blob: ee90d5e597478a5b1959a43a8a715b9c2735729f [file] [log] [blame]
/*
* Copyright 2012 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#import "ZXHybridBinarizer.h"
// This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
// So this is the smallest dimension in each axis we can accept.
const int BLOCK_SIZE_POWER = 3;
const int BLOCK_SIZE = 1 << BLOCK_SIZE_POWER; // ...0100...00
const int BLOCK_SIZE_MASK = BLOCK_SIZE - 1; // ...0011...11
const int MINIMUM_DIMENSION = BLOCK_SIZE * 5;
const int MIN_DYNAMIC_RANGE = 24;
@interface ZXHybridBinarizer ()
@property (nonatomic, strong) ZXBitMatrix *matrix;
@end
@implementation ZXHybridBinarizer
/**
* Calculates the final BitMatrix once for all requests. This could be called once from the
* constructor instead, but there are some advantages to doing it lazily, such as making
* profiling easier, and not doing heavy lifting when callers don't expect it.
*/
- (ZXBitMatrix *)blackMatrixWithError:(NSError **)error {
if (self.matrix != nil) {
return self.matrix;
}
ZXLuminanceSource *source = [self luminanceSource];
int width = source.width;
int height = source.height;
if (width >= MINIMUM_DIMENSION && height >= MINIMUM_DIMENSION) {
int8_t *_luminances = source.matrix;
int subWidth = width >> BLOCK_SIZE_POWER;
if ((width & BLOCK_SIZE_MASK) != 0) {
subWidth++;
}
int subHeight = height >> BLOCK_SIZE_POWER;
if ((height & BLOCK_SIZE_MASK) != 0) {
subHeight++;
}
int **blackPoints = [self calculateBlackPoints:_luminances subWidth:subWidth subHeight:subHeight width:width height:height];
ZXBitMatrix *newMatrix = [[ZXBitMatrix alloc] initWithWidth:width height:height];
[self calculateThresholdForBlock:_luminances subWidth:subWidth subHeight:subHeight width:width height:height blackPoints:blackPoints matrix:newMatrix];
self.matrix = newMatrix;
free(_luminances);
for (int i = 0; i < subHeight; i++) {
free(blackPoints[i]);
}
free(blackPoints);
} else {
// If the image is too small, fall back to the global histogram approach.
self.matrix = [super blackMatrixWithError:error];
}
return self.matrix;
}
- (ZXBinarizer *)createBinarizer:(ZXLuminanceSource *)source {
return [[ZXHybridBinarizer alloc] initWithSource:source];
}
/**
* For each block in the image, calculate the average black point using a 5x5 grid
* of the blocks around it. Also handles the corner cases (fractional blocks are computed based
* on the last pixels in the row/column which are also used in the previous block).
*/
- (void)calculateThresholdForBlock:(int8_t *)luminances
subWidth:(int)subWidth
subHeight:(int)subHeight
width:(int)width
height:(int)height
blackPoints:(int **)blackPoints
matrix:(ZXBitMatrix *)matrix {
for (int y = 0; y < subHeight; y++) {
int yoffset = y << BLOCK_SIZE_POWER;
int maxYOffset = height - BLOCK_SIZE;
if (yoffset > maxYOffset) {
yoffset = maxYOffset;
}
for (int x = 0; x < subWidth; x++) {
int xoffset = x << BLOCK_SIZE_POWER;
int maxXOffset = width - BLOCK_SIZE;
if (xoffset > maxXOffset) {
xoffset = maxXOffset;
}
int left = [self cap:x min:2 max:subWidth - 3];
int top = [self cap:y min:2 max:subHeight - 3];
int sum = 0;
for (int z = -2; z <= 2; z++) {
int *blackRow = blackPoints[top + z];
sum += blackRow[left - 2] + blackRow[left - 1] + blackRow[left] + blackRow[left + 1] + blackRow[left + 2];
}
int average = sum / 25;
[self thresholdBlock:luminances xoffset:xoffset yoffset:yoffset threshold:average stride:width matrix:matrix];
}
}
}
- (int)cap:(int)value min:(int)min max:(int)max {
return value < min ? min : value > max ? max : value;
}
/**
* Applies a single threshold to a block of pixels.
*/
- (void)thresholdBlock:(int8_t *)luminances
xoffset:(int)xoffset
yoffset:(int)yoffset
threshold:(int)threshold
stride:(int)stride
matrix:(ZXBitMatrix *)matrix {
for (int y = 0, offset = yoffset * stride + xoffset; y < BLOCK_SIZE; y++, offset += stride) {
for (int x = 0; x < BLOCK_SIZE; x++) {
// Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0
if ((luminances[offset + x] & 0xFF) <= threshold) {
[matrix setX:xoffset + x y:yoffset + y];
}
}
}
}
/**
* Calculates a single black point for each block of pixels and saves it away.
* See the following thread for a discussion of this algorithm:
* http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
*/
- (int **)calculateBlackPoints:(int8_t *)_luminances
subWidth:(int)subWidth
subHeight:(int)subHeight
width:(int)width
height:(int)height {
int **blackPoints = (int **)malloc(subHeight * sizeof(int *));
for (int y = 0; y < subHeight; y++) {
blackPoints[y] = (int *)malloc(subWidth * sizeof(int));
int yoffset = y << BLOCK_SIZE_POWER;
int maxYOffset = height - BLOCK_SIZE;
if (yoffset > maxYOffset) {
yoffset = maxYOffset;
}
for (int x = 0; x < subWidth; x++) {
int xoffset = x << BLOCK_SIZE_POWER;
int maxXOffset = width - BLOCK_SIZE;
if (xoffset > maxXOffset) {
xoffset = maxXOffset;
}
int sum = 0;
int min = 0xFF;
int max = 0;
for (int yy = 0, offset = yoffset * width + xoffset; yy < BLOCK_SIZE; yy++, offset += width) {
for (int xx = 0; xx < BLOCK_SIZE; xx++) {
int pixel = _luminances[offset + xx] & 0xFF;
sum += pixel;
// still looking for good contrast
if (pixel < min) {
min = pixel;
}
if (pixel > max) {
max = pixel;
}
}
// short-circuit min/max tests once dynamic range is met
if (max - min > MIN_DYNAMIC_RANGE) {
// finish the rest of the rows quickly
for (yy++, offset += width; yy < BLOCK_SIZE; yy++, offset += width) {
for (int xx = 0; xx < BLOCK_SIZE; xx++) {
sum += _luminances[offset + xx] & 0xFF;
}
}
}
}
// The default estimate is the average of the values in the block.
int average = sum >> (BLOCK_SIZE_POWER * 2);
if (max - min <= MIN_DYNAMIC_RANGE) {
// If variation within the block is low, assume this is a block with only light or only
// dark pixels. In that case we do not want to use the average, as it would divide this
// low contrast area into black and white pixels, essentially creating data out of noise.
//
// The default assumption is that the block is light/background. Since no estimate for
// the level of dark pixels exists locally, use half the min for the block.
average = min >> 1;
if (y > 0 && x > 0) {
// Correct the "white background" assumption for blocks that have neighbors by comparing
// the pixels in this block to the previously calculated black points. This is based on
// the fact that dark barcode symbology is always surrounded by some amount of light
// background for which reasonable black point estimates were made. The bp estimated at
// the boundaries is used for the interior.
// The (min < bp) is arbitrary but works better than other heuristics that were tried.
int averageNeighborBlackPoint = (blackPoints[y - 1][x] + (2 * blackPoints[y][x - 1]) +
blackPoints[y - 1][x - 1]) >> 2;
if (min < averageNeighborBlackPoint) {
average = averageNeighborBlackPoint;
}
}
}
blackPoints[y][x] = average;
}
}
return blackPoints;
}
@end