| /* |
| * sha1.c |
| * |
| * Originally witten by Steve Reid <steve@edmweb.com> |
| * |
| * Modified by Aaron D. Gifford <agifford@infowest.com> |
| * |
| * NO COPYRIGHT - THIS IS 100% IN THE PUBLIC DOMAIN |
| * |
| * The original unmodified version is available at: |
| * ftp://ftp.funet.fi/pub/crypt/hash/sha/sha1.c |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "sha.h" |
| |
| #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
| |
| /* blk0() and blk() perform the initial expand. */ |
| /* I got the idea of expanding during the round function from SSLeay */ |
| |
| #ifdef LITTLE_ENDIAN |
| #define blk0(i) (block->l[i] = (rol(block->l[i],24)&(sha1_quadbyte)0xFF00FF00) \ |
| |(rol(block->l[i],8)&(sha1_quadbyte)0x00FF00FF)) |
| #else |
| #define blk0(i) block->l[i] |
| #endif |
| |
| #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ |
| ^block->l[(i+2)&15]^block->l[i&15],1)) |
| |
| /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ |
| #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); |
| #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); |
| #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); |
| |
| typedef union _BYTE64QUAD16 { |
| sha1_byte c[64]; |
| sha1_quadbyte l[16]; |
| } BYTE64QUAD16; |
| |
| /* Hash a single 512-bit block. This is the core of the algorithm. */ |
| void SHA1_Transform(sha1_quadbyte state[5], sha1_byte buffer[64]) { |
| sha1_quadbyte a, b, c, d, e; |
| BYTE64QUAD16 *block; |
| |
| block = (BYTE64QUAD16*)buffer; |
| /* Copy context->state[] to working vars */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| /* 4 rounds of 20 operations each. Loop unrolled. */ |
| R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); |
| R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); |
| R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); |
| R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); |
| R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
| R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
| R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
| R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
| R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
| R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
| R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
| R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
| R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
| R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
| R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
| R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
| R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
| R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
| R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
| R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
| /* Add the working vars back into context.state[] */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| /* Wipe variables */ |
| a = b = c = d = e = 0; |
| } |
| |
| |
| /* SHA1_Init - Initialize new context */ |
| void SHA1_Init(SHA_CTX* context) { |
| /* SHA1 initialization constants */ |
| context->state[0] = 0x67452301; |
| context->state[1] = 0xEFCDAB89; |
| context->state[2] = 0x98BADCFE; |
| context->state[3] = 0x10325476; |
| context->state[4] = 0xC3D2E1F0; |
| context->count[0] = context->count[1] = 0; |
| } |
| |
| /* Run your data through this. */ |
| void SHA1_Update(SHA_CTX *context, sha1_byte *data, unsigned int len) { |
| unsigned int i, j; |
| |
| j = (context->count[0] >> 3) & 63; |
| if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++; |
| context->count[1] += (len >> 29); |
| if ((j + len) > 63) { |
| memcpy(&context->buffer[j], data, (i = 64-j)); |
| SHA1_Transform(context->state, context->buffer); |
| for ( ; i + 63 < len; i += 64) { |
| SHA1_Transform(context->state, &data[i]); |
| } |
| j = 0; |
| } |
| else i = 0; |
| memcpy(&context->buffer[j], &data[i], len - i); |
| } |
| |
| |
| /* Add padding and return the message digest. */ |
| void SHA1_Final(sha1_byte digest[SHA1_DIGEST_LENGTH], SHA_CTX *context) { |
| sha1_quadbyte i, j; |
| sha1_byte finalcount[8]; |
| |
| for (i = 0; i < 8; i++) { |
| finalcount[i] = (sha1_byte)((context->count[(i >= 4 ? 0 : 1)] |
| >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ |
| } |
| SHA1_Update(context, (sha1_byte *)"\200", 1); |
| while ((context->count[0] & 504) != 448) { |
| SHA1_Update(context, (sha1_byte *)"\0", 1); |
| } |
| /* Should cause a SHA1_Transform() */ |
| SHA1_Update(context, finalcount, 8); |
| for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { |
| digest[i] = (sha1_byte) |
| ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); |
| } |
| /* Wipe variables */ |
| i = j = 0; |
| memset(context->buffer, 0, SHA1_BLOCK_LENGTH); |
| memset(context->state, 0, SHA1_DIGEST_LENGTH); |
| memset(context->count, 0, 8); |
| memset(&finalcount, 0, 8); |
| } |