata->sensor_settings->int1_cfg.l_shift[0]) |
(sdata->ev_h_enable_state[0] <<
sdata->sensor_settings->int1_cfg.h_shift[0]) |
(sdata->ev_l_enable_state[1] <<
sdata->sensor_settings->int1_cfg.l_shift[1]) |
(sdata->ev_h_enable_state[1] <<
sdata->sensor_settings->int1_cfg.h_shift[1]) |
(sdata->ev_l_enable_state[2] <<
sdata->sensor_settings->int1_cfg.l_shift[2]) |
(sdata->ev_h_enable_state[2] <<
sdata->sensor_settings->int1_cfg.h_shift[2])));
if (err < 0)
goto st_set_wakeup_irq_error;
} else {
/* Disable {XYZ}{HL}IE INT1 interrupt generation bits */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->int1_cfg.addr,
sdata->sensor_settings->int1_cfg.mask,
(int)sdata->sensor_settings->int1_cfg.value_off);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Clear HP Filter enable on sensor data */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->hp_filter_mode.addr,
sdata->sensor_settings->hp_filter_mode.fds_mask,
false);
if (err < 0)
goto st_set_wakeup_irq_error;
/* Clear HP Filter enable on AOI function on INT1 */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->hp_filter_mode.addr,
sdata->sensor_settings->hp_filter_mode.hpis1_mask,
false);
if (err < 0)
goto st_set_wakeup_irq_error;
}
return 0;
st_set_wakeup_irq_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_wakeup_irq);
int st_sensors_reset_latched_int(struct iio_dev *indio_dev)
{
int err;
u8 data;
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = sdata->tf->read_byte(&sdata->tb, sdata->dev,
sdata->sensor_settings->int1_src.addr, &data);
if (err < 0)
goto st_sensors_error;
return 0;
st_sensors_error:
return err;
}
EXPORT_SYMBOL(st_sensors_reset_latched_int);
int st_sensors_set_fullscale_by_gain(struct iio_dev *indio_dev, int scale)
{
int err = -EINVAL, i;
struct st_sensor_data *sdata = iio_priv(indio_dev);
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if ((sdata->sensor_settings->fs.fs_avl[i].gain == scale) &&
(sdata->sensor_settings->fs.fs_avl[i].gain != 0)) {
err = 0;
break;
}
}
if (err < 0)
goto st_sensors_match_scale_error;
err = st_sensors_set_fullscale(indio_dev,
sdata->sensor_settings->fs.fs_avl[i].num);
st_sensors_match_scale_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_fullscale_by_gain);
static int st_sensors_read_axis_data(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *data)
{
int err;
u8 *outdata;
struct st_sensor_data *sdata = iio_priv(indio_dev);
unsigned int byte_for_channel = ch->scan_type.storagebits >> 3;
outdata = kmalloc(byte_for_channel, GFP_KERNEL);
if (!outdata)
return -ENOMEM;
err = sdata->tf->read_multiple_byte(&sdata->tb, sdata->dev,
ch->address, byte_for_channel,
outdata, sdata->multiread_bit);
if (err < 0)
goto st_sensors_free_memory;
if (byte_for_channel == 2)
*data = (s16)get_unaligned_le16(outdata);
else if (byte_for_channel == 3)
*data = (s32)st_sensors_get_unaligned_le24(outdata);
st_sensors_free_memory:
kfree(outdata);
return err;
}
int st_sensors_read_info_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *val)
{
int err;
struct st_sensor_data *sdata = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
err = -EBUSY;
goto out;
} else {
err = st_sensors_set_enable(indio_dev, true);
if (err < 0)
goto out;
msleep((sdata->sensor_settings->bootime * 1000) / sdata->odr);
err = st_sensors_read_axis_data(indio_dev, ch, val);
if (err < 0)
goto out;
*val = *val >> ch->scan_type.shift;
err = st_sensors_set_enable(indio_dev, false);
}
out:
mutex_unlock(&indio_dev->mlock);
return err;
}
EXPORT_SYMBOL(st_sensors_read_info_raw);
int st_sensors_check_device_support(struct iio_dev *indio_dev,
int num_sensors_list,
const struct st_sensor_settings *sensor_settings)
{
u8 wai;
int i, n, err;
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = sdata->tf->read_byte(&sdata->tb, sdata->dev,
ST_SENSORS_DEFAULT_WAI_ADDRESS, &wai);
if (err < 0) {
dev_err(&indio_dev->dev, "failed to read Who-Am-I register.\n");
goto read_wai_error;
}
for (i = 0; i < num_sensors_list; i++) {
if (sensor_settings[i].wai == wai)
break;
}
if (i == num_sensors_list)
goto device_not_supported;
for (n = 0; n < ARRAY_SIZE(sensor_settings[i].sensors_supported); n++) {
if (strcmp(indio_dev->name,
&sensor_settings[i].sensors_supported[n][0]) == 0)
break;
}
if (n == ARRAY_SIZE(sensor_settings[i].sensors_supported)) {
dev_err(&indio_dev->dev, "device name and WhoAmI mismatch.\n");
goto sensor_name_mismatch;
}
sdata->sensor_settings =
(struct st_sensor_settings *)&sensor_settings[i];
return i;
device_not_supported:
dev_err(&indio_dev->dev, "device not supported: WhoAmI (0x%x).\n", wai);
sensor_name_mismatch:
err = -ENODEV;
read_wai_error:
return err;
}
EXPORT_SYMBOL(st_sensors_check_device_support);
ssize_t st_sensors_sysfs_get_sampling_frequency(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct st_sensor_data *adata = iio_priv(dev_get_drvdata(dev));
return sprintf(buf, "%d\n", adata->odr);
}
EXPORT_SYMBOL(st_sensors_sysfs_get_sampling_frequency);
ssize_t st_sensors_sysfs_set_sampling_frequency(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
int err;
unsigned int odr;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
err = kstrtoint(buf, 10, &odr);
if (err < 0)
goto conversion_error;
mutex_lock(&indio_dev->mlock);
err = st_sensors_set_odr(indio_dev, odr);
mutex_unlock(&indio_dev->mlock);
conversion_error:
return err < 0 ? err : size;
}
EXPORT_SYMBOL(st_sensors_sysfs_set_sampling_frequency);
ssize_t st_sensors_sysfs_sampling_frequency_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, len = 0;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct st_sensor_data *sdata = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) {
if (sdata->sensor_settings->odr.odr_avl[i].hz == 0)
break;
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
sdata->sensor_settings->odr.odr_avl[i].hz);
}
mutex_unlock(&indio_dev->mlock);
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL(st_sensors_sysfs_sampling_frequency_avail);
ssize_t st_sensors_sysfs_scale_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, len = 0;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct st_sensor_data *sdata = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if (sdata->sensor_settings->fs.fs_avl[i].num == 0)
break;
len += scnprintf(buf + len, PAGE_SIZE - len, "0.%06u ",
sdata->sensor_settings->fs.fs_avl[i].gain);
}
mutex_unlock(&indio_dev->mlock);
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL(st_sensors_sysfs_scale_avail);
MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics ST-sensors core");
MODULE_LICENSE("GPL v2");