|  | #ifndef _ALPHA_PGTABLE_H | 
|  | #define _ALPHA_PGTABLE_H | 
|  |  | 
|  | #include <asm-generic/4level-fixup.h> | 
|  |  | 
|  | /* | 
|  | * This file contains the functions and defines necessary to modify and use | 
|  | * the Alpha page table tree. | 
|  | * | 
|  | * This hopefully works with any standard Alpha page-size, as defined | 
|  | * in <asm/page.h> (currently 8192). | 
|  | */ | 
|  | #include <linux/mmzone.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/processor.h>	/* For TASK_SIZE */ | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/setup.h> | 
|  |  | 
|  | struct mm_struct; | 
|  | struct vm_area_struct; | 
|  |  | 
|  | /* Certain architectures need to do special things when PTEs | 
|  | * within a page table are directly modified.  Thus, the following | 
|  | * hook is made available. | 
|  | */ | 
|  | #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) | 
|  | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) | 
|  |  | 
|  | /* PMD_SHIFT determines the size of the area a second-level page table can map */ | 
|  | #define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-3)) | 
|  | #define PMD_SIZE	(1UL << PMD_SHIFT) | 
|  | #define PMD_MASK	(~(PMD_SIZE-1)) | 
|  |  | 
|  | /* PGDIR_SHIFT determines what a third-level page table entry can map */ | 
|  | #define PGDIR_SHIFT	(PAGE_SHIFT + 2*(PAGE_SHIFT-3)) | 
|  | #define PGDIR_SIZE	(1UL << PGDIR_SHIFT) | 
|  | #define PGDIR_MASK	(~(PGDIR_SIZE-1)) | 
|  |  | 
|  | /* | 
|  | * Entries per page directory level:  the Alpha is three-level, with | 
|  | * all levels having a one-page page table. | 
|  | */ | 
|  | #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-3)) | 
|  | #define PTRS_PER_PMD	(1UL << (PAGE_SHIFT-3)) | 
|  | #define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-3)) | 
|  | #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE) | 
|  | #define FIRST_USER_ADDRESS	0UL | 
|  |  | 
|  | /* Number of pointers that fit on a page:  this will go away. */ | 
|  | #define PTRS_PER_PAGE	(1UL << (PAGE_SHIFT-3)) | 
|  |  | 
|  | #ifdef CONFIG_ALPHA_LARGE_VMALLOC | 
|  | #define VMALLOC_START		0xfffffe0000000000 | 
|  | #else | 
|  | #define VMALLOC_START		(-2*PGDIR_SIZE) | 
|  | #endif | 
|  | #define VMALLOC_END		(-PGDIR_SIZE) | 
|  |  | 
|  | /* | 
|  | * OSF/1 PAL-code-imposed page table bits | 
|  | */ | 
|  | #define _PAGE_VALID	0x0001 | 
|  | #define _PAGE_FOR	0x0002	/* used for page protection (fault on read) */ | 
|  | #define _PAGE_FOW	0x0004	/* used for page protection (fault on write) */ | 
|  | #define _PAGE_FOE	0x0008	/* used for page protection (fault on exec) */ | 
|  | #define _PAGE_ASM	0x0010 | 
|  | #define _PAGE_KRE	0x0100	/* xxx - see below on the "accessed" bit */ | 
|  | #define _PAGE_URE	0x0200	/* xxx */ | 
|  | #define _PAGE_KWE	0x1000	/* used to do the dirty bit in software */ | 
|  | #define _PAGE_UWE	0x2000	/* used to do the dirty bit in software */ | 
|  |  | 
|  | /* .. and these are ours ... */ | 
|  | #define _PAGE_DIRTY	0x20000 | 
|  | #define _PAGE_ACCESSED	0x40000 | 
|  |  | 
|  | /* | 
|  | * NOTE! The "accessed" bit isn't necessarily exact:  it can be kept exactly | 
|  | * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it. | 
|  | * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use | 
|  | * the KRE/URE bits to watch for it. That way we don't need to overload the | 
|  | * KWE/UWE bits with both handling dirty and accessed. | 
|  | * | 
|  | * Note that the kernel uses the accessed bit just to check whether to page | 
|  | * out a page or not, so it doesn't have to be exact anyway. | 
|  | */ | 
|  |  | 
|  | #define __DIRTY_BITS	(_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE) | 
|  | #define __ACCESS_BITS	(_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE) | 
|  |  | 
|  | #define _PFN_MASK	0xFFFFFFFF00000000UL | 
|  |  | 
|  | #define _PAGE_TABLE	(_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS) | 
|  | #define _PAGE_CHG_MASK	(_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS) | 
|  |  | 
|  | /* | 
|  | * All the normal masks have the "page accessed" bits on, as any time they are used, | 
|  | * the page is accessed. They are cleared only by the page-out routines | 
|  | */ | 
|  | #define PAGE_NONE	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE) | 
|  | #define PAGE_SHARED	__pgprot(_PAGE_VALID | __ACCESS_BITS) | 
|  | #define PAGE_COPY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) | 
|  | #define PAGE_READONLY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) | 
|  | #define PAGE_KERNEL	__pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE) | 
|  |  | 
|  | #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x)) | 
|  |  | 
|  | #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW)) | 
|  | #define _PAGE_S(x) _PAGE_NORMAL(x) | 
|  |  | 
|  | /* | 
|  | * The hardware can handle write-only mappings, but as the Alpha | 
|  | * architecture does byte-wide writes with a read-modify-write | 
|  | * sequence, it's not practical to have write-without-read privs. | 
|  | * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in | 
|  | * arch/alpha/mm/fault.c) | 
|  | */ | 
|  | /* xwr */ | 
|  | #define __P000	_PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) | 
|  | #define __P001	_PAGE_P(_PAGE_FOE | _PAGE_FOW) | 
|  | #define __P010	_PAGE_P(_PAGE_FOE) | 
|  | #define __P011	_PAGE_P(_PAGE_FOE) | 
|  | #define __P100	_PAGE_P(_PAGE_FOW | _PAGE_FOR) | 
|  | #define __P101	_PAGE_P(_PAGE_FOW) | 
|  | #define __P110	_PAGE_P(0) | 
|  | #define __P111	_PAGE_P(0) | 
|  |  | 
|  | #define __S000	_PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) | 
|  | #define __S001	_PAGE_S(_PAGE_FOE | _PAGE_FOW) | 
|  | #define __S010	_PAGE_S(_PAGE_FOE) | 
|  | #define __S011	_PAGE_S(_PAGE_FOE) | 
|  | #define __S100	_PAGE_S(_PAGE_FOW | _PAGE_FOR) | 
|  | #define __S101	_PAGE_S(_PAGE_FOW) | 
|  | #define __S110	_PAGE_S(0) | 
|  | #define __S111	_PAGE_S(0) | 
|  |  | 
|  | /* | 
|  | * pgprot_noncached() is only for infiniband pci support, and a real | 
|  | * implementation for RAM would be more complicated. | 
|  | */ | 
|  | #define pgprot_noncached(prot)	(prot) | 
|  |  | 
|  | /* | 
|  | * BAD_PAGETABLE is used when we need a bogus page-table, while | 
|  | * BAD_PAGE is used for a bogus page. | 
|  | * | 
|  | * ZERO_PAGE is a global shared page that is always zero:  used | 
|  | * for zero-mapped memory areas etc.. | 
|  | */ | 
|  | extern pte_t __bad_page(void); | 
|  | extern pmd_t * __bad_pagetable(void); | 
|  |  | 
|  | extern unsigned long __zero_page(void); | 
|  |  | 
|  | #define BAD_PAGETABLE	__bad_pagetable() | 
|  | #define BAD_PAGE	__bad_page() | 
|  | #define ZERO_PAGE(vaddr)	(virt_to_page(ZERO_PGE)) | 
|  |  | 
|  | /* number of bits that fit into a memory pointer */ | 
|  | #define BITS_PER_PTR			(8*sizeof(unsigned long)) | 
|  |  | 
|  | /* to align the pointer to a pointer address */ | 
|  | #define PTR_MASK			(~(sizeof(void*)-1)) | 
|  |  | 
|  | /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ | 
|  | #define SIZEOF_PTR_LOG2			3 | 
|  |  | 
|  | /* to find an entry in a page-table */ | 
|  | #define PAGE_PTR(address)		\ | 
|  | ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) | 
|  |  | 
|  | /* | 
|  | * On certain platforms whose physical address space can overlap KSEG, | 
|  | * namely EV6 and above, we must re-twiddle the physaddr to restore the | 
|  | * correct high-order bits. | 
|  | * | 
|  | * This is extremely confusing until you realize that this is actually | 
|  | * just working around a userspace bug.  The X server was intending to | 
|  | * provide the physical address but instead provided the KSEG address. | 
|  | * Or tried to, except it's not representable. | 
|  | * | 
|  | * On Tsunami there's nothing meaningful at 0x40000000000, so this is | 
|  | * a safe thing to do.  Come the first core logic that does put something | 
|  | * in this area -- memory or whathaveyou -- then this hack will have | 
|  | * to go away.  So be prepared! | 
|  | */ | 
|  |  | 
|  | #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG) | 
|  | #error "EV6-only feature in a generic kernel" | 
|  | #endif | 
|  | #if defined(CONFIG_ALPHA_GENERIC) || \ | 
|  | (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG)) | 
|  | #define KSEG_PFN	(0xc0000000000UL >> PAGE_SHIFT) | 
|  | #define PHYS_TWIDDLE(pfn) \ | 
|  | ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \ | 
|  | ? ((pfn) ^= KSEG_PFN) : (pfn)) | 
|  | #else | 
|  | #define PHYS_TWIDDLE(pfn) (pfn) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Conversion functions:  convert a page and protection to a page entry, | 
|  | * and a page entry and page directory to the page they refer to. | 
|  | */ | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | #define page_to_pa(page)	(((page) - mem_map) << PAGE_SHIFT) | 
|  |  | 
|  | #define pte_pfn(pte)	(pte_val(pte) >> 32) | 
|  | #define pte_page(pte)	pfn_to_page(pte_pfn(pte)) | 
|  | #define mk_pte(page, pgprot)						\ | 
|  | ({									\ | 
|  | pte_t pte;							\ | 
|  | \ | 
|  | pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot);	\ | 
|  | pte;								\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot) | 
|  | { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; } | 
|  |  | 
|  | extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
|  | { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } | 
|  |  | 
|  | extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) | 
|  | { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } | 
|  |  | 
|  | extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) | 
|  | { pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } | 
|  |  | 
|  |  | 
|  | extern inline unsigned long | 
|  | pmd_page_vaddr(pmd_t pmd) | 
|  | { | 
|  | return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | #define pmd_page(pmd)	(mem_map + ((pmd_val(pmd) & _PFN_MASK) >> 32)) | 
|  | #define pgd_page(pgd)	(mem_map + ((pgd_val(pgd) & _PFN_MASK) >> 32)) | 
|  | #endif | 
|  |  | 
|  | extern inline unsigned long pgd_page_vaddr(pgd_t pgd) | 
|  | { return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); } | 
|  |  | 
|  | extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); } | 
|  | extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_VALID; } | 
|  | extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | pte_val(*ptep) = 0; | 
|  | } | 
|  |  | 
|  | extern inline int pmd_none(pmd_t pmd)		{ return !pmd_val(pmd); } | 
|  | extern inline int pmd_bad(pmd_t pmd)		{ return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; } | 
|  | extern inline int pmd_present(pmd_t pmd)	{ return pmd_val(pmd) & _PAGE_VALID; } | 
|  | extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = 0; } | 
|  |  | 
|  | extern inline int pgd_none(pgd_t pgd)		{ return !pgd_val(pgd); } | 
|  | extern inline int pgd_bad(pgd_t pgd)		{ return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE; } | 
|  | extern inline int pgd_present(pgd_t pgd)	{ return pgd_val(pgd) & _PAGE_VALID; } | 
|  | extern inline void pgd_clear(pgd_t * pgdp)	{ pgd_val(*pgdp) = 0; } | 
|  |  | 
|  | /* | 
|  | * The following only work if pte_present() is true. | 
|  | * Undefined behaviour if not.. | 
|  | */ | 
|  | extern inline int pte_write(pte_t pte)		{ return !(pte_val(pte) & _PAGE_FOW); } | 
|  | extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; } | 
|  | extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; } | 
|  | extern inline int pte_special(pte_t pte)	{ return 0; } | 
|  |  | 
|  | extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) |= _PAGE_FOW; return pte; } | 
|  | extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~(__DIRTY_BITS); return pte; } | 
|  | extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~(__ACCESS_BITS); return pte; } | 
|  | extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) &= ~_PAGE_FOW; return pte; } | 
|  | extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= __DIRTY_BITS; return pte; } | 
|  | extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= __ACCESS_BITS; return pte; } | 
|  | extern inline pte_t pte_mkspecial(pte_t pte)	{ return pte; } | 
|  |  | 
|  | #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address)) | 
|  |  | 
|  | /* to find an entry in a kernel page-table-directory */ | 
|  | #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) | 
|  |  | 
|  | /* to find an entry in a page-table-directory. */ | 
|  | #define pgd_index(address)	(((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) | 
|  | #define pgd_offset(mm, address)	((mm)->pgd+pgd_index(address)) | 
|  |  | 
|  | /* | 
|  | * The smp_read_barrier_depends() in the following functions are required to | 
|  | * order the load of *dir (the pointer in the top level page table) with any | 
|  | * subsequent load of the returned pmd_t *ret (ret is data dependent on *dir). | 
|  | * | 
|  | * If this ordering is not enforced, the CPU might load an older value of | 
|  | * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for | 
|  | * more details. | 
|  | * | 
|  | * Note that we never change the mm->pgd pointer after the task is running, so | 
|  | * pgd_offset does not require such a barrier. | 
|  | */ | 
|  |  | 
|  | /* Find an entry in the second-level page table.. */ | 
|  | extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) | 
|  | { | 
|  | pmd_t *ret = (pmd_t *) pgd_page_vaddr(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1)); | 
|  | smp_read_barrier_depends(); /* see above */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Find an entry in the third-level page table.. */ | 
|  | extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address) | 
|  | { | 
|  | pte_t *ret = (pte_t *) pmd_page_vaddr(*dir) | 
|  | + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1)); | 
|  | smp_read_barrier_depends(); /* see above */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr)) | 
|  | #define pte_unmap(pte)			do { } while (0) | 
|  |  | 
|  | extern pgd_t swapper_pg_dir[1024]; | 
|  |  | 
|  | /* | 
|  | * The Alpha doesn't have any external MMU info:  the kernel page | 
|  | * tables contain all the necessary information. | 
|  | */ | 
|  | extern inline void update_mmu_cache(struct vm_area_struct * vma, | 
|  | unsigned long address, pte_t *ptep) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-present pages:  high 24 bits are offset, next 8 bits type, | 
|  | * low 32 bits zero. | 
|  | */ | 
|  | extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) | 
|  | { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } | 
|  |  | 
|  | #define __swp_type(x)		(((x).val >> 32) & 0xff) | 
|  | #define __swp_offset(x)		((x).val >> 40) | 
|  | #define __swp_entry(type, off)	((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) }) | 
|  | #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) }) | 
|  | #define __swp_entry_to_pte(x)	((pte_t) { (x).val }) | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | #define kern_addr_valid(addr)	(1) | 
|  | #endif | 
|  |  | 
|  | #define pte_ERROR(e) \ | 
|  | printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) | 
|  | #define pmd_ERROR(e) \ | 
|  | printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) | 
|  | #define pgd_ERROR(e) \ | 
|  | printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) | 
|  |  | 
|  | extern void paging_init(void); | 
|  |  | 
|  | #include <asm-generic/pgtable.h> | 
|  |  | 
|  | /* | 
|  | * No page table caches to initialise | 
|  | */ | 
|  | #define pgtable_cache_init()	do { } while (0) | 
|  |  | 
|  | /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT.  */ | 
|  | #define HAVE_ARCH_UNMAPPED_AREA | 
|  |  | 
|  | #endif /* _ALPHA_PGTABLE_H */ |