|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * MMU support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "mmu.h" | 
|  | #include "x86.h" | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "cpuid.h" | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/srcu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/cmpxchg.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/vmx.h> | 
|  |  | 
|  | /* | 
|  | * When setting this variable to true it enables Two-Dimensional-Paging | 
|  | * where the hardware walks 2 page tables: | 
|  | * 1. the guest-virtual to guest-physical | 
|  | * 2. while doing 1. it walks guest-physical to host-physical | 
|  | * If the hardware supports that we don't need to do shadow paging. | 
|  | */ | 
|  | bool tdp_enabled = false; | 
|  |  | 
|  | enum { | 
|  | AUDIT_PRE_PAGE_FAULT, | 
|  | AUDIT_POST_PAGE_FAULT, | 
|  | AUDIT_PRE_PTE_WRITE, | 
|  | AUDIT_POST_PTE_WRITE, | 
|  | AUDIT_PRE_SYNC, | 
|  | AUDIT_POST_SYNC | 
|  | }; | 
|  |  | 
|  | #undef MMU_DEBUG | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  | static bool dbg = 0; | 
|  | module_param(dbg, bool, 0644); | 
|  |  | 
|  | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | 
|  | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | 
|  | #define MMU_WARN_ON(x) WARN_ON(x) | 
|  | #else | 
|  | #define pgprintk(x...) do { } while (0) | 
|  | #define rmap_printk(x...) do { } while (0) | 
|  | #define MMU_WARN_ON(x) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define PTE_PREFETCH_NUM		8 | 
|  |  | 
|  | #define PT_FIRST_AVAIL_BITS_SHIFT 10 | 
|  | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | 
|  |  | 
|  | #define PT64_LEVEL_BITS 9 | 
|  |  | 
|  | #define PT64_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) | 
|  |  | 
|  | #define PT64_INDEX(address, level)\ | 
|  | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT32_LEVEL_BITS 10 | 
|  |  | 
|  | #define PT32_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) | 
|  |  | 
|  | #define PT32_LVL_OFFSET_MASK(level) \ | 
|  | (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT32_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT32_INDEX(address, level)\ | 
|  | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) | 
|  | #define PT64_DIR_BASE_ADDR_MASK \ | 
|  | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | 
|  | #define PT64_LVL_ADDR_MASK(level) \ | 
|  | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT64_LEVEL_BITS))) - 1)) | 
|  | #define PT64_LVL_OFFSET_MASK(level) \ | 
|  | (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT64_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT32_BASE_ADDR_MASK PAGE_MASK | 
|  | #define PT32_DIR_BASE_ADDR_MASK \ | 
|  | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | 
|  | #define PT32_LVL_ADDR_MASK(level) \ | 
|  | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT32_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ | 
|  | | shadow_x_mask | shadow_nx_mask) | 
|  |  | 
|  | #define ACC_EXEC_MASK    1 | 
|  | #define ACC_WRITE_MASK   PT_WRITABLE_MASK | 
|  | #define ACC_USER_MASK    PT_USER_MASK | 
|  | #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | 
|  |  | 
|  | #include <trace/events/kvm.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "mmutrace.h" | 
|  |  | 
|  | #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT) | 
|  | #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) | 
|  |  | 
|  | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  |  | 
|  | /* make pte_list_desc fit well in cache line */ | 
|  | #define PTE_LIST_EXT 3 | 
|  |  | 
|  | struct pte_list_desc { | 
|  | u64 *sptes[PTE_LIST_EXT]; | 
|  | struct pte_list_desc *more; | 
|  | }; | 
|  |  | 
|  | struct kvm_shadow_walk_iterator { | 
|  | u64 addr; | 
|  | hpa_t shadow_addr; | 
|  | u64 *sptep; | 
|  | int level; | 
|  | unsigned index; | 
|  | }; | 
|  |  | 
|  | #define for_each_shadow_entry(_vcpu, _addr, _walker)    \ | 
|  | for (shadow_walk_init(&(_walker), _vcpu, _addr);	\ | 
|  | shadow_walk_okay(&(_walker));			\ | 
|  | shadow_walk_next(&(_walker))) | 
|  |  | 
|  | #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\ | 
|  | for (shadow_walk_init(&(_walker), _vcpu, _addr);		\ | 
|  | shadow_walk_okay(&(_walker)) &&				\ | 
|  | ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\ | 
|  | __shadow_walk_next(&(_walker), spte)) | 
|  |  | 
|  | static struct kmem_cache *pte_list_desc_cache; | 
|  | static struct kmem_cache *mmu_page_header_cache; | 
|  | static struct percpu_counter kvm_total_used_mmu_pages; | 
|  |  | 
|  | static u64 __read_mostly shadow_nx_mask; | 
|  | static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */ | 
|  | static u64 __read_mostly shadow_user_mask; | 
|  | static u64 __read_mostly shadow_accessed_mask; | 
|  | static u64 __read_mostly shadow_dirty_mask; | 
|  | static u64 __read_mostly shadow_mmio_mask; | 
|  |  | 
|  | static void mmu_spte_set(u64 *sptep, u64 spte); | 
|  | static void mmu_free_roots(struct kvm_vcpu *vcpu); | 
|  |  | 
|  | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask) | 
|  | { | 
|  | shadow_mmio_mask = mmio_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); | 
|  |  | 
|  | /* | 
|  | * the low bit of the generation number is always presumed to be zero. | 
|  | * This disables mmio caching during memslot updates.  The concept is | 
|  | * similar to a seqcount but instead of retrying the access we just punt | 
|  | * and ignore the cache. | 
|  | * | 
|  | * spte bits 3-11 are used as bits 1-9 of the generation number, | 
|  | * the bits 52-61 are used as bits 10-19 of the generation number. | 
|  | */ | 
|  | #define MMIO_SPTE_GEN_LOW_SHIFT		2 | 
|  | #define MMIO_SPTE_GEN_HIGH_SHIFT	52 | 
|  |  | 
|  | #define MMIO_GEN_SHIFT			20 | 
|  | #define MMIO_GEN_LOW_SHIFT		10 | 
|  | #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2) | 
|  | #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1) | 
|  |  | 
|  | static u64 generation_mmio_spte_mask(unsigned int gen) | 
|  | { | 
|  | u64 mask; | 
|  |  | 
|  | WARN_ON(gen & ~MMIO_GEN_MASK); | 
|  |  | 
|  | mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT; | 
|  | mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT; | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static unsigned int get_mmio_spte_generation(u64 spte) | 
|  | { | 
|  | unsigned int gen; | 
|  |  | 
|  | spte &= ~shadow_mmio_mask; | 
|  |  | 
|  | gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK; | 
|  | gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT; | 
|  | return gen; | 
|  | } | 
|  |  | 
|  | static unsigned int kvm_current_mmio_generation(struct kvm *kvm) | 
|  | { | 
|  | return kvm_memslots(kvm)->generation & MMIO_GEN_MASK; | 
|  | } | 
|  |  | 
|  | static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn, | 
|  | unsigned access) | 
|  | { | 
|  | unsigned int gen = kvm_current_mmio_generation(kvm); | 
|  | u64 mask = generation_mmio_spte_mask(gen); | 
|  |  | 
|  | access &= ACC_WRITE_MASK | ACC_USER_MASK; | 
|  | mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT; | 
|  |  | 
|  | trace_mark_mmio_spte(sptep, gfn, access, gen); | 
|  | mmu_spte_set(sptep, mask); | 
|  | } | 
|  |  | 
|  | static bool is_mmio_spte(u64 spte) | 
|  | { | 
|  | return (spte & shadow_mmio_mask) == shadow_mmio_mask; | 
|  | } | 
|  |  | 
|  | static gfn_t get_mmio_spte_gfn(u64 spte) | 
|  | { | 
|  | u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; | 
|  | return (spte & ~mask) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static unsigned get_mmio_spte_access(u64 spte) | 
|  | { | 
|  | u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; | 
|  | return (spte & ~mask) & ~PAGE_MASK; | 
|  | } | 
|  |  | 
|  | static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn, | 
|  | pfn_t pfn, unsigned access) | 
|  | { | 
|  | if (unlikely(is_noslot_pfn(pfn))) { | 
|  | mark_mmio_spte(kvm, sptep, gfn, access); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool check_mmio_spte(struct kvm *kvm, u64 spte) | 
|  | { | 
|  | unsigned int kvm_gen, spte_gen; | 
|  |  | 
|  | kvm_gen = kvm_current_mmio_generation(kvm); | 
|  | spte_gen = get_mmio_spte_generation(spte); | 
|  |  | 
|  | trace_check_mmio_spte(spte, kvm_gen, spte_gen); | 
|  | return likely(kvm_gen == spte_gen); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, | 
|  | u64 dirty_mask, u64 nx_mask, u64 x_mask) | 
|  | { | 
|  | shadow_user_mask = user_mask; | 
|  | shadow_accessed_mask = accessed_mask; | 
|  | shadow_dirty_mask = dirty_mask; | 
|  | shadow_nx_mask = nx_mask; | 
|  | shadow_x_mask = x_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); | 
|  |  | 
|  | static int is_cpuid_PSE36(void) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int is_nx(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.efer & EFER_NX; | 
|  | } | 
|  |  | 
|  | static int is_shadow_present_pte(u64 pte) | 
|  | { | 
|  | return pte & PT_PRESENT_MASK && !is_mmio_spte(pte); | 
|  | } | 
|  |  | 
|  | static int is_large_pte(u64 pte) | 
|  | { | 
|  | return pte & PT_PAGE_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static int is_rmap_spte(u64 pte) | 
|  | { | 
|  | return is_shadow_present_pte(pte); | 
|  | } | 
|  |  | 
|  | static int is_last_spte(u64 pte, int level) | 
|  | { | 
|  | if (level == PT_PAGE_TABLE_LEVEL) | 
|  | return 1; | 
|  | if (is_large_pte(pte)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static pfn_t spte_to_pfn(u64 pte) | 
|  | { | 
|  | return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static gfn_t pse36_gfn_delta(u32 gpte) | 
|  | { | 
|  | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | 
|  |  | 
|  | return (gpte & PT32_DIR_PSE36_MASK) << shift; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static void __set_spte(u64 *sptep, u64 spte) | 
|  | { | 
|  | *sptep = spte; | 
|  | } | 
|  |  | 
|  | static void __update_clear_spte_fast(u64 *sptep, u64 spte) | 
|  | { | 
|  | *sptep = spte; | 
|  | } | 
|  |  | 
|  | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | 
|  | { | 
|  | return xchg(sptep, spte); | 
|  | } | 
|  |  | 
|  | static u64 __get_spte_lockless(u64 *sptep) | 
|  | { | 
|  | return ACCESS_ONCE(*sptep); | 
|  | } | 
|  | #else | 
|  | union split_spte { | 
|  | struct { | 
|  | u32 spte_low; | 
|  | u32 spte_high; | 
|  | }; | 
|  | u64 spte; | 
|  | }; | 
|  |  | 
|  | static void count_spte_clear(u64 *sptep, u64 spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp =  page_header(__pa(sptep)); | 
|  |  | 
|  | if (is_shadow_present_pte(spte)) | 
|  | return; | 
|  |  | 
|  | /* Ensure the spte is completely set before we increase the count */ | 
|  | smp_wmb(); | 
|  | sp->clear_spte_count++; | 
|  | } | 
|  |  | 
|  | static void __set_spte(u64 *sptep, u64 spte) | 
|  | { | 
|  | union split_spte *ssptep, sspte; | 
|  |  | 
|  | ssptep = (union split_spte *)sptep; | 
|  | sspte = (union split_spte)spte; | 
|  |  | 
|  | ssptep->spte_high = sspte.spte_high; | 
|  |  | 
|  | /* | 
|  | * If we map the spte from nonpresent to present, We should store | 
|  | * the high bits firstly, then set present bit, so cpu can not | 
|  | * fetch this spte while we are setting the spte. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | ssptep->spte_low = sspte.spte_low; | 
|  | } | 
|  |  | 
|  | static void __update_clear_spte_fast(u64 *sptep, u64 spte) | 
|  | { | 
|  | union split_spte *ssptep, sspte; | 
|  |  | 
|  | ssptep = (union split_spte *)sptep; | 
|  | sspte = (union split_spte)spte; | 
|  |  | 
|  | ssptep->spte_low = sspte.spte_low; | 
|  |  | 
|  | /* | 
|  | * If we map the spte from present to nonpresent, we should clear | 
|  | * present bit firstly to avoid vcpu fetch the old high bits. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | ssptep->spte_high = sspte.spte_high; | 
|  | count_spte_clear(sptep, spte); | 
|  | } | 
|  |  | 
|  | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | 
|  | { | 
|  | union split_spte *ssptep, sspte, orig; | 
|  |  | 
|  | ssptep = (union split_spte *)sptep; | 
|  | sspte = (union split_spte)spte; | 
|  |  | 
|  | /* xchg acts as a barrier before the setting of the high bits */ | 
|  | orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); | 
|  | orig.spte_high = ssptep->spte_high; | 
|  | ssptep->spte_high = sspte.spte_high; | 
|  | count_spte_clear(sptep, spte); | 
|  |  | 
|  | return orig.spte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The idea using the light way get the spte on x86_32 guest is from | 
|  | * gup_get_pte(arch/x86/mm/gup.c). | 
|  | * | 
|  | * An spte tlb flush may be pending, because kvm_set_pte_rmapp | 
|  | * coalesces them and we are running out of the MMU lock.  Therefore | 
|  | * we need to protect against in-progress updates of the spte. | 
|  | * | 
|  | * Reading the spte while an update is in progress may get the old value | 
|  | * for the high part of the spte.  The race is fine for a present->non-present | 
|  | * change (because the high part of the spte is ignored for non-present spte), | 
|  | * but for a present->present change we must reread the spte. | 
|  | * | 
|  | * All such changes are done in two steps (present->non-present and | 
|  | * non-present->present), hence it is enough to count the number of | 
|  | * present->non-present updates: if it changed while reading the spte, | 
|  | * we might have hit the race.  This is done using clear_spte_count. | 
|  | */ | 
|  | static u64 __get_spte_lockless(u64 *sptep) | 
|  | { | 
|  | struct kvm_mmu_page *sp =  page_header(__pa(sptep)); | 
|  | union split_spte spte, *orig = (union split_spte *)sptep; | 
|  | int count; | 
|  |  | 
|  | retry: | 
|  | count = sp->clear_spte_count; | 
|  | smp_rmb(); | 
|  |  | 
|  | spte.spte_low = orig->spte_low; | 
|  | smp_rmb(); | 
|  |  | 
|  | spte.spte_high = orig->spte_high; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (unlikely(spte.spte_low != orig->spte_low || | 
|  | count != sp->clear_spte_count)) | 
|  | goto retry; | 
|  |  | 
|  | return spte.spte; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool spte_is_locklessly_modifiable(u64 spte) | 
|  | { | 
|  | return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == | 
|  | (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); | 
|  | } | 
|  |  | 
|  | static bool spte_has_volatile_bits(u64 spte) | 
|  | { | 
|  | /* | 
|  | * Always atomicly update spte if it can be updated | 
|  | * out of mmu-lock, it can ensure dirty bit is not lost, | 
|  | * also, it can help us to get a stable is_writable_pte() | 
|  | * to ensure tlb flush is not missed. | 
|  | */ | 
|  | if (spte_is_locklessly_modifiable(spte)) | 
|  | return true; | 
|  |  | 
|  | if (!shadow_accessed_mask) | 
|  | return false; | 
|  |  | 
|  | if (!is_shadow_present_pte(spte)) | 
|  | return false; | 
|  |  | 
|  | if ((spte & shadow_accessed_mask) && | 
|  | (!is_writable_pte(spte) || (spte & shadow_dirty_mask))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask) | 
|  | { | 
|  | return (old_spte & bit_mask) && !(new_spte & bit_mask); | 
|  | } | 
|  |  | 
|  | static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask) | 
|  | { | 
|  | return (old_spte & bit_mask) != (new_spte & bit_mask); | 
|  | } | 
|  |  | 
|  | /* Rules for using mmu_spte_set: | 
|  | * Set the sptep from nonpresent to present. | 
|  | * Note: the sptep being assigned *must* be either not present | 
|  | * or in a state where the hardware will not attempt to update | 
|  | * the spte. | 
|  | */ | 
|  | static void mmu_spte_set(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | WARN_ON(is_shadow_present_pte(*sptep)); | 
|  | __set_spte(sptep, new_spte); | 
|  | } | 
|  |  | 
|  | /* Rules for using mmu_spte_update: | 
|  | * Update the state bits, it means the mapped pfn is not changged. | 
|  | * | 
|  | * Whenever we overwrite a writable spte with a read-only one we | 
|  | * should flush remote TLBs. Otherwise rmap_write_protect | 
|  | * will find a read-only spte, even though the writable spte | 
|  | * might be cached on a CPU's TLB, the return value indicates this | 
|  | * case. | 
|  | */ | 
|  | static bool mmu_spte_update(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | u64 old_spte = *sptep; | 
|  | bool ret = false; | 
|  |  | 
|  | WARN_ON(!is_rmap_spte(new_spte)); | 
|  |  | 
|  | if (!is_shadow_present_pte(old_spte)) { | 
|  | mmu_spte_set(sptep, new_spte); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!spte_has_volatile_bits(old_spte)) | 
|  | __update_clear_spte_fast(sptep, new_spte); | 
|  | else | 
|  | old_spte = __update_clear_spte_slow(sptep, new_spte); | 
|  |  | 
|  | /* | 
|  | * For the spte updated out of mmu-lock is safe, since | 
|  | * we always atomicly update it, see the comments in | 
|  | * spte_has_volatile_bits(). | 
|  | */ | 
|  | if (spte_is_locklessly_modifiable(old_spte) && | 
|  | !is_writable_pte(new_spte)) | 
|  | ret = true; | 
|  |  | 
|  | if (!shadow_accessed_mask) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Flush TLB when accessed/dirty bits are changed in the page tables, | 
|  | * to guarantee consistency between TLB and page tables. | 
|  | */ | 
|  | if (spte_is_bit_changed(old_spte, new_spte, | 
|  | shadow_accessed_mask | shadow_dirty_mask)) | 
|  | ret = true; | 
|  |  | 
|  | if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask)) | 
|  | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); | 
|  | if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask)) | 
|  | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rules for using mmu_spte_clear_track_bits: | 
|  | * It sets the sptep from present to nonpresent, and track the | 
|  | * state bits, it is used to clear the last level sptep. | 
|  | */ | 
|  | static int mmu_spte_clear_track_bits(u64 *sptep) | 
|  | { | 
|  | pfn_t pfn; | 
|  | u64 old_spte = *sptep; | 
|  |  | 
|  | if (!spte_has_volatile_bits(old_spte)) | 
|  | __update_clear_spte_fast(sptep, 0ull); | 
|  | else | 
|  | old_spte = __update_clear_spte_slow(sptep, 0ull); | 
|  |  | 
|  | if (!is_rmap_spte(old_spte)) | 
|  | return 0; | 
|  |  | 
|  | pfn = spte_to_pfn(old_spte); | 
|  |  | 
|  | /* | 
|  | * KVM does not hold the refcount of the page used by | 
|  | * kvm mmu, before reclaiming the page, we should | 
|  | * unmap it from mmu first. | 
|  | */ | 
|  | WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); | 
|  |  | 
|  | if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) | 
|  | kvm_set_pfn_accessed(pfn); | 
|  | if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) | 
|  | kvm_set_pfn_dirty(pfn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rules for using mmu_spte_clear_no_track: | 
|  | * Directly clear spte without caring the state bits of sptep, | 
|  | * it is used to set the upper level spte. | 
|  | */ | 
|  | static void mmu_spte_clear_no_track(u64 *sptep) | 
|  | { | 
|  | __update_clear_spte_fast(sptep, 0ull); | 
|  | } | 
|  |  | 
|  | static u64 mmu_spte_get_lockless(u64 *sptep) | 
|  | { | 
|  | return __get_spte_lockless(sptep); | 
|  | } | 
|  |  | 
|  | static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Prevent page table teardown by making any free-er wait during | 
|  | * kvm_flush_remote_tlbs() IPI to all active vcpus. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | vcpu->mode = READING_SHADOW_PAGE_TABLES; | 
|  | /* | 
|  | * Make sure a following spte read is not reordered ahead of the write | 
|  | * to vcpu->mode. | 
|  | */ | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Make sure the write to vcpu->mode is not reordered in front of | 
|  | * reads to sptes.  If it does, kvm_commit_zap_page() can see us | 
|  | * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. | 
|  | */ | 
|  | smp_mb(); | 
|  | vcpu->mode = OUTSIDE_GUEST_MODE; | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
|  | struct kmem_cache *base_cache, int min) | 
|  | { | 
|  | void *obj; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); | 
|  | if (!obj) | 
|  | return -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = obj; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) | 
|  | { | 
|  | return cache->nobjs; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, | 
|  | struct kmem_cache *cache) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | kmem_cache_free(cache, mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, | 
|  | int min) | 
|  | { | 
|  | void *page; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | page = (void *)__get_free_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | free_page((unsigned long)mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, | 
|  | pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
|  | mmu_page_header_cache, 4); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, | 
|  | pte_list_desc_cache); | 
|  | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
|  | mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(!mc->nobjs); | 
|  | p = mc->objects[--mc->nobjs]; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); | 
|  | } | 
|  |  | 
|  | static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) | 
|  | { | 
|  | kmem_cache_free(pte_list_desc_cache, pte_list_desc); | 
|  | } | 
|  |  | 
|  | static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) | 
|  | { | 
|  | if (!sp->role.direct) | 
|  | return sp->gfns[index]; | 
|  |  | 
|  | return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) | 
|  | { | 
|  | if (sp->role.direct) | 
|  | BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); | 
|  | else | 
|  | sp->gfns[index] = gfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the pointer to the large page information for a given gfn, | 
|  | * handling slots that are not large page aligned. | 
|  | */ | 
|  | static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, | 
|  | struct kvm_memory_slot *slot, | 
|  | int level) | 
|  | { | 
|  | unsigned long idx; | 
|  |  | 
|  | idx = gfn_to_index(gfn, slot->base_gfn, level); | 
|  | return &slot->arch.lpage_info[level - 2][idx]; | 
|  | } | 
|  |  | 
|  | static void account_shadowed(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_lpage_info *linfo; | 
|  | int i; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | for (i = PT_DIRECTORY_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | linfo = lpage_info_slot(gfn, slot, i); | 
|  | linfo->write_count += 1; | 
|  | } | 
|  | kvm->arch.indirect_shadow_pages++; | 
|  | } | 
|  |  | 
|  | static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_lpage_info *linfo; | 
|  | int i; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | for (i = PT_DIRECTORY_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | linfo = lpage_info_slot(gfn, slot, i); | 
|  | linfo->write_count -= 1; | 
|  | WARN_ON(linfo->write_count < 0); | 
|  | } | 
|  | kvm->arch.indirect_shadow_pages--; | 
|  | } | 
|  |  | 
|  | static int has_wrprotected_page(struct kvm *kvm, | 
|  | gfn_t gfn, | 
|  | int level) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_lpage_info *linfo; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | if (slot) { | 
|  | linfo = lpage_info_slot(gfn, slot, level); | 
|  | return linfo->write_count; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int host_mapping_level(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | unsigned long page_size; | 
|  | int i, ret = 0; | 
|  |  | 
|  | page_size = kvm_host_page_size(kvm, gfn); | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL; | 
|  | i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) { | 
|  | if (page_size >= KVM_HPAGE_SIZE(i)) | 
|  | ret = i; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct kvm_memory_slot * | 
|  | gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool no_dirty_log) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = gfn_to_memslot(vcpu->kvm, gfn); | 
|  | if (!slot || slot->flags & KVM_MEMSLOT_INVALID || | 
|  | (no_dirty_log && slot->dirty_bitmap)) | 
|  | slot = NULL; | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn) | 
|  | { | 
|  | return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true); | 
|  | } | 
|  |  | 
|  | static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn) | 
|  | { | 
|  | int host_level, level, max_level; | 
|  |  | 
|  | host_level = host_mapping_level(vcpu->kvm, large_gfn); | 
|  |  | 
|  | if (host_level == PT_PAGE_TABLE_LEVEL) | 
|  | return host_level; | 
|  |  | 
|  | max_level = min(kvm_x86_ops->get_lpage_level(), host_level); | 
|  |  | 
|  | for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) | 
|  | if (has_wrprotected_page(vcpu->kvm, large_gfn, level)) | 
|  | break; | 
|  |  | 
|  | return level - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pte mapping structures: | 
|  | * | 
|  | * If pte_list bit zero is zero, then pte_list point to the spte. | 
|  | * | 
|  | * If pte_list bit zero is one, (then pte_list & ~1) points to a struct | 
|  | * pte_list_desc containing more mappings. | 
|  | * | 
|  | * Returns the number of pte entries before the spte was added or zero if | 
|  | * the spte was not added. | 
|  | * | 
|  | */ | 
|  | static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, | 
|  | unsigned long *pte_list) | 
|  | { | 
|  | struct pte_list_desc *desc; | 
|  | int i, count = 0; | 
|  |  | 
|  | if (!*pte_list) { | 
|  | rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); | 
|  | *pte_list = (unsigned long)spte; | 
|  | } else if (!(*pte_list & 1)) { | 
|  | rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); | 
|  | desc = mmu_alloc_pte_list_desc(vcpu); | 
|  | desc->sptes[0] = (u64 *)*pte_list; | 
|  | desc->sptes[1] = spte; | 
|  | *pte_list = (unsigned long)desc | 1; | 
|  | ++count; | 
|  | } else { | 
|  | rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); | 
|  | desc = (struct pte_list_desc *)(*pte_list & ~1ul); | 
|  | while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { | 
|  | desc = desc->more; | 
|  | count += PTE_LIST_EXT; | 
|  | } | 
|  | if (desc->sptes[PTE_LIST_EXT-1]) { | 
|  | desc->more = mmu_alloc_pte_list_desc(vcpu); | 
|  | desc = desc->more; | 
|  | } | 
|  | for (i = 0; desc->sptes[i]; ++i) | 
|  | ++count; | 
|  | desc->sptes[i] = spte; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc, | 
|  | int i, struct pte_list_desc *prev_desc) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) | 
|  | ; | 
|  | desc->sptes[i] = desc->sptes[j]; | 
|  | desc->sptes[j] = NULL; | 
|  | if (j != 0) | 
|  | return; | 
|  | if (!prev_desc && !desc->more) | 
|  | *pte_list = (unsigned long)desc->sptes[0]; | 
|  | else | 
|  | if (prev_desc) | 
|  | prev_desc->more = desc->more; | 
|  | else | 
|  | *pte_list = (unsigned long)desc->more | 1; | 
|  | mmu_free_pte_list_desc(desc); | 
|  | } | 
|  |  | 
|  | static void pte_list_remove(u64 *spte, unsigned long *pte_list) | 
|  | { | 
|  | struct pte_list_desc *desc; | 
|  | struct pte_list_desc *prev_desc; | 
|  | int i; | 
|  |  | 
|  | if (!*pte_list) { | 
|  | printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte); | 
|  | BUG(); | 
|  | } else if (!(*pte_list & 1)) { | 
|  | rmap_printk("pte_list_remove:  %p 1->0\n", spte); | 
|  | if ((u64 *)*pte_list != spte) { | 
|  | printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte); | 
|  | BUG(); | 
|  | } | 
|  | *pte_list = 0; | 
|  | } else { | 
|  | rmap_printk("pte_list_remove:  %p many->many\n", spte); | 
|  | desc = (struct pte_list_desc *)(*pte_list & ~1ul); | 
|  | prev_desc = NULL; | 
|  | while (desc) { | 
|  | for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) | 
|  | if (desc->sptes[i] == spte) { | 
|  | pte_list_desc_remove_entry(pte_list, | 
|  | desc, i, | 
|  | prev_desc); | 
|  | return; | 
|  | } | 
|  | prev_desc = desc; | 
|  | desc = desc->more; | 
|  | } | 
|  | pr_err("pte_list_remove: %p many->many\n", spte); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef void (*pte_list_walk_fn) (u64 *spte); | 
|  | static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn) | 
|  | { | 
|  | struct pte_list_desc *desc; | 
|  | int i; | 
|  |  | 
|  | if (!*pte_list) | 
|  | return; | 
|  |  | 
|  | if (!(*pte_list & 1)) | 
|  | return fn((u64 *)*pte_list); | 
|  |  | 
|  | desc = (struct pte_list_desc *)(*pte_list & ~1ul); | 
|  | while (desc) { | 
|  | for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) | 
|  | fn(desc->sptes[i]); | 
|  | desc = desc->more; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long *__gfn_to_rmap(gfn_t gfn, int level, | 
|  | struct kvm_memory_slot *slot) | 
|  | { | 
|  | unsigned long idx; | 
|  |  | 
|  | idx = gfn_to_index(gfn, slot->base_gfn, level); | 
|  | return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take gfn and return the reverse mapping to it. | 
|  | */ | 
|  | static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | return __gfn_to_rmap(gfn, level, slot); | 
|  | } | 
|  |  | 
|  | static bool rmap_can_add(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_memory_cache *cache; | 
|  |  | 
|  | cache = &vcpu->arch.mmu_pte_list_desc_cache; | 
|  | return mmu_memory_cache_free_objects(cache); | 
|  | } | 
|  |  | 
|  | static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  | kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); | 
|  | rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); | 
|  | return pte_list_add(vcpu, spte, rmapp); | 
|  | } | 
|  |  | 
|  | static void rmap_remove(struct kvm *kvm, u64 *spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | gfn_t gfn; | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); | 
|  | rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); | 
|  | pte_list_remove(spte, rmapp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by the following functions to iterate through the sptes linked by a | 
|  | * rmap.  All fields are private and not assumed to be used outside. | 
|  | */ | 
|  | struct rmap_iterator { | 
|  | /* private fields */ | 
|  | struct pte_list_desc *desc;	/* holds the sptep if not NULL */ | 
|  | int pos;			/* index of the sptep */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Iteration must be started by this function.  This should also be used after | 
|  | * removing/dropping sptes from the rmap link because in such cases the | 
|  | * information in the itererator may not be valid. | 
|  | * | 
|  | * Returns sptep if found, NULL otherwise. | 
|  | */ | 
|  | static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter) | 
|  | { | 
|  | if (!rmap) | 
|  | return NULL; | 
|  |  | 
|  | if (!(rmap & 1)) { | 
|  | iter->desc = NULL; | 
|  | return (u64 *)rmap; | 
|  | } | 
|  |  | 
|  | iter->desc = (struct pte_list_desc *)(rmap & ~1ul); | 
|  | iter->pos = 0; | 
|  | return iter->desc->sptes[iter->pos]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be used with a valid iterator: e.g. after rmap_get_first(). | 
|  | * | 
|  | * Returns sptep if found, NULL otherwise. | 
|  | */ | 
|  | static u64 *rmap_get_next(struct rmap_iterator *iter) | 
|  | { | 
|  | if (iter->desc) { | 
|  | if (iter->pos < PTE_LIST_EXT - 1) { | 
|  | u64 *sptep; | 
|  |  | 
|  | ++iter->pos; | 
|  | sptep = iter->desc->sptes[iter->pos]; | 
|  | if (sptep) | 
|  | return sptep; | 
|  | } | 
|  |  | 
|  | iter->desc = iter->desc->more; | 
|  |  | 
|  | if (iter->desc) { | 
|  | iter->pos = 0; | 
|  | /* desc->sptes[0] cannot be NULL */ | 
|  | return iter->desc->sptes[iter->pos]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void drop_spte(struct kvm *kvm, u64 *sptep) | 
|  | { | 
|  | if (mmu_spte_clear_track_bits(sptep)) | 
|  | rmap_remove(kvm, sptep); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) | 
|  | { | 
|  | if (is_large_pte(*sptep)) { | 
|  | WARN_ON(page_header(__pa(sptep))->role.level == | 
|  | PT_PAGE_TABLE_LEVEL); | 
|  | drop_spte(kvm, sptep); | 
|  | --kvm->stat.lpages; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) | 
|  | { | 
|  | if (__drop_large_spte(vcpu->kvm, sptep)) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write-protect on the specified @sptep, @pt_protect indicates whether | 
|  | * spte write-protection is caused by protecting shadow page table. | 
|  | * | 
|  | * Note: write protection is difference between dirty logging and spte | 
|  | * protection: | 
|  | * - for dirty logging, the spte can be set to writable at anytime if | 
|  | *   its dirty bitmap is properly set. | 
|  | * - for spte protection, the spte can be writable only after unsync-ing | 
|  | *   shadow page. | 
|  | * | 
|  | * Return true if tlb need be flushed. | 
|  | */ | 
|  | static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect) | 
|  | { | 
|  | u64 spte = *sptep; | 
|  |  | 
|  | if (!is_writable_pte(spte) && | 
|  | !(pt_protect && spte_is_locklessly_modifiable(spte))) | 
|  | return false; | 
|  |  | 
|  | rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); | 
|  |  | 
|  | if (pt_protect) | 
|  | spte &= ~SPTE_MMU_WRITEABLE; | 
|  | spte = spte & ~PT_WRITABLE_MASK; | 
|  |  | 
|  | return mmu_spte_update(sptep, spte); | 
|  | } | 
|  |  | 
|  | static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, | 
|  | bool pt_protect) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | bool flush = false; | 
|  |  | 
|  | for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { | 
|  | BUG_ON(!(*sptep & PT_PRESENT_MASK)); | 
|  |  | 
|  | flush |= spte_write_protect(kvm, sptep, pt_protect); | 
|  | sptep = rmap_get_next(&iter); | 
|  | } | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep) | 
|  | { | 
|  | u64 spte = *sptep; | 
|  |  | 
|  | rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); | 
|  |  | 
|  | spte &= ~shadow_dirty_mask; | 
|  |  | 
|  | return mmu_spte_update(sptep, spte); | 
|  | } | 
|  |  | 
|  | static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | bool flush = false; | 
|  |  | 
|  | for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { | 
|  | BUG_ON(!(*sptep & PT_PRESENT_MASK)); | 
|  |  | 
|  | flush |= spte_clear_dirty(kvm, sptep); | 
|  | sptep = rmap_get_next(&iter); | 
|  | } | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static bool spte_set_dirty(struct kvm *kvm, u64 *sptep) | 
|  | { | 
|  | u64 spte = *sptep; | 
|  |  | 
|  | rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); | 
|  |  | 
|  | spte |= shadow_dirty_mask; | 
|  |  | 
|  | return mmu_spte_update(sptep, spte); | 
|  | } | 
|  |  | 
|  | static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | bool flush = false; | 
|  |  | 
|  | for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { | 
|  | BUG_ON(!(*sptep & PT_PRESENT_MASK)); | 
|  |  | 
|  | flush |= spte_set_dirty(kvm, sptep); | 
|  | sptep = rmap_get_next(&iter); | 
|  | } | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages | 
|  | * @kvm: kvm instance | 
|  | * @slot: slot to protect | 
|  | * @gfn_offset: start of the BITS_PER_LONG pages we care about | 
|  | * @mask: indicates which pages we should protect | 
|  | * | 
|  | * Used when we do not need to care about huge page mappings: e.g. during dirty | 
|  | * logging we do not have any such mappings. | 
|  | */ | 
|  | static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | while (mask) { | 
|  | rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), | 
|  | PT_PAGE_TABLE_LEVEL, slot); | 
|  | __rmap_write_protect(kvm, rmapp, false); | 
|  |  | 
|  | /* clear the first set bit */ | 
|  | mask &= mask - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages | 
|  | * @kvm: kvm instance | 
|  | * @slot: slot to clear D-bit | 
|  | * @gfn_offset: start of the BITS_PER_LONG pages we care about | 
|  | * @mask: indicates which pages we should clear D-bit | 
|  | * | 
|  | * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. | 
|  | */ | 
|  | void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | while (mask) { | 
|  | rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), | 
|  | PT_PAGE_TABLE_LEVEL, slot); | 
|  | __rmap_clear_dirty(kvm, rmapp); | 
|  |  | 
|  | /* clear the first set bit */ | 
|  | mask &= mask - 1; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); | 
|  |  | 
|  | /** | 
|  | * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected | 
|  | * PT level pages. | 
|  | * | 
|  | * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to | 
|  | * enable dirty logging for them. | 
|  | * | 
|  | * Used when we do not need to care about huge page mappings: e.g. during dirty | 
|  | * logging we do not have any such mappings. | 
|  | */ | 
|  | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | if (kvm_x86_ops->enable_log_dirty_pt_masked) | 
|  | kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, | 
|  | mask); | 
|  | else | 
|  | kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); | 
|  | } | 
|  |  | 
|  | static bool rmap_write_protect(struct kvm *kvm, u64 gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | unsigned long *rmapp; | 
|  | int i; | 
|  | bool write_protected = false; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | rmapp = __gfn_to_rmap(gfn, i, slot); | 
|  | write_protected |= __rmap_write_protect(kvm, rmapp, true); | 
|  | } | 
|  |  | 
|  | return write_protected; | 
|  | } | 
|  |  | 
|  | static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, int level, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | int need_tlb_flush = 0; | 
|  |  | 
|  | while ((sptep = rmap_get_first(*rmapp, &iter))) { | 
|  | BUG_ON(!(*sptep & PT_PRESENT_MASK)); | 
|  | rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n", | 
|  | sptep, *sptep, gfn, level); | 
|  |  | 
|  | drop_spte(kvm, sptep); | 
|  | need_tlb_flush = 1; | 
|  | } | 
|  |  | 
|  | return need_tlb_flush; | 
|  | } | 
|  |  | 
|  | static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, int level, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | int need_flush = 0; | 
|  | u64 new_spte; | 
|  | pte_t *ptep = (pte_t *)data; | 
|  | pfn_t new_pfn; | 
|  |  | 
|  | WARN_ON(pte_huge(*ptep)); | 
|  | new_pfn = pte_pfn(*ptep); | 
|  |  | 
|  | for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { | 
|  | BUG_ON(!is_shadow_present_pte(*sptep)); | 
|  | rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", | 
|  | sptep, *sptep, gfn, level); | 
|  |  | 
|  | need_flush = 1; | 
|  |  | 
|  | if (pte_write(*ptep)) { | 
|  | drop_spte(kvm, sptep); | 
|  | sptep = rmap_get_first(*rmapp, &iter); | 
|  | } else { | 
|  | new_spte = *sptep & ~PT64_BASE_ADDR_MASK; | 
|  | new_spte |= (u64)new_pfn << PAGE_SHIFT; | 
|  |  | 
|  | new_spte &= ~PT_WRITABLE_MASK; | 
|  | new_spte &= ~SPTE_HOST_WRITEABLE; | 
|  | new_spte &= ~shadow_accessed_mask; | 
|  |  | 
|  | mmu_spte_clear_track_bits(sptep); | 
|  | mmu_spte_set(sptep, new_spte); | 
|  | sptep = rmap_get_next(&iter); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_handle_hva_range(struct kvm *kvm, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | unsigned long data, | 
|  | int (*handler)(struct kvm *kvm, | 
|  | unsigned long *rmapp, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn, | 
|  | int level, | 
|  | unsigned long data)) | 
|  | { | 
|  | int j; | 
|  | int ret = 0; | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  |  | 
|  | kvm_for_each_memslot(memslot, slots) { | 
|  | unsigned long hva_start, hva_end; | 
|  | gfn_t gfn_start, gfn_end; | 
|  |  | 
|  | hva_start = max(start, memslot->userspace_addr); | 
|  | hva_end = min(end, memslot->userspace_addr + | 
|  | (memslot->npages << PAGE_SHIFT)); | 
|  | if (hva_start >= hva_end) | 
|  | continue; | 
|  | /* | 
|  | * {gfn(page) | page intersects with [hva_start, hva_end)} = | 
|  | * {gfn_start, gfn_start+1, ..., gfn_end-1}. | 
|  | */ | 
|  | gfn_start = hva_to_gfn_memslot(hva_start, memslot); | 
|  | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); | 
|  |  | 
|  | for (j = PT_PAGE_TABLE_LEVEL; | 
|  | j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) { | 
|  | unsigned long idx, idx_end; | 
|  | unsigned long *rmapp; | 
|  | gfn_t gfn = gfn_start; | 
|  |  | 
|  | /* | 
|  | * {idx(page_j) | page_j intersects with | 
|  | *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}. | 
|  | */ | 
|  | idx = gfn_to_index(gfn_start, memslot->base_gfn, j); | 
|  | idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j); | 
|  |  | 
|  | rmapp = __gfn_to_rmap(gfn_start, j, memslot); | 
|  |  | 
|  | for (; idx <= idx_end; | 
|  | ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j))) | 
|  | ret |= handler(kvm, rmapp++, memslot, | 
|  | gfn, j, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, | 
|  | unsigned long data, | 
|  | int (*handler)(struct kvm *kvm, unsigned long *rmapp, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn, int level, | 
|  | unsigned long data)) | 
|  | { | 
|  | return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); | 
|  | } | 
|  |  | 
|  | int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp); | 
|  | } | 
|  |  | 
|  | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) | 
|  | { | 
|  | return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); | 
|  | } | 
|  |  | 
|  | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) | 
|  | { | 
|  | kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); | 
|  | } | 
|  |  | 
|  | static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, int level, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator uninitialized_var(iter); | 
|  | int young = 0; | 
|  |  | 
|  | BUG_ON(!shadow_accessed_mask); | 
|  |  | 
|  | for (sptep = rmap_get_first(*rmapp, &iter); sptep; | 
|  | sptep = rmap_get_next(&iter)) { | 
|  | BUG_ON(!is_shadow_present_pte(*sptep)); | 
|  |  | 
|  | if (*sptep & shadow_accessed_mask) { | 
|  | young = 1; | 
|  | clear_bit((ffs(shadow_accessed_mask) - 1), | 
|  | (unsigned long *)sptep); | 
|  | } | 
|  | } | 
|  | trace_kvm_age_page(gfn, level, slot, young); | 
|  | return young; | 
|  | } | 
|  |  | 
|  | static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, | 
|  | int level, unsigned long data) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | int young = 0; | 
|  |  | 
|  | /* | 
|  | * If there's no access bit in the secondary pte set by the | 
|  | * hardware it's up to gup-fast/gup to set the access bit in | 
|  | * the primary pte or in the page structure. | 
|  | */ | 
|  | if (!shadow_accessed_mask) | 
|  | goto out; | 
|  |  | 
|  | for (sptep = rmap_get_first(*rmapp, &iter); sptep; | 
|  | sptep = rmap_get_next(&iter)) { | 
|  | BUG_ON(!is_shadow_present_pte(*sptep)); | 
|  |  | 
|  | if (*sptep & shadow_accessed_mask) { | 
|  | young = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return young; | 
|  | } | 
|  |  | 
|  | #define RMAP_RECYCLE_THRESHOLD 1000 | 
|  |  | 
|  | static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
|  | { | 
|  | unsigned long *rmapp; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  |  | 
|  | rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); | 
|  |  | 
|  | kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) | 
|  | { | 
|  | /* | 
|  | * In case of absence of EPT Access and Dirty Bits supports, | 
|  | * emulate the accessed bit for EPT, by checking if this page has | 
|  | * an EPT mapping, and clearing it if it does. On the next access, | 
|  | * a new EPT mapping will be established. | 
|  | * This has some overhead, but not as much as the cost of swapping | 
|  | * out actively used pages or breaking up actively used hugepages. | 
|  | */ | 
|  | if (!shadow_accessed_mask) { | 
|  | /* | 
|  | * We are holding the kvm->mmu_lock, and we are blowing up | 
|  | * shadow PTEs. MMU notifier consumers need to be kept at bay. | 
|  | * This is correct as long as we don't decouple the mmu_lock | 
|  | * protected regions (like invalidate_range_start|end does). | 
|  | */ | 
|  | kvm->mmu_notifier_seq++; | 
|  | return kvm_handle_hva_range(kvm, start, end, 0, | 
|  | kvm_unmap_rmapp); | 
|  | } | 
|  |  | 
|  | return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); | 
|  | } | 
|  |  | 
|  | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); | 
|  | } | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  | static int is_empty_shadow_page(u64 *spt) | 
|  | { | 
|  | u64 *pos; | 
|  | u64 *end; | 
|  |  | 
|  | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) | 
|  | if (is_shadow_present_pte(*pos)) { | 
|  | printk(KERN_ERR "%s: %p %llx\n", __func__, | 
|  | pos, *pos); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This value is the sum of all of the kvm instances's | 
|  | * kvm->arch.n_used_mmu_pages values.  We need a global, | 
|  | * aggregate version in order to make the slab shrinker | 
|  | * faster | 
|  | */ | 
|  | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) | 
|  | { | 
|  | kvm->arch.n_used_mmu_pages += nr; | 
|  | percpu_counter_add(&kvm_total_used_mmu_pages, nr); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_free_page(struct kvm_mmu_page *sp) | 
|  | { | 
|  | MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); | 
|  | hlist_del(&sp->hash_link); | 
|  | list_del(&sp->link); | 
|  | free_page((unsigned long)sp->spt); | 
|  | if (!sp->role.direct) | 
|  | free_page((unsigned long)sp->gfns); | 
|  | kmem_cache_free(mmu_page_header_cache, sp); | 
|  | } | 
|  |  | 
|  | static unsigned kvm_page_table_hashfn(gfn_t gfn) | 
|  | { | 
|  | return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *parent_pte) | 
|  | { | 
|  | if (!parent_pte) | 
|  | return; | 
|  |  | 
|  | pte_list_add(vcpu, parent_pte, &sp->parent_ptes); | 
|  | } | 
|  |  | 
|  | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | pte_list_remove(parent_pte, &sp->parent_ptes); | 
|  | } | 
|  |  | 
|  | static void drop_parent_pte(struct kvm_mmu_page *sp, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | mmu_page_remove_parent_pte(sp, parent_pte); | 
|  | mmu_spte_clear_no_track(parent_pte); | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, | 
|  | u64 *parent_pte, int direct) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); | 
|  | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | 
|  | if (!direct) | 
|  | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | 
|  | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); | 
|  |  | 
|  | /* | 
|  | * The active_mmu_pages list is the FIFO list, do not move the | 
|  | * page until it is zapped. kvm_zap_obsolete_pages depends on | 
|  | * this feature. See the comments in kvm_zap_obsolete_pages(). | 
|  | */ | 
|  | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); | 
|  | sp->parent_ptes = 0; | 
|  | mmu_page_add_parent_pte(vcpu, sp, parent_pte); | 
|  | kvm_mod_used_mmu_pages(vcpu->kvm, +1); | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void mark_unsync(u64 *spte); | 
|  | static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) | 
|  | { | 
|  | pte_list_walk(&sp->parent_ptes, mark_unsync); | 
|  | } | 
|  |  | 
|  | static void mark_unsync(u64 *spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int index; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  | index = spte - sp->spt; | 
|  | if (__test_and_set_bit(index, sp->unsync_child_bitmap)) | 
|  | return; | 
|  | if (sp->unsync_children++) | 
|  | return; | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | } | 
|  |  | 
|  | static int nonpaging_sync_page(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void nonpaging_update_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *spte, | 
|  | const void *pte) | 
|  | { | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | #define KVM_PAGE_ARRAY_NR 16 | 
|  |  | 
|  | struct kvm_mmu_pages { | 
|  | struct mmu_page_and_offset { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int idx; | 
|  | } page[KVM_PAGE_ARRAY_NR]; | 
|  | unsigned int nr; | 
|  | }; | 
|  |  | 
|  | static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, | 
|  | int idx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (sp->unsync) | 
|  | for (i=0; i < pvec->nr; i++) | 
|  | if (pvec->page[i].sp == sp) | 
|  | return 0; | 
|  |  | 
|  | pvec->page[pvec->nr].sp = sp; | 
|  | pvec->page[pvec->nr].idx = idx; | 
|  | pvec->nr++; | 
|  | return (pvec->nr == KVM_PAGE_ARRAY_NR); | 
|  | } | 
|  |  | 
|  | static int __mmu_unsync_walk(struct kvm_mmu_page *sp, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | int i, ret, nr_unsync_leaf = 0; | 
|  |  | 
|  | for_each_set_bit(i, sp->unsync_child_bitmap, 512) { | 
|  | struct kvm_mmu_page *child; | 
|  | u64 ent = sp->spt[i]; | 
|  |  | 
|  | if (!is_shadow_present_pte(ent) || is_large_pte(ent)) | 
|  | goto clear_child_bitmap; | 
|  |  | 
|  | child = page_header(ent & PT64_BASE_ADDR_MASK); | 
|  |  | 
|  | if (child->unsync_children) { | 
|  | if (mmu_pages_add(pvec, child, i)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | ret = __mmu_unsync_walk(child, pvec); | 
|  | if (!ret) | 
|  | goto clear_child_bitmap; | 
|  | else if (ret > 0) | 
|  | nr_unsync_leaf += ret; | 
|  | else | 
|  | return ret; | 
|  | } else if (child->unsync) { | 
|  | nr_unsync_leaf++; | 
|  | if (mmu_pages_add(pvec, child, i)) | 
|  | return -ENOSPC; | 
|  | } else | 
|  | goto clear_child_bitmap; | 
|  |  | 
|  | continue; | 
|  |  | 
|  | clear_child_bitmap: | 
|  | __clear_bit(i, sp->unsync_child_bitmap); | 
|  | sp->unsync_children--; | 
|  | WARN_ON((int)sp->unsync_children < 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | return nr_unsync_leaf; | 
|  | } | 
|  |  | 
|  | static int mmu_unsync_walk(struct kvm_mmu_page *sp, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | if (!sp->unsync_children) | 
|  | return 0; | 
|  |  | 
|  | mmu_pages_add(pvec, sp, 0); | 
|  | return __mmu_unsync_walk(sp, pvec); | 
|  | } | 
|  |  | 
|  | static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | WARN_ON(!sp->unsync); | 
|  | trace_kvm_mmu_sync_page(sp); | 
|  | sp->unsync = 0; | 
|  | --kvm->stat.mmu_unsync; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list); | 
|  | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list); | 
|  |  | 
|  | /* | 
|  | * NOTE: we should pay more attention on the zapped-obsolete page | 
|  | * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk | 
|  | * since it has been deleted from active_mmu_pages but still can be found | 
|  | * at hast list. | 
|  | * | 
|  | * for_each_gfn_indirect_valid_sp has skipped that kind of page and | 
|  | * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped | 
|  | * all the obsolete pages. | 
|  | */ | 
|  | #define for_each_gfn_sp(_kvm, _sp, _gfn)				\ | 
|  | hlist_for_each_entry(_sp,					\ | 
|  | &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ | 
|  | if ((_sp)->gfn != (_gfn)) {} else | 
|  |  | 
|  | #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\ | 
|  | for_each_gfn_sp(_kvm, _sp, _gfn)				\ | 
|  | if ((_sp)->role.direct || (_sp)->role.invalid) {} else | 
|  |  | 
|  | /* @sp->gfn should be write-protected at the call site */ | 
|  | static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list, bool clear_unsync) | 
|  | { | 
|  | if (sp->role.cr4_pae != !!is_pae(vcpu)) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (clear_unsync) | 
|  | kvm_unlink_unsync_page(vcpu->kvm, sp); | 
|  |  | 
|  | if (vcpu->arch.mmu.sync_page(vcpu, sp)) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_sync_page_transient(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  | int ret; | 
|  |  | 
|  | ret = __kvm_sync_page(vcpu, sp, &invalid_list, false); | 
|  | if (ret) | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_MMU_AUDIT | 
|  | #include "mmu_audit.c" | 
|  | #else | 
|  | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } | 
|  | static void mmu_audit_disable(void) { } | 
|  | #endif | 
|  |  | 
|  | static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | return __kvm_sync_page(vcpu, sp, invalid_list, true); | 
|  | } | 
|  |  | 
|  | /* @gfn should be write-protected at the call site */ | 
|  | static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *s; | 
|  | LIST_HEAD(invalid_list); | 
|  | bool flush = false; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { | 
|  | if (!s->unsync) | 
|  | continue; | 
|  |  | 
|  | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | 
|  | kvm_unlink_unsync_page(vcpu->kvm, s); | 
|  | if ((s->role.cr4_pae != !!is_pae(vcpu)) || | 
|  | (vcpu->arch.mmu.sync_page(vcpu, s))) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list); | 
|  | continue; | 
|  | } | 
|  | flush = true; | 
|  | } | 
|  |  | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | if (flush) | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | } | 
|  |  | 
|  | struct mmu_page_path { | 
|  | struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1]; | 
|  | unsigned int idx[PT64_ROOT_LEVEL-1]; | 
|  | }; | 
|  |  | 
|  | #define for_each_sp(pvec, sp, parents, i)			\ | 
|  | for (i = mmu_pages_next(&pvec, &parents, -1),	\ | 
|  | sp = pvec.page[i].sp;			\ | 
|  | i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\ | 
|  | i = mmu_pages_next(&pvec, &parents, i)) | 
|  |  | 
|  | static int mmu_pages_next(struct kvm_mmu_pages *pvec, | 
|  | struct mmu_page_path *parents, | 
|  | int i) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | for (n = i+1; n < pvec->nr; n++) { | 
|  | struct kvm_mmu_page *sp = pvec->page[n].sp; | 
|  |  | 
|  | if (sp->role.level == PT_PAGE_TABLE_LEVEL) { | 
|  | parents->idx[0] = pvec->page[n].idx; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | parents->parent[sp->role.level-2] = sp; | 
|  | parents->idx[sp->role.level-1] = pvec->page[n].idx; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void mmu_pages_clear_parents(struct mmu_page_path *parents) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int level = 0; | 
|  |  | 
|  | do { | 
|  | unsigned int idx = parents->idx[level]; | 
|  |  | 
|  | sp = parents->parent[level]; | 
|  | if (!sp) | 
|  | return; | 
|  |  | 
|  | --sp->unsync_children; | 
|  | WARN_ON((int)sp->unsync_children < 0); | 
|  | __clear_bit(idx, sp->unsync_child_bitmap); | 
|  | level++; | 
|  | } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_pages_init(struct kvm_mmu_page *parent, | 
|  | struct mmu_page_path *parents, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | parents->parent[parent->role.level-1] = NULL; | 
|  | pvec->nr = 0; | 
|  | } | 
|  |  | 
|  | static void mmu_sync_children(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *parent) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct mmu_page_path parents; | 
|  | struct kvm_mmu_pages pages; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | while (mmu_unsync_walk(parent, &pages)) { | 
|  | bool protected = false; | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) | 
|  | protected |= rmap_write_protect(vcpu->kvm, sp->gfn); | 
|  |  | 
|  | if (protected) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) { | 
|  | kvm_sync_page(vcpu, sp, &invalid_list); | 
|  | mmu_pages_clear_parents(&parents); | 
|  | } | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | cond_resched_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_shadow_page_table(struct kvm_mmu_page *sp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
|  | sp->spt[i] = 0ull; | 
|  | } | 
|  |  | 
|  | static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) | 
|  | { | 
|  | sp->write_flooding_count = 0; | 
|  | } | 
|  |  | 
|  | static void clear_sp_write_flooding_count(u64 *spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp =  page_header(__pa(spte)); | 
|  |  | 
|  | __clear_sp_write_flooding_count(sp); | 
|  | } | 
|  |  | 
|  | static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | 
|  | gfn_t gfn, | 
|  | gva_t gaddr, | 
|  | unsigned level, | 
|  | int direct, | 
|  | unsigned access, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | union kvm_mmu_page_role role; | 
|  | unsigned quadrant; | 
|  | struct kvm_mmu_page *sp; | 
|  | bool need_sync = false; | 
|  |  | 
|  | role = vcpu->arch.mmu.base_role; | 
|  | role.level = level; | 
|  | role.direct = direct; | 
|  | if (role.direct) | 
|  | role.cr4_pae = 0; | 
|  | role.access = access; | 
|  | if (!vcpu->arch.mmu.direct_map | 
|  | && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | 
|  | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | 
|  | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | 
|  | role.quadrant = quadrant; | 
|  | } | 
|  | for_each_gfn_sp(vcpu->kvm, sp, gfn) { | 
|  | if (is_obsolete_sp(vcpu->kvm, sp)) | 
|  | continue; | 
|  |  | 
|  | if (!need_sync && sp->unsync) | 
|  | need_sync = true; | 
|  |  | 
|  | if (sp->role.word != role.word) | 
|  | continue; | 
|  |  | 
|  | if (sp->unsync && kvm_sync_page_transient(vcpu, sp)) | 
|  | break; | 
|  |  | 
|  | mmu_page_add_parent_pte(vcpu, sp, parent_pte); | 
|  | if (sp->unsync_children) { | 
|  | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | } else if (sp->unsync) | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  |  | 
|  | __clear_sp_write_flooding_count(sp); | 
|  | trace_kvm_mmu_get_page(sp, false); | 
|  | return sp; | 
|  | } | 
|  | ++vcpu->kvm->stat.mmu_cache_miss; | 
|  | sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct); | 
|  | if (!sp) | 
|  | return sp; | 
|  | sp->gfn = gfn; | 
|  | sp->role = role; | 
|  | hlist_add_head(&sp->hash_link, | 
|  | &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); | 
|  | if (!direct) { | 
|  | if (rmap_write_protect(vcpu->kvm, gfn)) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | if (level > PT_PAGE_TABLE_LEVEL && need_sync) | 
|  | kvm_sync_pages(vcpu, gfn); | 
|  |  | 
|  | account_shadowed(vcpu->kvm, gfn); | 
|  | } | 
|  | sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; | 
|  | init_shadow_page_table(sp); | 
|  | trace_kvm_mmu_get_page(sp, true); | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, | 
|  | struct kvm_vcpu *vcpu, u64 addr) | 
|  | { | 
|  | iterator->addr = addr; | 
|  | iterator->shadow_addr = vcpu->arch.mmu.root_hpa; | 
|  | iterator->level = vcpu->arch.mmu.shadow_root_level; | 
|  |  | 
|  | if (iterator->level == PT64_ROOT_LEVEL && | 
|  | vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL && | 
|  | !vcpu->arch.mmu.direct_map) | 
|  | --iterator->level; | 
|  |  | 
|  | if (iterator->level == PT32E_ROOT_LEVEL) { | 
|  | iterator->shadow_addr | 
|  | = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; | 
|  | iterator->shadow_addr &= PT64_BASE_ADDR_MASK; | 
|  | --iterator->level; | 
|  | if (!iterator->shadow_addr) | 
|  | iterator->level = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) | 
|  | { | 
|  | if (iterator->level < PT_PAGE_TABLE_LEVEL) | 
|  | return false; | 
|  |  | 
|  | iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); | 
|  | iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, | 
|  | u64 spte) | 
|  | { | 
|  | if (is_last_spte(spte, iterator->level)) { | 
|  | iterator->level = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; | 
|  | --iterator->level; | 
|  | } | 
|  |  | 
|  | static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) | 
|  | { | 
|  | return __shadow_walk_next(iterator, *iterator->sptep); | 
|  | } | 
|  |  | 
|  | static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed) | 
|  | { | 
|  | u64 spte; | 
|  |  | 
|  | BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK || | 
|  | VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); | 
|  |  | 
|  | spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK | | 
|  | shadow_user_mask | shadow_x_mask; | 
|  |  | 
|  | if (accessed) | 
|  | spte |= shadow_accessed_mask; | 
|  |  | 
|  | mmu_spte_set(sptep, spte); | 
|  | } | 
|  |  | 
|  | static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned direct_access) | 
|  | { | 
|  | if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { | 
|  | struct kvm_mmu_page *child; | 
|  |  | 
|  | /* | 
|  | * For the direct sp, if the guest pte's dirty bit | 
|  | * changed form clean to dirty, it will corrupt the | 
|  | * sp's access: allow writable in the read-only sp, | 
|  | * so we should update the spte at this point to get | 
|  | * a new sp with the correct access. | 
|  | */ | 
|  | child = page_header(*sptep & PT64_BASE_ADDR_MASK); | 
|  | if (child->role.access == direct_access) | 
|  | return; | 
|  |  | 
|  | drop_parent_pte(child, sptep); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | u64 *spte) | 
|  | { | 
|  | u64 pte; | 
|  | struct kvm_mmu_page *child; | 
|  |  | 
|  | pte = *spte; | 
|  | if (is_shadow_present_pte(pte)) { | 
|  | if (is_last_spte(pte, sp->role.level)) { | 
|  | drop_spte(kvm, spte); | 
|  | if (is_large_pte(pte)) | 
|  | --kvm->stat.lpages; | 
|  | } else { | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | drop_parent_pte(child, spte); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (is_mmio_spte(pte)) | 
|  | mmu_spte_clear_no_track(spte); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_page_unlink_children(struct kvm *kvm, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
|  | mmu_page_zap_pte(kvm, sp, sp->spt + i); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) | 
|  | { | 
|  | mmu_page_remove_parent_pte(sp, parent_pte); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  |  | 
|  | while ((sptep = rmap_get_first(sp->parent_ptes, &iter))) | 
|  | drop_parent_pte(sp, sptep); | 
|  | } | 
|  |  | 
|  | static int mmu_zap_unsync_children(struct kvm *kvm, | 
|  | struct kvm_mmu_page *parent, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | int i, zapped = 0; | 
|  | struct mmu_page_path parents; | 
|  | struct kvm_mmu_pages pages; | 
|  |  | 
|  | if (parent->role.level == PT_PAGE_TABLE_LEVEL) | 
|  | return 0; | 
|  |  | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | while (mmu_unsync_walk(parent, &pages)) { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) { | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | 
|  | mmu_pages_clear_parents(&parents); | 
|  | zapped++; | 
|  | } | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | } | 
|  |  | 
|  | return zapped; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | trace_kvm_mmu_prepare_zap_page(sp); | 
|  | ++kvm->stat.mmu_shadow_zapped; | 
|  | ret = mmu_zap_unsync_children(kvm, sp, invalid_list); | 
|  | kvm_mmu_page_unlink_children(kvm, sp); | 
|  | kvm_mmu_unlink_parents(kvm, sp); | 
|  |  | 
|  | if (!sp->role.invalid && !sp->role.direct) | 
|  | unaccount_shadowed(kvm, sp->gfn); | 
|  |  | 
|  | if (sp->unsync) | 
|  | kvm_unlink_unsync_page(kvm, sp); | 
|  | if (!sp->root_count) { | 
|  | /* Count self */ | 
|  | ret++; | 
|  | list_move(&sp->link, invalid_list); | 
|  | kvm_mod_used_mmu_pages(kvm, -1); | 
|  | } else { | 
|  | list_move(&sp->link, &kvm->arch.active_mmu_pages); | 
|  |  | 
|  | /* | 
|  | * The obsolete pages can not be used on any vcpus. | 
|  | * See the comments in kvm_mmu_invalidate_zap_all_pages(). | 
|  | */ | 
|  | if (!sp->role.invalid && !is_obsolete_sp(kvm, sp)) | 
|  | kvm_reload_remote_mmus(kvm); | 
|  | } | 
|  |  | 
|  | sp->role.invalid = 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *sp, *nsp; | 
|  |  | 
|  | if (list_empty(invalid_list)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * wmb: make sure everyone sees our modifications to the page tables | 
|  | * rmb: make sure we see changes to vcpu->mode | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * Wait for all vcpus to exit guest mode and/or lockless shadow | 
|  | * page table walks. | 
|  | */ | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | list_for_each_entry_safe(sp, nsp, invalid_list, link) { | 
|  | WARN_ON(!sp->role.invalid || sp->root_count); | 
|  | kvm_mmu_free_page(sp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (list_empty(&kvm->arch.active_mmu_pages)) | 
|  | return false; | 
|  |  | 
|  | sp = list_entry(kvm->arch.active_mmu_pages.prev, | 
|  | struct kvm_mmu_page, link); | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Changing the number of mmu pages allocated to the vm | 
|  | * Note: if goal_nr_mmu_pages is too small, you will get dead lock | 
|  | */ | 
|  | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { | 
|  | /* Need to free some mmu pages to achieve the goal. */ | 
|  | while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) | 
|  | if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) | 
|  | break; | 
|  |  | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; | 
|  | } | 
|  |  | 
|  | kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | LIST_HEAD(invalid_list); | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: looking for gfn %llx\n", __func__, gfn); | 
|  | r = 0; | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { | 
|  | pgprintk("%s: gfn %llx role %x\n", __func__, gfn, | 
|  | sp->role.word); | 
|  | r = 1; | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); | 
|  | } | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); | 
|  |  | 
|  | /* | 
|  | * The function is based on mtrr_type_lookup() in | 
|  | * arch/x86/kernel/cpu/mtrr/generic.c | 
|  | */ | 
|  | static int get_mtrr_type(struct mtrr_state_type *mtrr_state, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | int i; | 
|  | u64 base, mask; | 
|  | u8 prev_match, curr_match; | 
|  | int num_var_ranges = KVM_NR_VAR_MTRR; | 
|  |  | 
|  | if (!mtrr_state->enabled) | 
|  | return 0xFF; | 
|  |  | 
|  | /* Make end inclusive end, instead of exclusive */ | 
|  | end--; | 
|  |  | 
|  | /* Look in fixed ranges. Just return the type as per start */ | 
|  | if (mtrr_state->have_fixed && (start < 0x100000)) { | 
|  | int idx; | 
|  |  | 
|  | if (start < 0x80000) { | 
|  | idx = 0; | 
|  | idx += (start >> 16); | 
|  | return mtrr_state->fixed_ranges[idx]; | 
|  | } else if (start < 0xC0000) { | 
|  | idx = 1 * 8; | 
|  | idx += ((start - 0x80000) >> 14); | 
|  | return mtrr_state->fixed_ranges[idx]; | 
|  | } else if (start < 0x1000000) { | 
|  | idx = 3 * 8; | 
|  | idx += ((start - 0xC0000) >> 12); | 
|  | return mtrr_state->fixed_ranges[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look in variable ranges | 
|  | * Look of multiple ranges matching this address and pick type | 
|  | * as per MTRR precedence | 
|  | */ | 
|  | if (!(mtrr_state->enabled & 2)) | 
|  | return mtrr_state->def_type; | 
|  |  | 
|  | prev_match = 0xFF; | 
|  | for (i = 0; i < num_var_ranges; ++i) { | 
|  | unsigned short start_state, end_state; | 
|  |  | 
|  | if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11))) | 
|  | continue; | 
|  |  | 
|  | base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) + | 
|  | (mtrr_state->var_ranges[i].base_lo & PAGE_MASK); | 
|  | mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) + | 
|  | (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK); | 
|  |  | 
|  | start_state = ((start & mask) == (base & mask)); | 
|  | end_state = ((end & mask) == (base & mask)); | 
|  | if (start_state != end_state) | 
|  | return 0xFE; | 
|  |  | 
|  | if ((start & mask) != (base & mask)) | 
|  | continue; | 
|  |  | 
|  | curr_match = mtrr_state->var_ranges[i].base_lo & 0xff; | 
|  | if (prev_match == 0xFF) { | 
|  | prev_match = curr_match; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (prev_match == MTRR_TYPE_UNCACHABLE || | 
|  | curr_match == MTRR_TYPE_UNCACHABLE) | 
|  | return MTRR_TYPE_UNCACHABLE; | 
|  |  | 
|  | if ((prev_match == MTRR_TYPE_WRBACK && | 
|  | curr_match == MTRR_TYPE_WRTHROUGH) || | 
|  | (prev_match == MTRR_TYPE_WRTHROUGH && | 
|  | curr_match == MTRR_TYPE_WRBACK)) { | 
|  | prev_match = MTRR_TYPE_WRTHROUGH; | 
|  | curr_match = MTRR_TYPE_WRTHROUGH; | 
|  | } | 
|  |  | 
|  | if (prev_match != curr_match) | 
|  | return MTRR_TYPE_UNCACHABLE; | 
|  | } | 
|  |  | 
|  | if (prev_match != 0xFF) | 
|  | return prev_match; | 
|  |  | 
|  | return mtrr_state->def_type; | 
|  | } | 
|  |  | 
|  | u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) | 
|  | { | 
|  | u8 mtrr; | 
|  |  | 
|  | mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT, | 
|  | (gfn << PAGE_SHIFT) + PAGE_SIZE); | 
|  | if (mtrr == 0xfe || mtrr == 0xff) | 
|  | mtrr = MTRR_TYPE_WRBACK; | 
|  | return mtrr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type); | 
|  |  | 
|  | static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) | 
|  | { | 
|  | trace_kvm_mmu_unsync_page(sp); | 
|  | ++vcpu->kvm->stat.mmu_unsync; | 
|  | sp->unsync = 1; | 
|  |  | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | } | 
|  |  | 
|  | static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *s; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { | 
|  | if (s->unsync) | 
|  | continue; | 
|  | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | 
|  | __kvm_unsync_page(vcpu, s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool can_unsync) | 
|  | { | 
|  | struct kvm_mmu_page *s; | 
|  | bool need_unsync = false; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { | 
|  | if (!can_unsync) | 
|  | return 1; | 
|  |  | 
|  | if (s->role.level != PT_PAGE_TABLE_LEVEL) | 
|  | return 1; | 
|  |  | 
|  | if (!s->unsync) | 
|  | need_unsync = true; | 
|  | } | 
|  | if (need_unsync) | 
|  | kvm_unsync_pages(vcpu, gfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned pte_access, int level, | 
|  | gfn_t gfn, pfn_t pfn, bool speculative, | 
|  | bool can_unsync, bool host_writable) | 
|  | { | 
|  | u64 spte; | 
|  | int ret = 0; | 
|  |  | 
|  | if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access)) | 
|  | return 0; | 
|  |  | 
|  | spte = PT_PRESENT_MASK; | 
|  | if (!speculative) | 
|  | spte |= shadow_accessed_mask; | 
|  |  | 
|  | if (pte_access & ACC_EXEC_MASK) | 
|  | spte |= shadow_x_mask; | 
|  | else | 
|  | spte |= shadow_nx_mask; | 
|  |  | 
|  | if (pte_access & ACC_USER_MASK) | 
|  | spte |= shadow_user_mask; | 
|  |  | 
|  | if (level > PT_PAGE_TABLE_LEVEL) | 
|  | spte |= PT_PAGE_SIZE_MASK; | 
|  | if (tdp_enabled) | 
|  | spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, | 
|  | kvm_is_reserved_pfn(pfn)); | 
|  |  | 
|  | if (host_writable) | 
|  | spte |= SPTE_HOST_WRITEABLE; | 
|  | else | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  |  | 
|  | spte |= (u64)pfn << PAGE_SHIFT; | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) { | 
|  |  | 
|  | /* | 
|  | * Other vcpu creates new sp in the window between | 
|  | * mapping_level() and acquiring mmu-lock. We can | 
|  | * allow guest to retry the access, the mapping can | 
|  | * be fixed if guest refault. | 
|  | */ | 
|  | if (level > PT_PAGE_TABLE_LEVEL && | 
|  | has_wrprotected_page(vcpu->kvm, gfn, level)) | 
|  | goto done; | 
|  |  | 
|  | spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; | 
|  |  | 
|  | /* | 
|  | * Optimization: for pte sync, if spte was writable the hash | 
|  | * lookup is unnecessary (and expensive). Write protection | 
|  | * is responsibility of mmu_get_page / kvm_sync_page. | 
|  | * Same reasoning can be applied to dirty page accounting. | 
|  | */ | 
|  | if (!can_unsync && is_writable_pte(*sptep)) | 
|  | goto set_pte; | 
|  |  | 
|  | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { | 
|  | pgprintk("%s: found shadow page for %llx, marking ro\n", | 
|  | __func__, gfn); | 
|  | ret = 1; | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) { | 
|  | mark_page_dirty(vcpu->kvm, gfn); | 
|  | spte |= shadow_dirty_mask; | 
|  | } | 
|  |  | 
|  | set_pte: | 
|  | if (mmu_spte_update(sptep, spte)) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | done: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned pte_access, int write_fault, int *emulate, | 
|  | int level, gfn_t gfn, pfn_t pfn, bool speculative, | 
|  | bool host_writable) | 
|  | { | 
|  | int was_rmapped = 0; | 
|  | int rmap_count; | 
|  |  | 
|  | pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, | 
|  | *sptep, write_fault, gfn); | 
|  |  | 
|  | if (is_rmap_spte(*sptep)) { | 
|  | /* | 
|  | * If we overwrite a PTE page pointer with a 2MB PMD, unlink | 
|  | * the parent of the now unreachable PTE. | 
|  | */ | 
|  | if (level > PT_PAGE_TABLE_LEVEL && | 
|  | !is_large_pte(*sptep)) { | 
|  | struct kvm_mmu_page *child; | 
|  | u64 pte = *sptep; | 
|  |  | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | drop_parent_pte(child, sptep); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } else if (pfn != spte_to_pfn(*sptep)) { | 
|  | pgprintk("hfn old %llx new %llx\n", | 
|  | spte_to_pfn(*sptep), pfn); | 
|  | drop_spte(vcpu->kvm, sptep); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } else | 
|  | was_rmapped = 1; | 
|  | } | 
|  |  | 
|  | if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative, | 
|  | true, host_writable)) { | 
|  | if (write_fault) | 
|  | *emulate = 1; | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | } | 
|  |  | 
|  | if (unlikely(is_mmio_spte(*sptep) && emulate)) | 
|  | *emulate = 1; | 
|  |  | 
|  | pgprintk("%s: setting spte %llx\n", __func__, *sptep); | 
|  | pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", | 
|  | is_large_pte(*sptep)? "2MB" : "4kB", | 
|  | *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, | 
|  | *sptep, sptep); | 
|  | if (!was_rmapped && is_large_pte(*sptep)) | 
|  | ++vcpu->kvm->stat.lpages; | 
|  |  | 
|  | if (is_shadow_present_pte(*sptep)) { | 
|  | if (!was_rmapped) { | 
|  | rmap_count = rmap_add(vcpu, sptep, gfn); | 
|  | if (rmap_count > RMAP_RECYCLE_THRESHOLD) | 
|  | rmap_recycle(vcpu, sptep, gfn); | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_release_pfn_clean(pfn); | 
|  | } | 
|  |  | 
|  | static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool no_dirty_log) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); | 
|  | if (!slot) | 
|  | return KVM_PFN_ERR_FAULT; | 
|  |  | 
|  | return gfn_to_pfn_memslot_atomic(slot, gfn); | 
|  | } | 
|  |  | 
|  | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, | 
|  | u64 *start, u64 *end) | 
|  | { | 
|  | struct page *pages[PTE_PREFETCH_NUM]; | 
|  | unsigned access = sp->role.access; | 
|  | int i, ret; | 
|  | gfn_t gfn; | 
|  |  | 
|  | gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); | 
|  | if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK)) | 
|  | return -1; | 
|  |  | 
|  | ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start); | 
|  | if (ret <= 0) | 
|  | return -1; | 
|  |  | 
|  | for (i = 0; i < ret; i++, gfn++, start++) | 
|  | mmu_set_spte(vcpu, start, access, 0, NULL, | 
|  | sp->role.level, gfn, page_to_pfn(pages[i]), | 
|  | true, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *sptep) | 
|  | { | 
|  | u64 *spte, *start = NULL; | 
|  | int i; | 
|  |  | 
|  | WARN_ON(!sp->role.direct); | 
|  |  | 
|  | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | 
|  | spte = sp->spt + i; | 
|  |  | 
|  | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | 
|  | if (is_shadow_present_pte(*spte) || spte == sptep) { | 
|  | if (!start) | 
|  | continue; | 
|  | if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) | 
|  | break; | 
|  | start = NULL; | 
|  | } else if (!start) | 
|  | start = spte; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | /* | 
|  | * Since it's no accessed bit on EPT, it's no way to | 
|  | * distinguish between actually accessed translations | 
|  | * and prefetched, so disable pte prefetch if EPT is | 
|  | * enabled. | 
|  | */ | 
|  | if (!shadow_accessed_mask) | 
|  | return; | 
|  |  | 
|  | sp = page_header(__pa(sptep)); | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | return; | 
|  |  | 
|  | __direct_pte_prefetch(vcpu, sp, sptep); | 
|  | } | 
|  |  | 
|  | static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, | 
|  | int map_writable, int level, gfn_t gfn, pfn_t pfn, | 
|  | bool prefault) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | struct kvm_mmu_page *sp; | 
|  | int emulate = 0; | 
|  | gfn_t pseudo_gfn; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return 0; | 
|  |  | 
|  | for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { | 
|  | if (iterator.level == level) { | 
|  | mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, | 
|  | write, &emulate, level, gfn, pfn, | 
|  | prefault, map_writable); | 
|  | direct_pte_prefetch(vcpu, iterator.sptep); | 
|  | ++vcpu->stat.pf_fixed; | 
|  | break; | 
|  | } | 
|  |  | 
|  | drop_large_spte(vcpu, iterator.sptep); | 
|  | if (!is_shadow_present_pte(*iterator.sptep)) { | 
|  | u64 base_addr = iterator.addr; | 
|  |  | 
|  | base_addr &= PT64_LVL_ADDR_MASK(iterator.level); | 
|  | pseudo_gfn = base_addr >> PAGE_SHIFT; | 
|  | sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, | 
|  | iterator.level - 1, | 
|  | 1, ACC_ALL, iterator.sptep); | 
|  |  | 
|  | link_shadow_page(iterator.sptep, sp, true); | 
|  | } | 
|  | } | 
|  | return emulate; | 
|  | } | 
|  |  | 
|  | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | info.si_signo	= SIGBUS; | 
|  | info.si_errno	= 0; | 
|  | info.si_code	= BUS_MCEERR_AR; | 
|  | info.si_addr	= (void __user *)address; | 
|  | info.si_addr_lsb = PAGE_SHIFT; | 
|  |  | 
|  | send_sig_info(SIGBUS, &info, tsk); | 
|  | } | 
|  |  | 
|  | static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn) | 
|  | { | 
|  | /* | 
|  | * Do not cache the mmio info caused by writing the readonly gfn | 
|  | * into the spte otherwise read access on readonly gfn also can | 
|  | * caused mmio page fault and treat it as mmio access. | 
|  | * Return 1 to tell kvm to emulate it. | 
|  | */ | 
|  | if (pfn == KVM_PFN_ERR_RO_FAULT) | 
|  | return 1; | 
|  |  | 
|  | if (pfn == KVM_PFN_ERR_HWPOISON) { | 
|  | kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, | 
|  | gfn_t *gfnp, pfn_t *pfnp, int *levelp) | 
|  | { | 
|  | pfn_t pfn = *pfnp; | 
|  | gfn_t gfn = *gfnp; | 
|  | int level = *levelp; | 
|  |  | 
|  | /* | 
|  | * Check if it's a transparent hugepage. If this would be an | 
|  | * hugetlbfs page, level wouldn't be set to | 
|  | * PT_PAGE_TABLE_LEVEL and there would be no adjustment done | 
|  | * here. | 
|  | */ | 
|  | if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) && | 
|  | level == PT_PAGE_TABLE_LEVEL && | 
|  | PageTransCompound(pfn_to_page(pfn)) && | 
|  | !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) { | 
|  | unsigned long mask; | 
|  | /* | 
|  | * mmu_notifier_retry was successful and we hold the | 
|  | * mmu_lock here, so the pmd can't become splitting | 
|  | * from under us, and in turn | 
|  | * __split_huge_page_refcount() can't run from under | 
|  | * us and we can safely transfer the refcount from | 
|  | * PG_tail to PG_head as we switch the pfn to tail to | 
|  | * head. | 
|  | */ | 
|  | *levelp = level = PT_DIRECTORY_LEVEL; | 
|  | mask = KVM_PAGES_PER_HPAGE(level) - 1; | 
|  | VM_BUG_ON((gfn & mask) != (pfn & mask)); | 
|  | if (pfn & mask) { | 
|  | gfn &= ~mask; | 
|  | *gfnp = gfn; | 
|  | kvm_release_pfn_clean(pfn); | 
|  | pfn &= ~mask; | 
|  | kvm_get_pfn(pfn); | 
|  | *pfnp = pfn; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, | 
|  | pfn_t pfn, unsigned access, int *ret_val) | 
|  | { | 
|  | bool ret = true; | 
|  |  | 
|  | /* The pfn is invalid, report the error! */ | 
|  | if (unlikely(is_error_pfn(pfn))) { | 
|  | *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (unlikely(is_noslot_pfn(pfn))) | 
|  | vcpu_cache_mmio_info(vcpu, gva, gfn, access); | 
|  |  | 
|  | ret = false; | 
|  | exit: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool page_fault_can_be_fast(u32 error_code) | 
|  | { | 
|  | /* | 
|  | * Do not fix the mmio spte with invalid generation number which | 
|  | * need to be updated by slow page fault path. | 
|  | */ | 
|  | if (unlikely(error_code & PFERR_RSVD_MASK)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * #PF can be fast only if the shadow page table is present and it | 
|  | * is caused by write-protect, that means we just need change the | 
|  | * W bit of the spte which can be done out of mmu-lock. | 
|  | */ | 
|  | if (!(error_code & PFERR_PRESENT_MASK) || | 
|  | !(error_code & PFERR_WRITE_MASK)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | u64 *sptep, u64 spte) | 
|  | { | 
|  | gfn_t gfn; | 
|  |  | 
|  | WARN_ON(!sp->role.direct); | 
|  |  | 
|  | /* | 
|  | * The gfn of direct spte is stable since it is calculated | 
|  | * by sp->gfn. | 
|  | */ | 
|  | gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); | 
|  |  | 
|  | /* | 
|  | * Theoretically we could also set dirty bit (and flush TLB) here in | 
|  | * order to eliminate unnecessary PML logging. See comments in | 
|  | * set_spte. But fast_page_fault is very unlikely to happen with PML | 
|  | * enabled, so we do not do this. This might result in the same GPA | 
|  | * to be logged in PML buffer again when the write really happens, and | 
|  | * eventually to be called by mark_page_dirty twice. But it's also no | 
|  | * harm. This also avoids the TLB flush needed after setting dirty bit | 
|  | * so non-PML cases won't be impacted. | 
|  | * | 
|  | * Compare with set_spte where instead shadow_dirty_mask is set. | 
|  | */ | 
|  | if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte) | 
|  | mark_page_dirty(vcpu->kvm, gfn); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return value: | 
|  | * - true: let the vcpu to access on the same address again. | 
|  | * - false: let the real page fault path to fix it. | 
|  | */ | 
|  | static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, | 
|  | u32 error_code) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | struct kvm_mmu_page *sp; | 
|  | bool ret = false; | 
|  | u64 spte = 0ull; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return false; | 
|  |  | 
|  | if (!page_fault_can_be_fast(error_code)) | 
|  | return false; | 
|  |  | 
|  | walk_shadow_page_lockless_begin(vcpu); | 
|  | for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) | 
|  | if (!is_shadow_present_pte(spte) || iterator.level < level) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If the mapping has been changed, let the vcpu fault on the | 
|  | * same address again. | 
|  | */ | 
|  | if (!is_rmap_spte(spte)) { | 
|  | ret = true; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | sp = page_header(__pa(iterator.sptep)); | 
|  | if (!is_last_spte(spte, sp->role.level)) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Check if it is a spurious fault caused by TLB lazily flushed. | 
|  | * | 
|  | * Need not check the access of upper level table entries since | 
|  | * they are always ACC_ALL. | 
|  | */ | 
|  | if (is_writable_pte(spte)) { | 
|  | ret = true; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Currently, to simplify the code, only the spte write-protected | 
|  | * by dirty-log can be fast fixed. | 
|  | */ | 
|  | if (!spte_is_locklessly_modifiable(spte)) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Do not fix write-permission on the large spte since we only dirty | 
|  | * the first page into the dirty-bitmap in fast_pf_fix_direct_spte() | 
|  | * that means other pages are missed if its slot is dirty-logged. | 
|  | * | 
|  | * Instead, we let the slow page fault path create a normal spte to | 
|  | * fix the access. | 
|  | * | 
|  | * See the comments in kvm_arch_commit_memory_region(). | 
|  | */ | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Currently, fast page fault only works for direct mapping since | 
|  | * the gfn is not stable for indirect shadow page. | 
|  | * See Documentation/virtual/kvm/locking.txt to get more detail. | 
|  | */ | 
|  | ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte); | 
|  | exit: | 
|  | trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, | 
|  | spte, ret); | 
|  | walk_shadow_page_lockless_end(vcpu); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
|  | gva_t gva, pfn_t *pfn, bool write, bool *writable); | 
|  | static void make_mmu_pages_available(struct kvm_vcpu *vcpu); | 
|  |  | 
|  | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, | 
|  | gfn_t gfn, bool prefault) | 
|  | { | 
|  | int r; | 
|  | int level; | 
|  | int force_pt_level; | 
|  | pfn_t pfn; | 
|  | unsigned long mmu_seq; | 
|  | bool map_writable, write = error_code & PFERR_WRITE_MASK; | 
|  |  | 
|  | force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); | 
|  | if (likely(!force_pt_level)) { | 
|  | level = mapping_level(vcpu, gfn); | 
|  | /* | 
|  | * This path builds a PAE pagetable - so we can map | 
|  | * 2mb pages at maximum. Therefore check if the level | 
|  | * is larger than that. | 
|  | */ | 
|  | if (level > PT_DIRECTORY_LEVEL) | 
|  | level = PT_DIRECTORY_LEVEL; | 
|  |  | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } else | 
|  | level = PT_PAGE_TABLE_LEVEL; | 
|  |  | 
|  | if (fast_page_fault(vcpu, v, level, error_code)) | 
|  | return 0; | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) | 
|  | return 0; | 
|  |  | 
|  | if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) | 
|  | return r; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) | 
|  | goto out_unlock; | 
|  | make_mmu_pages_available(vcpu); | 
|  | if (likely(!force_pt_level)) | 
|  | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
|  | r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn, | 
|  | prefault); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void mmu_free_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return; | 
|  |  | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL && | 
|  | (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL || | 
|  | vcpu->arch.mmu.direct_map)) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | sp = page_header(root); | 
|  | --sp->root_count; | 
|  | if (!sp->root_count && sp->role.invalid) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | } | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | if (root) { | 
|  | root &= PT64_BASE_ADDR_MASK; | 
|  | sp = page_header(root); | 
|  | --sp->root_count; | 
|  | if (!sp->root_count && sp->role.invalid) | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, | 
|  | &invalid_list); | 
|  | } | 
|  | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
|  | } | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | } | 
|  |  | 
|  | static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned i; | 
|  |  | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | make_mmu_pages_available(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, | 
|  | 1, ACC_ALL, NULL); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = __pa(sp->spt); | 
|  | } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(root)); | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | make_mmu_pages_available(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), | 
|  | i << 30, | 
|  | PT32_ROOT_LEVEL, 1, ACC_ALL, | 
|  | NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | 
|  | } | 
|  | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | u64 pdptr, pm_mask; | 
|  | gfn_t root_gfn; | 
|  | int i; | 
|  |  | 
|  | root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; | 
|  |  | 
|  | if (mmu_check_root(vcpu, root_gfn)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Do we shadow a long mode page table? If so we need to | 
|  | * write-protect the guests page table root. | 
|  | */ | 
|  | if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(root)); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | make_mmu_pages_available(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL, | 
|  | 0, ACC_ALL, NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = root; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We shadow a 32 bit page table. This may be a legacy 2-level | 
|  | * or a PAE 3-level page table. In either case we need to be aware that | 
|  | * the shadow page table may be a PAE or a long mode page table. | 
|  | */ | 
|  | pm_mask = PT_PRESENT_MASK; | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) | 
|  | pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; | 
|  |  | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(root)); | 
|  | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { | 
|  | pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i); | 
|  | if (!is_present_gpte(pdptr)) { | 
|  | vcpu->arch.mmu.pae_root[i] = 0; | 
|  | continue; | 
|  | } | 
|  | root_gfn = pdptr >> PAGE_SHIFT; | 
|  | if (mmu_check_root(vcpu, root_gfn)) | 
|  | return 1; | 
|  | } | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | make_mmu_pages_available(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, | 
|  | PT32_ROOT_LEVEL, 0, | 
|  | ACC_ALL, NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | vcpu->arch.mmu.pae_root[i] = root | pm_mask; | 
|  | } | 
|  | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 
|  |  | 
|  | /* | 
|  | * If we shadow a 32 bit page table with a long mode page | 
|  | * table we enter this path. | 
|  | */ | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
|  | if (vcpu->arch.mmu.lm_root == NULL) { | 
|  | /* | 
|  | * The additional page necessary for this is only | 
|  | * allocated on demand. | 
|  | */ | 
|  |  | 
|  | u64 *lm_root; | 
|  |  | 
|  | lm_root = (void*)get_zeroed_page(GFP_KERNEL); | 
|  | if (lm_root == NULL) | 
|  | return 1; | 
|  |  | 
|  | lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; | 
|  |  | 
|  | vcpu->arch.mmu.lm_root = lm_root; | 
|  | } | 
|  |  | 
|  | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->arch.mmu.direct_map) | 
|  | return mmu_alloc_direct_roots(vcpu); | 
|  | else | 
|  | return mmu_alloc_shadow_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static void mmu_sync_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (vcpu->arch.mmu.direct_map) | 
|  | return; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return; | 
|  |  | 
|  | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); | 
|  | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | 
|  | if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  | sp = page_header(root); | 
|  | mmu_sync_children(vcpu, sp); | 
|  | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
|  | return; | 
|  | } | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | if (root && VALID_PAGE(root)) { | 
|  | root &= PT64_BASE_ADDR_MASK; | 
|  | sp = page_header(root); | 
|  | mmu_sync_children(vcpu, sp); | 
|  | } | 
|  | } | 
|  | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | mmu_sync_roots(vcpu); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); | 
|  |  | 
|  | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, | 
|  | u32 access, struct x86_exception *exception) | 
|  | { | 
|  | if (exception) | 
|  | exception->error_code = 0; | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, | 
|  | u32 access, | 
|  | struct x86_exception *exception) | 
|  | { | 
|  | if (exception) | 
|  | exception->error_code = 0; | 
|  | return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); | 
|  | } | 
|  |  | 
|  | static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct) | 
|  | { | 
|  | if (direct) | 
|  | return vcpu_match_mmio_gpa(vcpu, addr); | 
|  |  | 
|  | return vcpu_match_mmio_gva(vcpu, addr); | 
|  | } | 
|  |  | 
|  | static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | u64 spte = 0ull; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return spte; | 
|  |  | 
|  | walk_shadow_page_lockless_begin(vcpu); | 
|  | for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) | 
|  | if (!is_shadow_present_pte(spte)) | 
|  | break; | 
|  | walk_shadow_page_lockless_end(vcpu); | 
|  |  | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct) | 
|  | { | 
|  | u64 spte; | 
|  |  | 
|  | if (quickly_check_mmio_pf(vcpu, addr, direct)) | 
|  | return RET_MMIO_PF_EMULATE; | 
|  |  | 
|  | spte = walk_shadow_page_get_mmio_spte(vcpu, addr); | 
|  |  | 
|  | if (is_mmio_spte(spte)) { | 
|  | gfn_t gfn = get_mmio_spte_gfn(spte); | 
|  | unsigned access = get_mmio_spte_access(spte); | 
|  |  | 
|  | if (!check_mmio_spte(vcpu->kvm, spte)) | 
|  | return RET_MMIO_PF_INVALID; | 
|  |  | 
|  | if (direct) | 
|  | addr = 0; | 
|  |  | 
|  | trace_handle_mmio_page_fault(addr, gfn, access); | 
|  | vcpu_cache_mmio_info(vcpu, addr, gfn, access); | 
|  | return RET_MMIO_PF_EMULATE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the page table is zapped by other cpus, let CPU fault again on | 
|  | * the address. | 
|  | */ | 
|  | return RET_MMIO_PF_RETRY; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common); | 
|  |  | 
|  | static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, | 
|  | u32 error_code, bool direct) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = handle_mmio_page_fault_common(vcpu, addr, direct); | 
|  | WARN_ON(ret == RET_MMIO_PF_BUG); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | 
|  | u32 error_code, bool prefault) | 
|  | { | 
|  | gfn_t gfn; | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); | 
|  |  | 
|  | if (unlikely(error_code & PFERR_RSVD_MASK)) { | 
|  | r = handle_mmio_page_fault(vcpu, gva, error_code, true); | 
|  |  | 
|  | if (likely(r != RET_MMIO_PF_INVALID)) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | gfn = gva >> PAGE_SHIFT; | 
|  |  | 
|  | return nonpaging_map(vcpu, gva & PAGE_MASK, | 
|  | error_code, gfn, prefault); | 
|  | } | 
|  |  | 
|  | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) | 
|  | { | 
|  | struct kvm_arch_async_pf arch; | 
|  |  | 
|  | arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; | 
|  | arch.gfn = gfn; | 
|  | arch.direct_map = vcpu->arch.mmu.direct_map; | 
|  | arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu); | 
|  |  | 
|  | return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch); | 
|  | } | 
|  |  | 
|  | static bool can_do_async_pf(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(!irqchip_in_kernel(vcpu->kvm) || | 
|  | kvm_event_needs_reinjection(vcpu))) | 
|  | return false; | 
|  |  | 
|  | return kvm_x86_ops->interrupt_allowed(vcpu); | 
|  | } | 
|  |  | 
|  | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
|  | gva_t gva, pfn_t *pfn, bool write, bool *writable) | 
|  | { | 
|  | bool async; | 
|  |  | 
|  | *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable); | 
|  |  | 
|  | if (!async) | 
|  | return false; /* *pfn has correct page already */ | 
|  |  | 
|  | if (!prefault && can_do_async_pf(vcpu)) { | 
|  | trace_kvm_try_async_get_page(gva, gfn); | 
|  | if (kvm_find_async_pf_gfn(vcpu, gfn)) { | 
|  | trace_kvm_async_pf_doublefault(gva, gfn); | 
|  | kvm_make_request(KVM_REQ_APF_HALT, vcpu); | 
|  | return true; | 
|  | } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, | 
|  | bool prefault) | 
|  | { | 
|  | pfn_t pfn; | 
|  | int r; | 
|  | int level; | 
|  | int force_pt_level; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | unsigned long mmu_seq; | 
|  | int write = error_code & PFERR_WRITE_MASK; | 
|  | bool map_writable; | 
|  |  | 
|  | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | if (unlikely(error_code & PFERR_RSVD_MASK)) { | 
|  | r = handle_mmio_page_fault(vcpu, gpa, error_code, true); | 
|  |  | 
|  | if (likely(r != RET_MMIO_PF_INVALID)) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); | 
|  | if (likely(!force_pt_level)) { | 
|  | level = mapping_level(vcpu, gfn); | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } else | 
|  | level = PT_PAGE_TABLE_LEVEL; | 
|  |  | 
|  | if (fast_page_fault(vcpu, gpa, level, error_code)) | 
|  | return 0; | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) | 
|  | return 0; | 
|  |  | 
|  | if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) | 
|  | return r; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) | 
|  | goto out_unlock; | 
|  | make_mmu_pages_available(vcpu); | 
|  | if (likely(!force_pt_level)) | 
|  | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
|  | r = __direct_map(vcpu, gpa, write, map_writable, | 
|  | level, gfn, pfn, prefault); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nonpaging_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | context->page_fault = nonpaging_page_fault; | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->sync_page = nonpaging_sync_page; | 
|  | context->invlpg = nonpaging_invlpg; | 
|  | context->update_pte = nonpaging_update_pte; | 
|  | context->root_level = 0; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = true; | 
|  | context->nx = false; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static unsigned long get_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_read_cr3(vcpu); | 
|  | } | 
|  |  | 
|  | static void inject_page_fault(struct kvm_vcpu *vcpu, | 
|  | struct x86_exception *fault) | 
|  | { | 
|  | vcpu->arch.mmu.inject_page_fault(vcpu, fault); | 
|  | } | 
|  |  | 
|  | static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn, | 
|  | unsigned access, int *nr_present) | 
|  | { | 
|  | if (unlikely(is_mmio_spte(*sptep))) { | 
|  | if (gfn != get_mmio_spte_gfn(*sptep)) { | 
|  | mmu_spte_clear_no_track(sptep); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | (*nr_present)++; | 
|  | mark_mmio_spte(kvm, sptep, gfn, access); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte) | 
|  | { | 
|  | unsigned index; | 
|  |  | 
|  | index = level - 1; | 
|  | index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2); | 
|  | return mmu->last_pte_bitmap & (1 << index); | 
|  | } | 
|  |  | 
|  | #define PTTYPE_EPT 18 /* arbitrary */ | 
|  | #define PTTYPE PTTYPE_EPT | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | #define PTTYPE 64 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | #define PTTYPE 32 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | int maxphyaddr = cpuid_maxphyaddr(vcpu); | 
|  | u64 exb_bit_rsvd = 0; | 
|  | u64 gbpages_bit_rsvd = 0; | 
|  | u64 nonleaf_bit8_rsvd = 0; | 
|  |  | 
|  | context->bad_mt_xwr = 0; | 
|  |  | 
|  | if (!context->nx) | 
|  | exb_bit_rsvd = rsvd_bits(63, 63); | 
|  | if (!guest_cpuid_has_gbpages(vcpu)) | 
|  | gbpages_bit_rsvd = rsvd_bits(7, 7); | 
|  |  | 
|  | /* | 
|  | * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for | 
|  | * leaf entries) on AMD CPUs only. | 
|  | */ | 
|  | if (guest_cpuid_is_amd(vcpu)) | 
|  | nonleaf_bit8_rsvd = rsvd_bits(8, 8); | 
|  |  | 
|  | switch (context->root_level) { | 
|  | case PT32_ROOT_LEVEL: | 
|  | /* no rsvd bits for 2 level 4K page table entries */ | 
|  | context->rsvd_bits_mask[0][1] = 0; | 
|  | context->rsvd_bits_mask[0][0] = 0; | 
|  | context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
|  |  | 
|  | if (!is_pse(vcpu)) { | 
|  | context->rsvd_bits_mask[1][1] = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (is_cpuid_PSE36()) | 
|  | /* 36bits PSE 4MB page */ | 
|  | context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); | 
|  | else | 
|  | /* 32 bits PSE 4MB page */ | 
|  | context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); | 
|  | break; | 
|  | case PT32E_ROOT_LEVEL: | 
|  | context->rsvd_bits_mask[0][2] = | 
|  | rsvd_bits(maxphyaddr, 63) | | 
|  | rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */ | 
|  | context->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62);	/* PDE */ | 
|  | context->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62); 	/* PTE */ | 
|  | context->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62) | | 
|  | rsvd_bits(13, 20);		/* large page */ | 
|  | context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
|  | break; | 
|  | case PT64_ROOT_LEVEL: | 
|  | context->rsvd_bits_mask[0][3] = exb_bit_rsvd | | 
|  | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51); | 
|  | context->rsvd_bits_mask[0][2] = exb_bit_rsvd | | 
|  | nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51); | 
|  | context->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | context->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; | 
|  | context->rsvd_bits_mask[1][2] = exb_bit_rsvd | | 
|  | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | | 
|  | rsvd_bits(13, 29); | 
|  | context->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51) | | 
|  | rsvd_bits(13, 20);		/* large page */ | 
|  | context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context, bool execonly) | 
|  | { | 
|  | int maxphyaddr = cpuid_maxphyaddr(vcpu); | 
|  | int pte; | 
|  |  | 
|  | context->rsvd_bits_mask[0][3] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); | 
|  | context->rsvd_bits_mask[0][2] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); | 
|  | context->rsvd_bits_mask[0][1] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); | 
|  | context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); | 
|  |  | 
|  | /* large page */ | 
|  | context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; | 
|  | context->rsvd_bits_mask[1][2] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); | 
|  | context->rsvd_bits_mask[1][1] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); | 
|  | context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
|  |  | 
|  | for (pte = 0; pte < 64; pte++) { | 
|  | int rwx_bits = pte & 7; | 
|  | int mt = pte >> 3; | 
|  | if (mt == 0x2 || mt == 0x3 || mt == 0x7 || | 
|  | rwx_bits == 0x2 || rwx_bits == 0x6 || | 
|  | (rwx_bits == 0x4 && !execonly)) | 
|  | context->bad_mt_xwr |= (1ull << pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_permission_bitmask(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *mmu, bool ept) | 
|  | { | 
|  | unsigned bit, byte, pfec; | 
|  | u8 map; | 
|  | bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0; | 
|  |  | 
|  | cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); | 
|  | cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); | 
|  | for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { | 
|  | pfec = byte << 1; | 
|  | map = 0; | 
|  | wf = pfec & PFERR_WRITE_MASK; | 
|  | uf = pfec & PFERR_USER_MASK; | 
|  | ff = pfec & PFERR_FETCH_MASK; | 
|  | /* | 
|  | * PFERR_RSVD_MASK bit is set in PFEC if the access is not | 
|  | * subject to SMAP restrictions, and cleared otherwise. The | 
|  | * bit is only meaningful if the SMAP bit is set in CR4. | 
|  | */ | 
|  | smapf = !(pfec & PFERR_RSVD_MASK); | 
|  | for (bit = 0; bit < 8; ++bit) { | 
|  | x = bit & ACC_EXEC_MASK; | 
|  | w = bit & ACC_WRITE_MASK; | 
|  | u = bit & ACC_USER_MASK; | 
|  |  | 
|  | if (!ept) { | 
|  | /* Not really needed: !nx will cause pte.nx to fault */ | 
|  | x |= !mmu->nx; | 
|  | /* Allow supervisor writes if !cr0.wp */ | 
|  | w |= !is_write_protection(vcpu) && !uf; | 
|  | /* Disallow supervisor fetches of user code if cr4.smep */ | 
|  | x &= !(cr4_smep && u && !uf); | 
|  |  | 
|  | /* | 
|  | * SMAP:kernel-mode data accesses from user-mode | 
|  | * mappings should fault. A fault is considered | 
|  | * as a SMAP violation if all of the following | 
|  | * conditions are ture: | 
|  | *   - X86_CR4_SMAP is set in CR4 | 
|  | *   - An user page is accessed | 
|  | *   - Page fault in kernel mode | 
|  | *   - if CPL = 3 or X86_EFLAGS_AC is clear | 
|  | * | 
|  | *   Here, we cover the first three conditions. | 
|  | *   The fourth is computed dynamically in | 
|  | *   permission_fault() and is in smapf. | 
|  | * | 
|  | *   Also, SMAP does not affect instruction | 
|  | *   fetches, add the !ff check here to make it | 
|  | *   clearer. | 
|  | */ | 
|  | smap = cr4_smap && u && !uf && !ff; | 
|  | } else | 
|  | /* Not really needed: no U/S accesses on ept  */ | 
|  | u = 1; | 
|  |  | 
|  | fault = (ff && !x) || (uf && !u) || (wf && !w) || | 
|  | (smapf && smap); | 
|  | map |= fault << bit; | 
|  | } | 
|  | mmu->permissions[byte] = map; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) | 
|  | { | 
|  | u8 map; | 
|  | unsigned level, root_level = mmu->root_level; | 
|  | const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */ | 
|  |  | 
|  | if (root_level == PT32E_ROOT_LEVEL) | 
|  | --root_level; | 
|  | /* PT_PAGE_TABLE_LEVEL always terminates */ | 
|  | map = 1 | (1 << ps_set_index); | 
|  | for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) { | 
|  | if (level <= PT_PDPE_LEVEL | 
|  | && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu))) | 
|  | map |= 1 << (ps_set_index | (level - 1)); | 
|  | } | 
|  | mmu->last_pte_bitmap = map; | 
|  | } | 
|  |  | 
|  | static void paging64_init_context_common(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context, | 
|  | int level) | 
|  | { | 
|  | context->nx = is_nx(vcpu); | 
|  | context->root_level = level; | 
|  |  | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | update_permission_bitmask(vcpu, context, false); | 
|  | update_last_pte_bitmap(vcpu, context); | 
|  |  | 
|  | MMU_WARN_ON(!is_pae(vcpu)); | 
|  | context->page_fault = paging64_page_fault; | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->sync_page = paging64_sync_page; | 
|  | context->invlpg = paging64_invlpg; | 
|  | context->update_pte = paging64_update_pte; | 
|  | context->shadow_root_level = level; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = false; | 
|  | } | 
|  |  | 
|  | static void paging64_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL); | 
|  | } | 
|  |  | 
|  | static void paging32_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | context->nx = false; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  |  | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | update_permission_bitmask(vcpu, context, false); | 
|  | update_last_pte_bitmap(vcpu, context); | 
|  |  | 
|  | context->page_fault = paging32_page_fault; | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | context->sync_page = paging32_sync_page; | 
|  | context->invlpg = paging32_invlpg; | 
|  | context->update_pte = paging32_update_pte; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = false; | 
|  | } | 
|  |  | 
|  | static void paging32E_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); | 
|  | } | 
|  |  | 
|  | static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | context->base_role.word = 0; | 
|  | context->page_fault = tdp_page_fault; | 
|  | context->sync_page = nonpaging_sync_page; | 
|  | context->invlpg = nonpaging_invlpg; | 
|  | context->update_pte = nonpaging_update_pte; | 
|  | context->shadow_root_level = kvm_x86_ops->get_tdp_level(); | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = true; | 
|  | context->set_cr3 = kvm_x86_ops->set_tdp_cr3; | 
|  | context->get_cr3 = get_cr3; | 
|  | context->get_pdptr = kvm_pdptr_read; | 
|  | context->inject_page_fault = kvm_inject_page_fault; | 
|  |  | 
|  | if (!is_paging(vcpu)) { | 
|  | context->nx = false; | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->root_level = 0; | 
|  | } else if (is_long_mode(vcpu)) { | 
|  | context->nx = is_nx(vcpu); | 
|  | context->root_level = PT64_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | } else if (is_pae(vcpu)) { | 
|  | context->nx = is_nx(vcpu); | 
|  | context->root_level = PT32E_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | } else { | 
|  | context->nx = false; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | } | 
|  |  | 
|  | update_permission_bitmask(vcpu, context, false); | 
|  | update_last_pte_bitmap(vcpu, context); | 
|  | } | 
|  |  | 
|  | void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); | 
|  | bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(context->root_hpa)); | 
|  |  | 
|  | if (!is_paging(vcpu)) | 
|  | nonpaging_init_context(vcpu, context); | 
|  | else if (is_long_mode(vcpu)) | 
|  | paging64_init_context(vcpu, context); | 
|  | else if (is_pae(vcpu)) | 
|  | paging32E_init_context(vcpu, context); | 
|  | else | 
|  | paging32_init_context(vcpu, context); | 
|  |  | 
|  | context->base_role.nxe = is_nx(vcpu); | 
|  | context->base_role.cr4_pae = !!is_pae(vcpu); | 
|  | context->base_role.cr0_wp  = is_write_protection(vcpu); | 
|  | context->base_role.smep_andnot_wp | 
|  | = smep && !is_write_protection(vcpu); | 
|  | context->base_role.smap_andnot_wp | 
|  | = smap && !is_write_protection(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); | 
|  |  | 
|  | void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly) | 
|  | { | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(context->root_hpa)); | 
|  |  | 
|  | context->shadow_root_level = kvm_x86_ops->get_tdp_level(); | 
|  |  | 
|  | context->nx = true; | 
|  | context->page_fault = ept_page_fault; | 
|  | context->gva_to_gpa = ept_gva_to_gpa; | 
|  | context->sync_page = ept_sync_page; | 
|  | context->invlpg = ept_invlpg; | 
|  | context->update_pte = ept_update_pte; | 
|  | context->root_level = context->shadow_root_level; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = false; | 
|  |  | 
|  | update_permission_bitmask(vcpu, context, true); | 
|  | reset_rsvds_bits_mask_ept(vcpu, context, execonly); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); | 
|  |  | 
|  | static void init_kvm_softmmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | kvm_init_shadow_mmu(vcpu); | 
|  | context->set_cr3           = kvm_x86_ops->set_cr3; | 
|  | context->get_cr3           = get_cr3; | 
|  | context->get_pdptr         = kvm_pdptr_read; | 
|  | context->inject_page_fault = kvm_inject_page_fault; | 
|  | } | 
|  |  | 
|  | static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; | 
|  |  | 
|  | g_context->get_cr3           = get_cr3; | 
|  | g_context->get_pdptr         = kvm_pdptr_read; | 
|  | g_context->inject_page_fault = kvm_inject_page_fault; | 
|  |  | 
|  | /* | 
|  | * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The | 
|  | * translation of l2_gpa to l1_gpa addresses is done using the | 
|  | * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa | 
|  | * functions between mmu and nested_mmu are swapped. | 
|  | */ | 
|  | if (!is_paging(vcpu)) { | 
|  | g_context->nx = false; | 
|  | g_context->root_level = 0; | 
|  | g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; | 
|  | } else if (is_long_mode(vcpu)) { | 
|  | g_context->nx = is_nx(vcpu); | 
|  | g_context->root_level = PT64_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, g_context); | 
|  | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
|  | } else if (is_pae(vcpu)) { | 
|  | g_context->nx = is_nx(vcpu); | 
|  | g_context->root_level = PT32E_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, g_context); | 
|  | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
|  | } else { | 
|  | g_context->nx = false; | 
|  | g_context->root_level = PT32_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, g_context); | 
|  | g_context->gva_to_gpa = paging32_gva_to_gpa_nested; | 
|  | } | 
|  |  | 
|  | update_permission_bitmask(vcpu, g_context, false); | 
|  | update_last_pte_bitmap(vcpu, g_context); | 
|  | } | 
|  |  | 
|  | static void init_kvm_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (mmu_is_nested(vcpu)) | 
|  | init_kvm_nested_mmu(vcpu); | 
|  | else if (tdp_enabled) | 
|  | init_kvm_tdp_mmu(vcpu); | 
|  | else | 
|  | init_kvm_softmmu(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_mmu_unload(vcpu); | 
|  | init_kvm_mmu(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); | 
|  |  | 
|  | int kvm_mmu_load(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_alloc_roots(vcpu); | 
|  | kvm_mmu_sync_roots(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | /* set_cr3() should ensure TLB has been flushed */ | 
|  | vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_load); | 
|  |  | 
|  | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_roots(vcpu); | 
|  | WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unload); | 
|  |  | 
|  | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *spte, | 
|  | const void *new) | 
|  | { | 
|  | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { | 
|  | ++vcpu->kvm->stat.mmu_pde_zapped; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_pte_updated; | 
|  | vcpu->arch.mmu.update_pte(vcpu, sp, spte, new); | 
|  | } | 
|  |  | 
|  | static bool need_remote_flush(u64 old, u64 new) | 
|  | { | 
|  | if (!is_shadow_present_pte(old)) | 
|  | return false; | 
|  | if (!is_shadow_present_pte(new)) | 
|  | return true; | 
|  | if ((old ^ new) & PT64_BASE_ADDR_MASK) | 
|  | return true; | 
|  | old ^= shadow_nx_mask; | 
|  | new ^= shadow_nx_mask; | 
|  | return (old & ~new & PT64_PERM_MASK) != 0; | 
|  | } | 
|  |  | 
|  | static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page, | 
|  | bool remote_flush, bool local_flush) | 
|  | { | 
|  | if (zap_page) | 
|  | return; | 
|  |  | 
|  | if (remote_flush) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | else if (local_flush) | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | } | 
|  |  | 
|  | static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, | 
|  | const u8 *new, int *bytes) | 
|  | { | 
|  | u64 gentry; | 
|  | int r; | 
|  |  | 
|  | /* | 
|  | * Assume that the pte write on a page table of the same type | 
|  | * as the current vcpu paging mode since we update the sptes only | 
|  | * when they have the same mode. | 
|  | */ | 
|  | if (is_pae(vcpu) && *bytes == 4) { | 
|  | /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ | 
|  | *gpa &= ~(gpa_t)7; | 
|  | *bytes = 8; | 
|  | r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8); | 
|  | if (r) | 
|  | gentry = 0; | 
|  | new = (const u8 *)&gentry; | 
|  | } | 
|  |  | 
|  | switch (*bytes) { | 
|  | case 4: | 
|  | gentry = *(const u32 *)new; | 
|  | break; | 
|  | case 8: | 
|  | gentry = *(const u64 *)new; | 
|  | break; | 
|  | default: | 
|  | gentry = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return gentry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're seeing too many writes to a page, it may no longer be a page table, | 
|  | * or we may be forking, in which case it is better to unmap the page. | 
|  | */ | 
|  | static bool detect_write_flooding(struct kvm_mmu_page *sp) | 
|  | { | 
|  | /* | 
|  | * Skip write-flooding detected for the sp whose level is 1, because | 
|  | * it can become unsync, then the guest page is not write-protected. | 
|  | */ | 
|  | if (sp->role.level == PT_PAGE_TABLE_LEVEL) | 
|  | return false; | 
|  |  | 
|  | return ++sp->write_flooding_count >= 3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Misaligned accesses are too much trouble to fix up; also, they usually | 
|  | * indicate a page is not used as a page table. | 
|  | */ | 
|  | static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, | 
|  | int bytes) | 
|  | { | 
|  | unsigned offset, pte_size, misaligned; | 
|  |  | 
|  | pgprintk("misaligned: gpa %llx bytes %d role %x\n", | 
|  | gpa, bytes, sp->role.word); | 
|  |  | 
|  | offset = offset_in_page(gpa); | 
|  | pte_size = sp->role.cr4_pae ? 8 : 4; | 
|  |  | 
|  | /* | 
|  | * Sometimes, the OS only writes the last one bytes to update status | 
|  | * bits, for example, in linux, andb instruction is used in clear_bit(). | 
|  | */ | 
|  | if (!(offset & (pte_size - 1)) && bytes == 1) | 
|  | return false; | 
|  |  | 
|  | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); | 
|  | misaligned |= bytes < 4; | 
|  |  | 
|  | return misaligned; | 
|  | } | 
|  |  | 
|  | static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) | 
|  | { | 
|  | unsigned page_offset, quadrant; | 
|  | u64 *spte; | 
|  | int level; | 
|  |  | 
|  | page_offset = offset_in_page(gpa); | 
|  | level = sp->role.level; | 
|  | *nspte = 1; | 
|  | if (!sp->role.cr4_pae) { | 
|  | page_offset <<= 1;	/* 32->64 */ | 
|  | /* | 
|  | * A 32-bit pde maps 4MB while the shadow pdes map | 
|  | * only 2MB.  So we need to double the offset again | 
|  | * and zap two pdes instead of one. | 
|  | */ | 
|  | if (level == PT32_ROOT_LEVEL) { | 
|  | page_offset &= ~7; /* kill rounding error */ | 
|  | page_offset <<= 1; | 
|  | *nspte = 2; | 
|  | } | 
|  | quadrant = page_offset >> PAGE_SHIFT; | 
|  | page_offset &= ~PAGE_MASK; | 
|  | if (quadrant != sp->role.quadrant) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spte = &sp->spt[page_offset / sizeof(*spte)]; | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | 
|  | const u8 *new, int bytes) | 
|  | { | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | struct kvm_mmu_page *sp; | 
|  | LIST_HEAD(invalid_list); | 
|  | u64 entry, gentry, *spte; | 
|  | int npte; | 
|  | bool remote_flush, local_flush, zap_page; | 
|  | union kvm_mmu_page_role mask = { }; | 
|  |  | 
|  | mask.cr0_wp = 1; | 
|  | mask.cr4_pae = 1; | 
|  | mask.nxe = 1; | 
|  | mask.smep_andnot_wp = 1; | 
|  | mask.smap_andnot_wp = 1; | 
|  |  | 
|  | /* | 
|  | * If we don't have indirect shadow pages, it means no page is | 
|  | * write-protected, so we can exit simply. | 
|  | */ | 
|  | if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) | 
|  | return; | 
|  |  | 
|  | zap_page = remote_flush = local_flush = false; | 
|  |  | 
|  | pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); | 
|  |  | 
|  | gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes); | 
|  |  | 
|  | /* | 
|  | * No need to care whether allocation memory is successful | 
|  | * or not since pte prefetch is skiped if it does not have | 
|  | * enough objects in the cache. | 
|  | */ | 
|  | mmu_topup_memory_caches(vcpu); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | ++vcpu->kvm->stat.mmu_pte_write; | 
|  | kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { | 
|  | if (detect_write_misaligned(sp, gpa, bytes) || | 
|  | detect_write_flooding(sp)) { | 
|  | zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp, | 
|  | &invalid_list); | 
|  | ++vcpu->kvm->stat.mmu_flooded; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spte = get_written_sptes(sp, gpa, &npte); | 
|  | if (!spte) | 
|  | continue; | 
|  |  | 
|  | local_flush = true; | 
|  | while (npte--) { | 
|  | entry = *spte; | 
|  | mmu_page_zap_pte(vcpu->kvm, sp, spte); | 
|  | if (gentry && | 
|  | !((sp->role.word ^ vcpu->arch.mmu.base_role.word) | 
|  | & mask.word) && rmap_can_add(vcpu)) | 
|  | mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); | 
|  | if (need_remote_flush(entry, *spte)) | 
|  | remote_flush = true; | 
|  | ++spte; | 
|  | } | 
|  | } | 
|  | mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush); | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | gpa_t gpa; | 
|  | int r; | 
|  |  | 
|  | if (vcpu->arch.mmu.direct_map) | 
|  | return 0; | 
|  |  | 
|  | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); | 
|  |  | 
|  | r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); | 
|  |  | 
|  | static void make_mmu_pages_available(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) | 
|  | return; | 
|  |  | 
|  | while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { | 
|  | if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) | 
|  | break; | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_recycled; | 
|  | } | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | } | 
|  |  | 
|  | static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr) | 
|  | { | 
|  | if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu)) | 
|  | return vcpu_match_mmio_gpa(vcpu, addr); | 
|  |  | 
|  | return vcpu_match_mmio_gva(vcpu, addr); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code, | 
|  | void *insn, int insn_len) | 
|  | { | 
|  | int r, emulation_type = EMULTYPE_RETRY; | 
|  | enum emulation_result er; | 
|  |  | 
|  | r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false); | 
|  | if (r < 0) | 
|  | goto out; | 
|  |  | 
|  | if (!r) { | 
|  | r = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (is_mmio_page_fault(vcpu, cr2)) | 
|  | emulation_type = 0; | 
|  |  | 
|  | er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len); | 
|  |  | 
|  | switch (er) { | 
|  | case EMULATE_DONE: | 
|  | return 1; | 
|  | case EMULATE_USER_EXIT: | 
|  | ++vcpu->stat.mmio_exits; | 
|  | /* fall through */ | 
|  | case EMULATE_FAIL: | 
|  | return 0; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | 
|  |  | 
|  | void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | vcpu->arch.mmu.invlpg(vcpu, gva); | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | ++vcpu->stat.invlpg; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); | 
|  |  | 
|  | void kvm_enable_tdp(void) | 
|  | { | 
|  | tdp_enabled = true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_enable_tdp); | 
|  |  | 
|  | void kvm_disable_tdp(void) | 
|  | { | 
|  | tdp_enabled = false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_disable_tdp); | 
|  |  | 
|  | static void free_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | free_page((unsigned long)vcpu->arch.mmu.pae_root); | 
|  | if (vcpu->arch.mmu.lm_root != NULL) | 
|  | free_page((unsigned long)vcpu->arch.mmu.lm_root); | 
|  | } | 
|  |  | 
|  | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct page *page; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | 
|  | * Therefore we need to allocate shadow page tables in the first | 
|  | * 4GB of memory, which happens to fit the DMA32 zone. | 
|  | */ | 
|  | page = alloc_page(GFP_KERNEL | __GFP_DMA32); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vcpu->arch.mmu.pae_root = page_address(page); | 
|  | for (i = 0; i < 4; ++i) | 
|  | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_create(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.walk_mmu = &vcpu->arch.mmu; | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | vcpu->arch.mmu.translate_gpa = translate_gpa; | 
|  | vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; | 
|  |  | 
|  | return alloc_mmu_pages(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_setup(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | init_kvm_mmu(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | gfn_t last_gfn; | 
|  | int i; | 
|  | bool flush = false; | 
|  |  | 
|  | last_gfn = memslot->base_gfn + memslot->npages - 1; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | unsigned long *rmapp; | 
|  | unsigned long last_index, index; | 
|  |  | 
|  | rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL]; | 
|  | last_index = gfn_to_index(last_gfn, memslot->base_gfn, i); | 
|  |  | 
|  | for (index = 0; index <= last_index; ++index, ++rmapp) { | 
|  | if (*rmapp) | 
|  | flush |= __rmap_write_protect(kvm, rmapp, | 
|  | false); | 
|  |  | 
|  | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | /* | 
|  | * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() | 
|  | * which do tlb flush out of mmu-lock should be serialized by | 
|  | * kvm->slots_lock otherwise tlb flush would be missed. | 
|  | */ | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | /* | 
|  | * We can flush all the TLBs out of the mmu lock without TLB | 
|  | * corruption since we just change the spte from writable to | 
|  | * readonly so that we only need to care the case of changing | 
|  | * spte from present to present (changing the spte from present | 
|  | * to nonpresent will flush all the TLBs immediately), in other | 
|  | * words, the only case we care is mmu_spte_update() where we | 
|  | * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE | 
|  | * instead of PT_WRITABLE_MASK, that means it does not depend | 
|  | * on PT_WRITABLE_MASK anymore. | 
|  | */ | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  |  | 
|  | static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, | 
|  | unsigned long *rmapp) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | int need_tlb_flush = 0; | 
|  | pfn_t pfn; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { | 
|  | BUG_ON(!(*sptep & PT_PRESENT_MASK)); | 
|  |  | 
|  | sp = page_header(__pa(sptep)); | 
|  | pfn = spte_to_pfn(*sptep); | 
|  |  | 
|  | /* | 
|  | * We cannot do huge page mapping for indirect shadow pages, | 
|  | * which are found on the last rmap (level = 1) when not using | 
|  | * tdp; such shadow pages are synced with the page table in | 
|  | * the guest, and the guest page table is using 4K page size | 
|  | * mapping if the indirect sp has level = 1. | 
|  | */ | 
|  | if (sp->role.direct && | 
|  | !kvm_is_reserved_pfn(pfn) && | 
|  | PageTransCompound(pfn_to_page(pfn))) { | 
|  | drop_spte(kvm, sptep); | 
|  | sptep = rmap_get_first(*rmapp, &iter); | 
|  | need_tlb_flush = 1; | 
|  | } else | 
|  | sptep = rmap_get_next(&iter); | 
|  | } | 
|  |  | 
|  | return need_tlb_flush; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | bool flush = false; | 
|  | unsigned long *rmapp; | 
|  | unsigned long last_index, index; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | rmapp = memslot->arch.rmap[0]; | 
|  | last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1, | 
|  | memslot->base_gfn, PT_PAGE_TABLE_LEVEL); | 
|  |  | 
|  | for (index = 0; index <= last_index; ++index, ++rmapp) { | 
|  | if (*rmapp) | 
|  | flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp); | 
|  |  | 
|  | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { | 
|  | if (flush) { | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | flush = false; | 
|  | } | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | gfn_t last_gfn; | 
|  | unsigned long *rmapp; | 
|  | unsigned long last_index, index; | 
|  | bool flush = false; | 
|  |  | 
|  | last_gfn = memslot->base_gfn + memslot->npages - 1; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1]; | 
|  | last_index = gfn_to_index(last_gfn, memslot->base_gfn, | 
|  | PT_PAGE_TABLE_LEVEL); | 
|  |  | 
|  | for (index = 0; index <= last_index; ++index, ++rmapp) { | 
|  | if (*rmapp) | 
|  | flush |= __rmap_clear_dirty(kvm, rmapp); | 
|  |  | 
|  | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | /* | 
|  | * It's also safe to flush TLBs out of mmu lock here as currently this | 
|  | * function is only used for dirty logging, in which case flushing TLB | 
|  | * out of mmu lock also guarantees no dirty pages will be lost in | 
|  | * dirty_bitmap. | 
|  | */ | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); | 
|  |  | 
|  | void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | gfn_t last_gfn; | 
|  | int i; | 
|  | bool flush = false; | 
|  |  | 
|  | last_gfn = memslot->base_gfn + memslot->npages - 1; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */ | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | unsigned long *rmapp; | 
|  | unsigned long last_index, index; | 
|  |  | 
|  | rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL]; | 
|  | last_index = gfn_to_index(last_gfn, memslot->base_gfn, i); | 
|  |  | 
|  | for (index = 0; index <= last_index; ++index, ++rmapp) { | 
|  | if (*rmapp) | 
|  | flush |= __rmap_write_protect(kvm, rmapp, | 
|  | false); | 
|  |  | 
|  | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | } | 
|  | } | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | /* see kvm_mmu_slot_remove_write_access */ | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); | 
|  |  | 
|  | void kvm_mmu_slot_set_dirty(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | gfn_t last_gfn; | 
|  | int i; | 
|  | bool flush = false; | 
|  |  | 
|  | last_gfn = memslot->base_gfn + memslot->npages - 1; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | unsigned long *rmapp; | 
|  | unsigned long last_index, index; | 
|  |  | 
|  | rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL]; | 
|  | last_index = gfn_to_index(last_gfn, memslot->base_gfn, i); | 
|  |  | 
|  | for (index = 0; index <= last_index; ++index, ++rmapp) { | 
|  | if (*rmapp) | 
|  | flush |= __rmap_set_dirty(kvm, rmapp); | 
|  |  | 
|  | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | /* see kvm_mmu_slot_leaf_clear_dirty */ | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); | 
|  |  | 
|  | #define BATCH_ZAP_PAGES	10 | 
|  | static void kvm_zap_obsolete_pages(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_mmu_page *sp, *node; | 
|  | int batch = 0; | 
|  |  | 
|  | restart: | 
|  | list_for_each_entry_safe_reverse(sp, node, | 
|  | &kvm->arch.active_mmu_pages, link) { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * No obsolete page exists before new created page since | 
|  | * active_mmu_pages is the FIFO list. | 
|  | */ | 
|  | if (!is_obsolete_sp(kvm, sp)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Since we are reversely walking the list and the invalid | 
|  | * list will be moved to the head, skip the invalid page | 
|  | * can help us to avoid the infinity list walking. | 
|  | */ | 
|  | if (sp->role.invalid) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Need not flush tlb since we only zap the sp with invalid | 
|  | * generation number. | 
|  | */ | 
|  | if (batch >= BATCH_ZAP_PAGES && | 
|  | cond_resched_lock(&kvm->mmu_lock)) { | 
|  | batch = 0; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | ret = kvm_mmu_prepare_zap_page(kvm, sp, | 
|  | &kvm->arch.zapped_obsolete_pages); | 
|  | batch += ret; | 
|  |  | 
|  | if (ret) | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should flush tlb before free page tables since lockless-walking | 
|  | * may use the pages. | 
|  | */ | 
|  | kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast invalidate all shadow pages and use lock-break technique | 
|  | * to zap obsolete pages. | 
|  | * | 
|  | * It's required when memslot is being deleted or VM is being | 
|  | * destroyed, in these cases, we should ensure that KVM MMU does | 
|  | * not use any resource of the being-deleted slot or all slots | 
|  | * after calling the function. | 
|  | */ | 
|  | void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm) | 
|  | { | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | trace_kvm_mmu_invalidate_zap_all_pages(kvm); | 
|  | kvm->arch.mmu_valid_gen++; | 
|  |  | 
|  | /* | 
|  | * Notify all vcpus to reload its shadow page table | 
|  | * and flush TLB. Then all vcpus will switch to new | 
|  | * shadow page table with the new mmu_valid_gen. | 
|  | * | 
|  | * Note: we should do this under the protection of | 
|  | * mmu-lock, otherwise, vcpu would purge shadow page | 
|  | * but miss tlb flush. | 
|  | */ | 
|  | kvm_reload_remote_mmus(kvm); | 
|  |  | 
|  | kvm_zap_obsolete_pages(kvm); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) | 
|  | { | 
|  | return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm) | 
|  | { | 
|  | /* | 
|  | * The very rare case: if the generation-number is round, | 
|  | * zap all shadow pages. | 
|  | */ | 
|  | if (unlikely(kvm_current_mmio_generation(kvm) == 0)) { | 
|  | printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n"); | 
|  | kvm_mmu_invalidate_zap_all_pages(kvm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | struct kvm *kvm; | 
|  | int nr_to_scan = sc->nr_to_scan; | 
|  | unsigned long freed = 0; | 
|  |  | 
|  | spin_lock(&kvm_lock); | 
|  |  | 
|  | list_for_each_entry(kvm, &vm_list, vm_list) { | 
|  | int idx; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | /* | 
|  | * Never scan more than sc->nr_to_scan VM instances. | 
|  | * Will not hit this condition practically since we do not try | 
|  | * to shrink more than one VM and it is very unlikely to see | 
|  | * !n_used_mmu_pages so many times. | 
|  | */ | 
|  | if (!nr_to_scan--) | 
|  | break; | 
|  | /* | 
|  | * n_used_mmu_pages is accessed without holding kvm->mmu_lock | 
|  | * here. We may skip a VM instance errorneosly, but we do not | 
|  | * want to shrink a VM that only started to populate its MMU | 
|  | * anyway. | 
|  | */ | 
|  | if (!kvm->arch.n_used_mmu_pages && | 
|  | !kvm_has_zapped_obsolete_pages(kvm)) | 
|  | continue; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | if (kvm_has_zapped_obsolete_pages(kvm)) { | 
|  | kvm_mmu_commit_zap_page(kvm, | 
|  | &kvm->arch.zapped_obsolete_pages); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) | 
|  | freed++; | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  |  | 
|  | unlock: | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  |  | 
|  | /* | 
|  | * unfair on small ones | 
|  | * per-vm shrinkers cry out | 
|  | * sadness comes quickly | 
|  | */ | 
|  | list_move_tail(&kvm->vm_list, &vm_list); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock(&kvm_lock); | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | return percpu_counter_read_positive(&kvm_total_used_mmu_pages); | 
|  | } | 
|  |  | 
|  | static struct shrinker mmu_shrinker = { | 
|  | .count_objects = mmu_shrink_count, | 
|  | .scan_objects = mmu_shrink_scan, | 
|  | .seeks = DEFAULT_SEEKS * 10, | 
|  | }; | 
|  |  | 
|  | static void mmu_destroy_caches(void) | 
|  | { | 
|  | if (pte_list_desc_cache) | 
|  | kmem_cache_destroy(pte_list_desc_cache); | 
|  | if (mmu_page_header_cache) | 
|  | kmem_cache_destroy(mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_module_init(void) | 
|  | { | 
|  | pte_list_desc_cache = kmem_cache_create("pte_list_desc", | 
|  | sizeof(struct pte_list_desc), | 
|  | 0, 0, NULL); | 
|  | if (!pte_list_desc_cache) | 
|  | goto nomem; | 
|  |  | 
|  | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", | 
|  | sizeof(struct kvm_mmu_page), | 
|  | 0, 0, NULL); | 
|  | if (!mmu_page_header_cache) | 
|  | goto nomem; | 
|  |  | 
|  | if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) | 
|  | goto nomem; | 
|  |  | 
|  | register_shrinker(&mmu_shrinker); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | mmu_destroy_caches(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caculate mmu pages needed for kvm. | 
|  | */ | 
|  | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | 
|  | { | 
|  | unsigned int nr_mmu_pages; | 
|  | unsigned int  nr_pages = 0; | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  |  | 
|  | kvm_for_each_memslot(memslot, slots) | 
|  | nr_pages += memslot->npages; | 
|  |  | 
|  | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | 
|  | nr_mmu_pages = max(nr_mmu_pages, | 
|  | (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); | 
|  |  | 
|  | return nr_mmu_pages; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | u64 spte; | 
|  | int nr_sptes = 0; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return nr_sptes; | 
|  |  | 
|  | walk_shadow_page_lockless_begin(vcpu); | 
|  | for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { | 
|  | sptes[iterator.level-1] = spte; | 
|  | nr_sptes++; | 
|  | if (!is_shadow_present_pte(spte)) | 
|  | break; | 
|  | } | 
|  | walk_shadow_page_lockless_end(vcpu); | 
|  |  | 
|  | return nr_sptes; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); | 
|  |  | 
|  | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_mmu_unload(vcpu); | 
|  | free_mmu_pages(vcpu); | 
|  | mmu_free_memory_caches(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_module_exit(void) | 
|  | { | 
|  | mmu_destroy_caches(); | 
|  | percpu_counter_destroy(&kvm_total_used_mmu_pages); | 
|  | unregister_shrinker(&mmu_shrinker); | 
|  | mmu_audit_disable(); | 
|  | } |