| //#define DEBUG_PRINTF( ... ) /*printf(__VA_ARGS__)*/ | |
| /** | |
| * \addtogroup uip | |
| * @{ | |
| */ | |
| /** | |
| * \file | |
| * The uIP TCP/IP stack code. | |
| * \author Adam Dunkels <adam@dunkels.com> | |
| */ | |
| /* | |
| * Copyright (c) 2001-2003, Adam Dunkels. | |
| * All rights reserved. | |
| * | |
| * Redistribution and use in source and binary forms, with or without | |
| * modification, are permitted provided that the following conditions | |
| * are met: | |
| * 1. Redistributions of source code must retain the above copyright | |
| * notice, this list of conditions and the following disclaimer. | |
| * 2. Redistributions in binary form must reproduce the above copyright | |
| * notice, this list of conditions and the following disclaimer in the | |
| * documentation and/or other materials provided with the distribution. | |
| * 3. The name of the author may not be used to endorse or promote | |
| * products derived from this software without specific prior | |
| * written permission. | |
| * | |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
| * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
| * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| * | |
| * This file is part of the uIP TCP/IP stack. | |
| * | |
| * $Id: uip.c,v 1.15 2008/10/15 08:08:32 adamdunkels Exp $ | |
| * | |
| */ | |
| /* | |
| * uIP is a small implementation of the IP, UDP and TCP protocols (as | |
| * well as some basic ICMP stuff). The implementation couples the IP, | |
| * UDP, TCP and the application layers very tightly. To keep the size | |
| * of the compiled code down, this code frequently uses the goto | |
| * statement. While it would be possible to break the uip_process() | |
| * function into many smaller functions, this would increase the code | |
| * size because of the overhead of parameter passing and the fact that | |
| * the optimier would not be as efficient. | |
| * | |
| * The principle is that we have a small buffer, called the uip_buf, | |
| * in which the device driver puts an incoming packet. The TCP/IP | |
| * stack parses the headers in the packet, and calls the | |
| * application. If the remote host has sent data to the application, | |
| * this data is present in the uip_buf and the application read the | |
| * data from there. It is up to the application to put this data into | |
| * a byte stream if needed. The application will not be fed with data | |
| * that is out of sequence. | |
| * | |
| * If the application whishes to send data to the peer, it should put | |
| * its data into the uip_buf. The uip_appdata pointer points to the | |
| * first available byte. The TCP/IP stack will calculate the | |
| * checksums, and fill in the necessary header fields and finally send | |
| * the packet back to the peer. | |
| */ | |
| #include "net/uip.h" | |
| #include "net/uipopt.h" | |
| #include "net/uip_arp.h" | |
| #include "net/uip_arch.h" | |
| /* If UIP_CONF_IPV6 is defined, we compile the uip6.c file instead of this one. | |
| Therefore this #ifndef removes the entire compilation output of the uip.c file */ | |
| #if !UIP_CONF_IPV6 | |
| #if UIP_CONF_IPV6 | |
| #include "net/uip-neighbor.h" | |
| #endif /* UIP_CONF_IPV6 */ | |
| #include <string.h> | |
| /*---------------------------------------------------------------------------*/ | |
| /* Variable definitions. */ | |
| /* The IP address of this host. If it is defined to be fixed (by setting | |
| UIP_FIXEDADDR to 1 in uipopt.h), the address is set here. Otherwise, the address */ | |
| #if UIP_FIXEDADDR > 0 | |
| const uip_ipaddr_t uip_hostaddr = { UIP_IPADDR0, UIP_IPADDR1, UIP_IPADDR2, UIP_IPADDR3 }; | |
| const uip_ipaddr_t uip_draddr = { UIP_DRIPADDR0, UIP_DRIPADDR1, UIP_DRIPADDR2, UIP_DRIPADDR3 }; | |
| const uip_ipaddr_t uip_netmask = { UIP_NETMASK0, UIP_NETMASK1, UIP_NETMASK2, UIP_NETMASK3 }; | |
| #else | |
| uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask; | |
| #endif /* UIP_FIXEDADDR */ | |
| const uip_ipaddr_t uip_broadcast_addr = | |
| #if UIP_CONF_IPV6 | |
| { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; | |
| #else /* UIP_CONF_IPV6 */ | |
| { { 0xff, 0xff, 0xff, 0xff } }; | |
| #endif /* UIP_CONF_IPV6 */ | |
| const uip_ipaddr_t uip_all_zeroes_addr = { { 0x0, /* rest is 0 */ } }; | |
| #if UIP_FIXEDETHADDR | |
| const struct uip_eth_addr uip_ethaddr = { { UIP_ETHADDR0, UIP_ETHADDR1, UIP_ETHADDR2, UIP_ETHADDR3, UIP_ETHADDR4, UIP_ETHADDR5 } }; | |
| #else | |
| struct uip_eth_addr uip_ethaddr = { { 0, 0, 0, 0, 0, 0 } }; | |
| #endif | |
| #ifndef UIP_CONF_EXTERNAL_BUFFER | |
| /* The packet buffer that contains incoming packets. */ | |
| u8_t uip_buf[ UIP_BUFSIZE + 2 ]; | |
| #endif /* UIP_CONF_EXTERNAL_BUFFER */ | |
| /* The uip_appdata pointer points to application data. */ | |
| void *uip_appdata; | |
| /* The uip_appdata pointer points to the application data which is to be sent. */ | |
| void *uip_sappdata; | |
| #if UIP_URGDATA > 0 | |
| /* The uip_urgdata pointer points to urgent data (out-of-band data), if | |
| present. */ | |
| void *uip_urgdata; | |
| u16_t uip_urglen, uip_surglen; | |
| #endif /* UIP_URGDATA > 0 */ | |
| /* The uip_len is either 8 or 16 bits, depending on the maximum packet size. */ | |
| u16_t uip_len, uip_slen; | |
| /* The uip_flags variable is used for communication between the TCP/IP stack | |
| and the application program. */ | |
| u8_t uip_flags; | |
| /* uip_conn always points to the current connection. */ | |
| struct uip_conn *uip_conn; | |
| struct uip_conn uip_conns[ UIP_CONNS ]; | |
| /* The uip_conns array holds all TCP connections. */ | |
| u16_t uip_listenports[UIP_LISTENPORTS]; | |
| /* The uip_listenports list all currently listning ports. */ | |
| #if UIP_UDP | |
| struct uip_udp_conn *uip_udp_conn; | |
| struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS]; | |
| #endif /* UIP_UDP */ | |
| /* Ths ipid variable is an increasing number that is used for the IP ID field. */ | |
| static u16_t ipid; | |
| void uip_setipid( u16_t id ) | |
| { | |
| ipid = id; | |
| } | |
| /* The iss variable is used for the TCP initial sequence number. */ | |
| static u8_t iss[ 4 ]; | |
| #if UIP_ACTIVE_OPEN | |
| /* Keeps track of the last port used for a new connection. */ | |
| static u16_t lastport; | |
| #endif /* UIP_ACTIVE_OPEN */ | |
| /* Temporary variables. */ | |
| u8_t uip_acc32[ 4 ]; | |
| static u8_t c, opt; | |
| static u16_t tmp16; | |
| /* Structures and definitions. */ | |
| #define TCP_FIN 0x01 | |
| #define TCP_SYN 0x02 | |
| #define TCP_RST 0x04 | |
| #define TCP_PSH 0x08 | |
| #define TCP_ACK 0x10 | |
| #define TCP_URG 0x20 | |
| #define TCP_CTL 0x3f | |
| #define TCP_OPT_END 0 /* End of TCP options list */ | |
| #define TCP_OPT_NOOP 1 /* "No-operation" TCP option */ | |
| #define TCP_OPT_MSS 2 /* Maximum segment size TCP option */ | |
| #define TCP_OPT_MSS_LEN 4 /* Length of TCP MSS option. */ | |
| #define ICMP_ECHO_REPLY 0 | |
| #define ICMP_ECHO 8 | |
| #define ICMP_DEST_UNREACHABLE 3 | |
| #define ICMP_PORT_UNREACHABLE 3 | |
| #define ICMP6_ECHO_REPLY 129 | |
| #define ICMP6_ECHO 128 | |
| #define ICMP6_NEIGHBOR_SOLICITATION 135 | |
| #define ICMP6_NEIGHBOR_ADVERTISEMENT 136 | |
| #define ICMP6_FLAG_S ( 1 << 6 ) | |
| #define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1 | |
| #define ICMP6_OPTION_TARGET_LINK_ADDRESS 2 | |
| /* Macros. */ | |
| #define BUF ( ( struct uip_tcpip_hdr * ) &uip_buf[UIP_LLH_LEN] ) | |
| #define FBUF ( ( struct uip_tcpip_hdr * ) &uip_reassbuf[0] ) | |
| #define ICMPBUF ( ( struct uip_icmpip_hdr * ) &uip_buf[UIP_LLH_LEN] ) | |
| #define UDPBUF ( ( struct uip_udpip_hdr * ) &uip_buf[UIP_LLH_LEN] ) | |
| #if UIP_STATISTICS == 1 | |
| struct uip_stats uip_stat; | |
| #define UIP_STAT( s ) s | |
| #else | |
| #define UIP_STAT( s ) | |
| #endif /* UIP_STATISTICS == 1 */ | |
| #if UIP_LOGGING == 1 | |
| #include <stdio.h> | |
| void uip_log( char *msg ); | |
| #define UIP_LOG( m ) uip_log( m ) | |
| #else | |
| #define UIP_LOG( m ) | |
| #endif /* UIP_LOGGING == 1 */ | |
| #if !UIP_ARCH_ADD32 | |
| void uip_add32( u8_t *op32, u16_t op16 ) | |
| { | |
| uip_acc32[3] = op32[3] + ( op16 & 0xff ); | |
| uip_acc32[2] = op32[2] + ( op16 >> 8 ); | |
| uip_acc32[1] = op32[1]; | |
| uip_acc32[0] = op32[0]; | |
| if( uip_acc32[2] < (op16 >> 8) ) | |
| { | |
| ++uip_acc32[1]; | |
| if( uip_acc32[1] == 0 ) | |
| { | |
| ++uip_acc32[0]; | |
| } | |
| } | |
| if( uip_acc32[3] < (op16 & 0xff) ) | |
| { | |
| ++uip_acc32[2]; | |
| if( uip_acc32[2] == 0 ) | |
| { | |
| ++uip_acc32[1]; | |
| if( uip_acc32[1] == 0 ) | |
| { | |
| ++uip_acc32[0]; | |
| } | |
| } | |
| } | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #endif /* UIP_ARCH_ADD32 */ | |
| #if !UIP_ARCH_CHKSUM | |
| static u16_t chksum( u16_t sum, const u8_t *data, u16_t len ) | |
| { | |
| u16_t t; | |
| const u8_t *dataptr; | |
| const u8_t *last_byte; | |
| dataptr = data; | |
| last_byte = data + len - 1; | |
| while( dataptr < last_byte ) | |
| { | |
| /* At least two more bytes */ | |
| t = ( dataptr[ 0 ] << 8 ) + dataptr[ 1 ]; | |
| sum += t; | |
| if( sum < t ) | |
| { | |
| sum++; /* carry */ | |
| } | |
| dataptr += 2; | |
| } | |
| if( dataptr == last_byte ) | |
| { | |
| t = ( dataptr[ 0 ] << 8 ) + 0; | |
| sum += t; | |
| if( sum < t ) | |
| { | |
| sum++; /* carry */ | |
| } | |
| } | |
| /* Return sum in host byte order. */ | |
| return sum; | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| u16_t uip_chksum( u16_t *data, u16_t len ) | |
| { | |
| return htons( chksum( 0, ( u8_t * ) data, len ) ); | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #ifndef UIP_ARCH_IPCHKSUM | |
| u16_t uip_ipchksum( void ) | |
| { | |
| u16_t sum; | |
| sum = chksum( 0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN ); | |
| //DEBUG_PRINTF( "uip_ipchksum: sum 0x%04x\n", sum ); | |
| return( sum == 0 ) ? 0xffff : htons( sum ); | |
| } | |
| #endif | |
| /*---------------------------------------------------------------------------*/ | |
| static u16_t upper_layer_chksum( u8_t proto ) | |
| { | |
| u16_t upper_layer_len; | |
| u16_t sum; | |
| #if UIP_CONF_IPV6 | |
| upper_layer_len = ( ((u16_t) (BUF->len[ 0 ]) << 8) + BUF->len[ 1 ] ); | |
| #else /* UIP_CONF_IPV6 */ | |
| upper_layer_len = ( ((u16_t) (BUF->len[ 0 ]) << 8) + BUF->len[ 1 ] ) - UIP_IPH_LEN; | |
| #endif /* UIP_CONF_IPV6 */ | |
| /* First sum pseudoheader. */ | |
| /* IP protocol and length fields. This addition cannot carry. */ | |
| sum = upper_layer_len + proto; | |
| /* Sum IP source and destination addresses. */ | |
| sum = chksum( sum, ( u8_t * ) &BUF->srcipaddr, 2 * sizeof(uip_ipaddr_t) ); | |
| /* Sum TCP header and data. */ | |
| sum = chksum( sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN], upper_layer_len ); | |
| return( sum == 0 ) ? 0xffff : htons( sum ); | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #if UIP_CONF_IPV6 | |
| u16_t uip_icmp6chksum( void ) | |
| { | |
| return upper_layer_chksum( UIP_PROTO_ICMP6 ); | |
| } | |
| #endif /* UIP_CONF_IPV6 */ | |
| /*---------------------------------------------------------------------------*/ | |
| u16_t uip_tcpchksum( void ) | |
| { | |
| return upper_layer_chksum( UIP_PROTO_TCP ); | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #if UIP_UDP_CHECKSUMS | |
| u16_t uip_udpchksum( void ) | |
| { | |
| return upper_layer_chksum( UIP_PROTO_UDP ); | |
| } | |
| #endif /* UIP_UDP_CHECKSUMS */ | |
| #endif /* UIP_ARCH_CHKSUM */ | |
| /*---------------------------------------------------------------------------*/ | |
| void uip_init( void ) | |
| { | |
| for( c = 0; c < UIP_LISTENPORTS; ++c ) | |
| { | |
| uip_listenports[ c ] = 0; | |
| } | |
| for( c = 0; c < UIP_CONNS; ++c ) | |
| { | |
| uip_conns[ c ].tcpstateflags = UIP_CLOSED; | |
| } | |
| #if UIP_ACTIVE_OPEN | |
| lastport = 1024; | |
| #endif /* UIP_ACTIVE_OPEN */ | |
| #if UIP_UDP | |
| for( c = 0; c < UIP_UDP_CONNS; ++c ) | |
| { | |
| uip_udp_conns[ c ].lport = 0; | |
| } | |
| #endif /* UIP_UDP */ | |
| /* IPv4 initialization. */ | |
| #if UIP_FIXEDADDR == 0 | |
| /* uip_hostaddr[ 0 ] = uip_hostaddr[ 1 ] = 0;*/ | |
| #endif /* UIP_FIXEDADDR */ | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #if UIP_ACTIVE_OPEN | |
| struct uip_conn *uip_connect( uip_ipaddr_t *ripaddr, u16_t rport ) | |
| { | |
| register struct uip_conn *conn, *cconn; | |
| /* Find an unused local port. */ | |
| again: | |
| ++lastport; | |
| if( lastport >= 32000 ) | |
| { | |
| lastport = 4096; | |
| } | |
| /* Check if this port is already in use, and if so try to find | |
| another one. */ | |
| for( c = 0; c < UIP_CONNS; ++c ) | |
| { | |
| conn = &uip_conns[ c ]; | |
| if( conn->tcpstateflags != UIP_CLOSED && conn->lport == htons(lastport) ) | |
| { | |
| goto again; | |
| } | |
| } | |
| conn = 0; | |
| for( c = 0; c < UIP_CONNS; ++c ) | |
| { | |
| cconn = &uip_conns[ c ]; | |
| if( cconn->tcpstateflags == UIP_CLOSED ) | |
| { | |
| conn = cconn; | |
| break; | |
| } | |
| if( cconn->tcpstateflags == UIP_TIME_WAIT ) | |
| { | |
| if( conn == 0 || cconn->timer > conn->timer ) | |
| { | |
| conn = cconn; | |
| } | |
| } | |
| } | |
| if( conn == 0 ) | |
| { | |
| return 0; | |
| } | |
| conn->tcpstateflags = UIP_SYN_SENT; | |
| conn->snd_nxt[ 0 ] = iss[ 0 ]; | |
| conn->snd_nxt[ 1 ] = iss[ 1 ]; | |
| conn->snd_nxt[ 2 ] = iss[ 2 ]; | |
| conn->snd_nxt[ 3 ] = iss[ 3 ]; | |
| conn->initialmss = conn->mss = UIP_TCP_MSS; | |
| conn->len = 1; /* TCP length of the SYN is one. */ | |
| conn->nrtx = 0; | |
| conn->timer = 1; /* Send the SYN next time around. */ | |
| conn->rto = UIP_RTO; | |
| conn->sa = 0; | |
| conn->sv = 16; /* Initial value of the RTT variance. */ | |
| conn->lport = htons( lastport ); | |
| conn->rport = rport; | |
| uip_ipaddr_copy( &conn->ripaddr, ripaddr ); | |
| return conn; | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #endif /* UIP_ACTIVE_OPEN */ | |
| #if UIP_UDP | |
| struct uip_udp_conn *uip_udp_new( const uip_ipaddr_t *ripaddr, u16_t rport ) | |
| { | |
| register struct uip_udp_conn *conn; | |
| /* Find an unused local port. */ | |
| again: | |
| ++lastport; | |
| if( lastport >= 32000 ) | |
| { | |
| lastport = 4096; | |
| } | |
| for( c = 0; c < UIP_UDP_CONNS; ++c ) | |
| { | |
| if( uip_udp_conns[ c ].lport == htons(lastport) ) | |
| { | |
| goto again; | |
| } | |
| } | |
| conn = 0; | |
| for( c = 0; c < UIP_UDP_CONNS; ++c ) | |
| { | |
| if( uip_udp_conns[ c ].lport == 0 ) | |
| { | |
| conn = &uip_udp_conns[ c ]; | |
| break; | |
| } | |
| } | |
| if( conn == 0 ) | |
| { | |
| return 0; | |
| } | |
| conn->lport = HTONS( lastport ); | |
| conn->rport = rport; | |
| if( ripaddr == NULL ) | |
| { | |
| memset( &conn->ripaddr, 0, sizeof(uip_ipaddr_t) ); | |
| } | |
| else | |
| { | |
| uip_ipaddr_copy( &conn->ripaddr, ripaddr ); | |
| } | |
| conn->ttl = UIP_TTL; | |
| return conn; | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #endif /* UIP_UDP */ | |
| void uip_unlisten( u16_t port ) | |
| { | |
| for( c = 0; c < UIP_LISTENPORTS; ++c ) | |
| { | |
| if( uip_listenports[ c ] == port ) | |
| { | |
| uip_listenports[ c ] = 0; | |
| return; | |
| } | |
| } | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| void uip_listen( u16_t port ) | |
| { | |
| for( c = 0; c < UIP_LISTENPORTS; ++c ) | |
| { | |
| if( uip_listenports[ c ] == 0 ) | |
| { | |
| uip_listenports[ c ] = port; | |
| return; | |
| } | |
| } | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| /* XXX: IP fragment reassembly: not well-tested. */ | |
| #if UIP_REASSEMBLY && !UIP_CONF_IPV6 | |
| #define UIP_REASS_BUFSIZE ( UIP_BUFSIZE - UIP_LLH_LEN ) | |
| static u8_t uip_reassbuf[UIP_REASS_BUFSIZE]; | |
| static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / ( 8 * 8 )]; | |
| static const u8_t bitmap_bits[8] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01 }; | |
| static u16_t uip_reasslen; | |
| static u8_t uip_reassflags; | |
| #define UIP_REASS_FLAG_LASTFRAG 0x01 | |
| static u8_t uip_reasstmr; | |
| #define IP_MF 0x20 | |
| static u8_t uip_reass( void ) | |
| { | |
| u16_t offset, len; | |
| u16_t i; | |
| /* If ip_reasstmr is zero, no packet is present in the buffer, so we | |
| write the IP header of the fragment into the reassembly | |
| buffer. The timer is updated with the maximum age. */ | |
| if( uip_reasstmr == 0 ) | |
| { | |
| memcpy( uip_reassbuf, &BUF->vhl, UIP_IPH_LEN ); | |
| uip_reasstmr = UIP_REASS_MAXAGE; | |
| uip_reassflags = 0; | |
| /* Clear the bitmap. */ | |
| memset( uip_reassbitmap, 0, sizeof(uip_reassbitmap) ); | |
| } | |
| /* Check if the incoming fragment matches the one currently present | |
| in the reasembly buffer. If so, we proceed with copying the | |
| fragment into the buffer. */ | |
| if | |
| ( | |
| BUF->srcipaddr[ 0 ] == FBUF->srcipaddr[ 0 ] && | |
| BUF->srcipaddr[ 1 ] == FBUF->srcipaddr[ 1 ] && | |
| BUF->destipaddr[ 0 ] == FBUF->destipaddr[ 0 ] && | |
| BUF->destipaddr[ 1 ] == FBUF->destipaddr[ 1 ] && | |
| BUF->ipid[ 0 ] == FBUF->ipid[ 0 ] && | |
| BUF->ipid[ 1 ] == FBUF->ipid[ 1 ] | |
| ) | |
| { | |
| len = ( BUF->len[ 0 ] << 8 ) + BUF->len[ 1 ] - ( BUF->vhl & 0x0f ) * 4; | |
| offset = ( ((BUF->ipoffset[ 0 ] & 0x3f) << 8) + BUF->ipoffset[ 1 ] ) * 8; | |
| /* If the offset or the offset + fragment length overflows the | |
| reassembly buffer, we discard the entire packet. */ | |
| if( offset > UIP_REASS_BUFSIZE || offset + len > UIP_REASS_BUFSIZE ) | |
| { | |
| uip_reasstmr = 0; | |
| goto nullreturn; | |
| } | |
| /* Copy the fragment into the reassembly buffer, at the right | |
| offset. */ | |
| memcpy( &uip_reassbuf[UIP_IPH_LEN + offset], ( char * ) BUF + ( int ) ((BUF->vhl & 0x0f) * 4), len ); | |
| /* Update the bitmap. */ | |
| if( offset / (8 * 8) == (offset + len) / (8 * 8) ) | |
| { | |
| /* If the two endpoints are in the same byte, we only update | |
| that byte. */ | |
| uip_reassbitmap[offset / ( 8 * 8 )] |= bitmap_bits[( offset / 8 ) & 7] &~bitmap_bits[( (offset + len) / 8 ) & 7]; | |
| } | |
| else | |
| { | |
| /* If the two endpoints are in different bytes, we update the | |
| bytes in the endpoints and fill the stuff inbetween with | |
| 0xff. */ | |
| uip_reassbitmap[offset / ( 8 * 8 )] |= bitmap_bits[( offset / 8 ) & 7]; | |
| for( i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i ) | |
| { | |
| uip_reassbitmap[i] = 0xff; | |
| } | |
| uip_reassbitmap[( offset + len ) / ( 8 * 8 )] |= ~bitmap_bits[( (offset + len) / 8 ) & 7]; | |
| } | |
| /* If this fragment has the More Fragments flag set to zero, we | |
| know that this is the last fragment, so we can calculate the | |
| size of the entire packet. We also set the | |
| IP_REASS_FLAG_LASTFRAG flag to indicate that we have received | |
| the final fragment. */ | |
| if( (BUF->ipoffset[ 0 ] & IP_MF) == 0 ) | |
| { | |
| uip_reassflags |= UIP_REASS_FLAG_LASTFRAG; | |
| uip_reasslen = offset + len; | |
| } | |
| /* Finally, we check if we have a full packet in the buffer. We do | |
| this by checking if we have the last fragment and if all bits | |
| in the bitmap are set. */ | |
| if( uip_reassflags & UIP_REASS_FLAG_LASTFRAG ) | |
| { | |
| /* Check all bytes up to and including all but the last byte in | |
| the bitmap. */ | |
| for( i = 0; i < uip_reasslen / (8 * 8) - 1; ++i ) | |
| { | |
| if( uip_reassbitmap[i] != 0xff ) | |
| { | |
| goto nullreturn; | |
| } | |
| } | |
| /* Check the last byte in the bitmap. It should contain just the | |
| right amount of bits. */ | |
| if( uip_reassbitmap[uip_reasslen / (8 * 8)] != (u8_t)~bitmap_bits[uip_reasslen / 8 & 7] ) | |
| { | |
| goto nullreturn; | |
| } | |
| /* If we have come this far, we have a full packet in the | |
| buffer, so we allocate a pbuf and copy the packet into it. We | |
| also reset the timer. */ | |
| uip_reasstmr = 0; | |
| memcpy( BUF, FBUF, uip_reasslen ); | |
| /* Pretend to be a "normal" (i.e., not fragmented) IP packet | |
| from now on. */ | |
| BUF->ipoffset[ 0 ] = BUF->ipoffset[ 1 ] = 0; | |
| BUF->len[ 0 ] = uip_reasslen >> 8; | |
| BUF->len[ 1 ] = uip_reasslen & 0xff; | |
| BUF->ipchksum = 0; | |
| BUF->ipchksum = ~( uip_ipchksum() ); | |
| return uip_reasslen; | |
| } | |
| } | |
| nullreturn: | |
| return 0; | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| #endif /* UIP_REASSEMBLY */ | |
| static void uip_add_rcv_nxt( u16_t n ) | |
| { | |
| uip_add32( uip_conn->rcv_nxt, n ); | |
| uip_conn->rcv_nxt[ 0 ] = uip_acc32[ 0 ]; | |
| uip_conn->rcv_nxt[ 1 ] = uip_acc32[ 1 ]; | |
| uip_conn->rcv_nxt[ 2 ] = uip_acc32[ 2 ]; | |
| uip_conn->rcv_nxt[ 3 ] = uip_acc32[ 3 ]; | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| void uip_process( u8_t flag ) | |
| { | |
| register struct uip_conn *uip_connr = uip_conn; | |
| #if UIP_UDP | |
| if( flag == UIP_UDP_SEND_CONN ) | |
| { | |
| goto udp_send; | |
| } | |
| #endif /* UIP_UDP */ | |
| uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN]; | |
| /* Check if we were invoked because of a poll request for a | |
| particular connection. */ | |
| if( flag == UIP_POLL_REQUEST ) | |
| { | |
| if( (uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED && !uip_outstanding(uip_connr) ) | |
| { | |
| uip_flags = UIP_POLL; | |
| UIP_APPCALL(); | |
| goto appsend; | |
| } | |
| goto drop; | |
| /* Check if we were invoked because of the perodic timer fireing. */ | |
| } | |
| else if( flag == UIP_TIMER ) | |
| { | |
| #if UIP_REASSEMBLY | |
| if( uip_reasstmr != 0 ) | |
| { | |
| --uip_reasstmr; | |
| } | |
| #endif /* UIP_REASSEMBLY */ | |
| /* Increase the initial sequence number. */ | |
| if( ++iss[ 3 ] == 0 ) | |
| { | |
| if( ++iss[ 2 ] == 0 ) | |
| { | |
| if( ++iss[ 1 ] == 0 ) | |
| { | |
| ++iss[ 0 ]; | |
| } | |
| } | |
| } | |
| /* Reset the length variables. */ | |
| uip_len = 0; | |
| uip_slen = 0; | |
| /* Check if the connection is in a state in which we simply wait | |
| for the connection to time out. If so, we increase the | |
| connection's timer and remove the connection if it times | |
| out. */ | |
| if( uip_connr->tcpstateflags == UIP_TIME_WAIT || uip_connr->tcpstateflags == UIP_FIN_WAIT_2 ) | |
| { | |
| ++( uip_connr->timer ); | |
| if( uip_connr->timer == UIP_TIME_WAIT_TIMEOUT ) | |
| { | |
| uip_connr->tcpstateflags = UIP_CLOSED; | |
| } | |
| } | |
| else if( uip_connr->tcpstateflags != UIP_CLOSED ) | |
| { | |
| /* If the connection has outstanding data, we increase the | |
| connection's timer and see if it has reached the RTO value | |
| in which case we retransmit. */ | |
| if( uip_outstanding(uip_connr) ) | |
| { | |
| if( uip_connr->timer-- == 0 ) | |
| { | |
| if | |
| ( | |
| uip_connr->nrtx == UIP_MAXRTX || | |
| ( | |
| (uip_connr->tcpstateflags == UIP_SYN_SENT || uip_connr->tcpstateflags == UIP_SYN_RCVD) && | |
| uip_connr->nrtx == UIP_MAXSYNRTX | |
| ) | |
| ) | |
| { | |
| uip_connr->tcpstateflags = UIP_CLOSED; | |
| /* We call UIP_APPCALL() with uip_flags set to | |
| UIP_TIMEDOUT to inform the application that the | |
| connection has timed out. */ | |
| uip_flags = UIP_TIMEDOUT; | |
| UIP_APPCALL(); | |
| /* We also send a reset packet to the remote host. */ | |
| BUF->flags = TCP_RST | TCP_ACK; | |
| goto tcp_send_nodata; | |
| } | |
| /* Exponential backoff. */ | |
| uip_connr->timer = UIP_RTO << ( uip_connr->nrtx > 4 ? 4 : uip_connr->nrtx ); | |
| ++( uip_connr->nrtx ); | |
| /* Ok, so we need to retransmit. We do this differently | |
| depending on which state we are in. In ESTABLISHED, we | |
| call upon the application so that it may prepare the | |
| data for the retransmit. In SYN_RCVD, we resend the | |
| SYNACK that we sent earlier and in LAST_ACK we have to | |
| retransmit our FINACK. */ | |
| UIP_STAT( ++uip_stat.tcp.rexmit ); | |
| switch( uip_connr->tcpstateflags & UIP_TS_MASK ) | |
| { | |
| case UIP_SYN_RCVD: | |
| /* In the SYN_RCVD state, we should retransmit our | |
| SYNACK. */ | |
| goto tcp_send_synack; | |
| #if UIP_ACTIVE_OPEN | |
| case UIP_SYN_SENT: | |
| /* In the SYN_SENT state, we retransmit out SYN. */ | |
| BUF->flags = 0; | |
| goto tcp_send_syn; | |
| #endif /* UIP_ACTIVE_OPEN */ | |
| case UIP_ESTABLISHED: | |
| /* In the ESTABLISHED state, we call upon the application | |
| to do the actual retransmit after which we jump into | |
| the code for sending out the packet (the apprexmit | |
| label). */ | |
| uip_flags = UIP_REXMIT; | |
| UIP_APPCALL(); | |
| goto apprexmit; | |
| case UIP_FIN_WAIT_1: | |
| case UIP_CLOSING: | |
| case UIP_LAST_ACK: | |
| /* In all these states we should retransmit a FINACK. */ | |
| goto tcp_send_finack; | |
| } | |
| } | |
| } | |
| else if( (uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED ) | |
| { | |
| /* If there was no need for a retransmission, we poll the | |
| application for new data. */ | |
| uip_flags = UIP_POLL; | |
| UIP_APPCALL(); | |
| goto appsend; | |
| } | |
| } | |
| goto drop; | |
| } | |
| #if UIP_UDP | |
| if( flag == UIP_UDP_TIMER ) | |
| { | |
| if( uip_udp_conn->lport != 0 ) | |
| { | |
| uip_conn = NULL; | |
| uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | |
| uip_len = uip_slen = 0; | |
| uip_flags = UIP_POLL; | |
| UIP_UDP_APPCALL(); | |
| goto udp_send; | |
| } | |
| else | |
| { | |
| goto drop; | |
| } | |
| } | |
| #endif | |
| /* This is where the input processing starts. */ | |
| UIP_STAT( ++uip_stat.ip.recv ); | |
| /* Start of IP input header processing code. */ | |
| #if UIP_CONF_IPV6 | |
| /* Check validity of the IP header. */ | |
| if( (BUF->vtc & 0xf0) != 0x60 ) | |
| { /* IP version and header length. */ | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| UIP_STAT( ++uip_stat.ip.vhlerr ); | |
| UIP_LOG( "ipv6: invalid version." ); | |
| goto drop; | |
| } | |
| #else /* UIP_CONF_IPV6 */ | |
| /* Check validity of the IP header. */ | |
| if( BUF->vhl != 0x45 ) | |
| { /* IP version and header length. */ | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| UIP_STAT( ++uip_stat.ip.vhlerr ); | |
| UIP_LOG( "ip: invalid version or header length." ); | |
| goto drop; | |
| } | |
| #endif /* UIP_CONF_IPV6 */ | |
| /* Check the size of the packet. If the size reported to us in | |
| uip_len is smaller the size reported in the IP header, we assume | |
| that the packet has been corrupted in transit. If the size of | |
| uip_len is larger than the size reported in the IP packet header, | |
| the packet has been padded and we set uip_len to the correct | |
| value.. */ | |
| if( (BUF->len[ 0 ] << 8) + BUF->len[ 1 ] <= uip_len ) | |
| { | |
| uip_len = ( BUF->len[ 0 ] << 8 ) + BUF->len[ 1 ]; | |
| #if UIP_CONF_IPV6 | |
| /* The length reported in the IPv6 header is the | |
| length of the payload that follows the | |
| header. However, uIP uses the uip_len variable | |
| for holding the size of the entire packet, | |
| including the IP header. For IPv4 this is not a | |
| problem as the length field in the IPv4 header | |
| contains the length of the entire packet. But | |
| for IPv6 we need to add the size of the IPv6 | |
| header (40 bytes). */ | |
| uip_len += 40; | |
| #endif /* UIP_CONF_IPV6 */ | |
| } | |
| else | |
| { | |
| UIP_LOG( "ip: packet shorter than reported in IP header." ); | |
| goto drop; | |
| } | |
| #if !UIP_CONF_IPV6 | |
| /* Check the fragment flag. */ | |
| if( (BUF->ipoffset[ 0 ] & 0x3f) != 0 || BUF->ipoffset[ 1 ] != 0 ) | |
| { | |
| #if UIP_REASSEMBLY | |
| uip_len = uip_reass(); | |
| if( uip_len == 0 ) | |
| { | |
| goto drop; | |
| } | |
| #else /* UIP_REASSEMBLY */ | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| UIP_STAT( ++uip_stat.ip.fragerr ); | |
| UIP_LOG( "ip: fragment dropped." ); | |
| goto drop; | |
| #endif /* UIP_REASSEMBLY */ | |
| } | |
| #endif /* UIP_CONF_IPV6 */ | |
| if( uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr) ) | |
| { | |
| /* If we are configured to use ping IP address configuration and | |
| hasn't been assigned an IP address yet, we accept all ICMP | |
| packets. */ | |
| #if UIP_PINGADDRCONF && !UIP_CONF_IPV6 | |
| if( BUF->proto == UIP_PROTO_ICMP ) | |
| { | |
| UIP_LOG( "ip: possible ping config packet received." ); | |
| goto icmp_input; | |
| } | |
| else | |
| { | |
| UIP_LOG( "ip: packet dropped since no address assigned." ); | |
| goto drop; | |
| } | |
| #endif /* UIP_PINGADDRCONF */ | |
| } | |
| else | |
| { | |
| /* If IP broadcast support is configured, we check for a broadcast | |
| UDP packet, which may be destined to us. */ | |
| #if UIP_BROADCAST | |
| //DEBUG_PRINTF( "UDP IP checksum 0x%04x\n", uip_ipchksum() ); | |
| if( BUF->proto == UIP_PROTO_UDP && uip_ipaddr_cmp(&BUF->destipaddr, &uip_broadcast_addr) /*&& uip_ipchksum() == 0xffff*/ ) | |
| { | |
| goto udp_input; | |
| } | |
| #endif /* UIP_BROADCAST */ | |
| /* Check if the packet is destined for our IP address. */ | |
| #if !UIP_CONF_IPV6 | |
| if( !uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) ) | |
| { | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| goto drop; | |
| } | |
| #else /* UIP_CONF_IPV6 */ | |
| /* For IPv6, packet reception is a little trickier as we need to | |
| make sure that we listen to certain multicast addresses (all | |
| hosts multicast address, and the solicited-node multicast | |
| address) as well. However, we will cheat here and accept all | |
| multicast packets that are sent to the ff02::/16 addresses. */ | |
| if( !uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) && BUF->destipaddr.u16[ 0 ] != HTONS(0xff02) ) | |
| { | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| goto drop; | |
| } | |
| #endif /* UIP_CONF_IPV6 */ | |
| } | |
| #if !UIP_CONF_IPV6 | |
| if( uip_ipchksum() != 0xffff ) | |
| { | |
| /* Compute and check the IP header checksum. */ | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| UIP_STAT( ++uip_stat.ip.chkerr ); | |
| UIP_LOG( "ip: bad checksum." ); | |
| goto drop; | |
| } | |
| #endif /* UIP_CONF_IPV6 */ | |
| if( BUF->proto == UIP_PROTO_TCP ) | |
| { | |
| /* Check for TCP packet. If so, proceed with TCP input processing. */ | |
| goto tcp_input; | |
| } | |
| #if UIP_UDP | |
| if( BUF->proto == UIP_PROTO_UDP ) | |
| { | |
| goto udp_input; | |
| } | |
| #endif /* UIP_UDP */ | |
| #if !UIP_CONF_IPV6 | |
| /* ICMPv4 processing code follows. */ | |
| if( BUF->proto != UIP_PROTO_ICMP ) | |
| { | |
| /* We only allow ICMP packets from here. */ | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| UIP_STAT( ++uip_stat.ip.protoerr ); | |
| UIP_LOG( "ip: neither tcp nor icmp." ); | |
| goto drop; | |
| } | |
| #if UIP_PINGADDRCONF | |
| icmp_input : | |
| #endif /* UIP_PINGADDRCONF */ | |
| UIP_STAT( ++uip_stat.icmp.recv ); | |
| /* ICMP echo (i.e., ping) processing. This is simple, we only change | |
| the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP | |
| checksum before we return the packet. */ | |
| if( ICMPBUF->type != ICMP_ECHO ) | |
| { | |
| UIP_STAT( ++uip_stat.icmp.drop ); | |
| UIP_STAT( ++uip_stat.icmp.typeerr ); | |
| UIP_LOG( "icmp: not icmp echo." ); | |
| goto drop; | |
| } | |
| /* If we are configured to use ping IP address assignment, we use | |
| the destination IP address of this ping packet and assign it to | |
| ourself. */ | |
| #if UIP_PINGADDRCONF | |
| if( uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr) ) | |
| { | |
| uip_hostaddr = BUF->destipaddr; | |
| } | |
| #endif /* UIP_PINGADDRCONF */ | |
| ICMPBUF->type = ICMP_ECHO_REPLY; | |
| if( ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8)) ) | |
| { | |
| ICMPBUF->icmpchksum += HTONS( ICMP_ECHO << 8 ) + 1; | |
| } | |
| else | |
| { | |
| ICMPBUF->icmpchksum += HTONS( ICMP_ECHO << 8 ); | |
| } | |
| /* Swap IP addresses. */ | |
| uip_ipaddr_copy( &BUF->destipaddr, &BUF->srcipaddr ); | |
| uip_ipaddr_copy( &BUF->srcipaddr, &uip_hostaddr ); | |
| UIP_STAT( ++uip_stat.icmp.sent ); | |
| BUF->ttl = UIP_TTL; | |
| goto ip_send_nolen; | |
| /* End of IPv4 input header processing code. */ | |
| #else /* !UIP_CONF_IPV6 */ | |
| /* This is IPv6 ICMPv6 processing code. */ | |
| //DEBUG_PRINTF( "icmp6_input: length %d\n", uip_len ); | |
| if( BUF->proto != UIP_PROTO_ICMP6 ) | |
| { | |
| /* We only allow ICMPv6 packets from here. */ | |
| UIP_STAT( ++uip_stat.ip.drop ); | |
| UIP_STAT( ++uip_stat.ip.protoerr ); | |
| UIP_LOG( "ip: neither tcp nor icmp6." ); | |
| goto drop; | |
| } | |
| UIP_STAT( ++uip_stat.icmp.recv ); | |
| /* If we get a neighbor solicitation for our address we should send | |
| a neighbor advertisement message back. */ | |
| if( ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION ) | |
| { | |
| if( uip_ipaddr_cmp(&ICMPBUF->icmp6data, &uip_hostaddr) ) | |
| { | |
| if( ICMPBUF->options[ 0 ] == ICMP6_OPTION_SOURCE_LINK_ADDRESS ) | |
| { | |
| /* Save the sender's address in our neighbor list. */ | |
| uip_neighbor_add( &ICMPBUF->srcipaddr, &(ICMPBUF->options[ 2 ]) ); | |
| } | |
| /* We should now send a neighbor advertisement back to where the | |
| neighbor solicication came from. */ | |
| ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT; | |
| ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */ | |
| ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0; | |
| uip_ipaddr_copy( &ICMPBUF->destipaddr, &ICMPBUF->srcipaddr ); | |
| uip_ipaddr_copy( &ICMPBUF->srcipaddr, &uip_hostaddr ); | |
| ICMPBUF->options[ 0 ] = ICMP6_OPTION_TARGET_LINK_ADDRESS; | |
| ICMPBUF->options[ 1 ] = 1; /* Options length, 1 = 8 bytes. */ | |
| memcpy( &(ICMPBUF->options[ 2 ]), &uip_ethaddr, sizeof(uip_ethaddr) ); | |
| ICMPBUF->icmpchksum = 0; | |
| ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | |
| goto send; | |
| } | |
| goto drop; | |
| } | |
| else if( ICMPBUF->type == ICMP6_ECHO ) | |
| { | |
| /* ICMP echo (i.e., ping) processing. This is simple, we only | |
| change the ICMP type from ECHO to ECHO_REPLY and update the | |
| ICMP checksum before we return the packet. */ | |
| ICMPBUF->type = ICMP6_ECHO_REPLY; | |
| uip_ipaddr_copy( &BUF->destipaddr, &BUF->srcipaddr ); | |
| uip_ipaddr_copy( &BUF->srcipaddr, &uip_hostaddr ); | |
| ICMPBUF->icmpchksum = 0; | |
| ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | |
| UIP_STAT( ++uip_stat.icmp.sent ); | |
| goto send; | |
| } | |
| else | |
| { | |
| //DEBUG_PRINTF( "Unknown icmp6 message type %d\n", ICMPBUF->type ); | |
| UIP_STAT( ++uip_stat.icmp.drop ); | |
| UIP_STAT( ++uip_stat.icmp.typeerr ); | |
| UIP_LOG( "icmp: unknown ICMP message." ); | |
| goto drop; | |
| } | |
| /* End of IPv6 ICMP processing. */ | |
| #endif /* !UIP_CONF_IPV6 */ | |
| #if UIP_UDP | |
| /* UDP input processing. */ | |
| udp_input : | |
| /* UDP processing is really just a hack. We don't do anything to the | |
| UDP/IP headers, but let the UDP application do all the hard | |
| work. If the application sets uip_slen, it has a packet to | |
| send. */ | |
| #if UIP_UDP_CHECKSUMS | |
| uip_len = uip_len - UIP_IPUDPH_LEN; | |
| uip_appdata = &uip_buf[ UIP_LLH_LEN + UIP_IPUDPH_LEN ]; | |
| if( UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff ) | |
| { | |
| UIP_STAT( ++uip_stat.udp.drop ); | |
| UIP_STAT( ++uip_stat.udp.chkerr ); | |
| UIP_LOG( "udp: bad checksum." ); | |
| goto drop; | |
| } | |
| #else /* UIP_UDP_CHECKSUMS */ | |
| uip_len = uip_len - UIP_IPUDPH_LEN; | |
| #endif /* UIP_UDP_CHECKSUMS */ | |
| /* Demultiplex this UDP packet between the UDP "connections". */ | |
| for( uip_udp_conn = &uip_udp_conns[ 0 ]; uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS]; ++uip_udp_conn ) | |
| { | |
| /* If the local UDP port is non-zero, the connection is considered | |
| to be used. If so, the local port number is checked against the | |
| destination port number in the received packet. If the two port | |
| numbers match, the remote port number is checked if the | |
| connection is bound to a remote port. Finally, if the | |
| connection is bound to a remote IP address, the source IP | |
| address of the packet is checked. */ | |
| if | |
| ( | |
| uip_udp_conn->lport != 0 && | |
| UDPBUF->destport == uip_udp_conn->lport && | |
| (uip_udp_conn->rport == 0 || UDPBUF->srcport == uip_udp_conn->rport) && | |
| ( | |
| uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_all_zeroes_addr) || | |
| uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_broadcast_addr) || | |
| uip_ipaddr_cmp(&BUF->srcipaddr, &uip_udp_conn->ripaddr) | |
| ) | |
| ) | |
| { | |
| goto udp_found; | |
| } | |
| } | |
| UIP_LOG( "udp: no matching connection found" ); | |
| #if UIP_CONF_ICMP_DEST_UNREACH && !UIP_CONF_IPV6 | |
| /* Copy fields from packet header into payload of this ICMP packet. */ | |
| memcpy( &(ICMPBUF->payload[ 0 ]), ICMPBUF, UIP_IPH_LEN + 8 ); | |
| /* Set the ICMP type and code. */ | |
| ICMPBUF->type = ICMP_DEST_UNREACHABLE; | |
| ICMPBUF->icode = ICMP_PORT_UNREACHABLE; | |
| /* Calculate the ICMP checksum. */ | |
| ICMPBUF->icmpchksum = 0; | |
| ICMPBUF->icmpchksum = ~uip_chksum( ( u16_t * ) &(ICMPBUF->type), 36 ); | |
| /* Set the IP destination address to be the source address of the | |
| original packet. */ | |
| uip_ipaddr_copy( &BUF->destipaddr, &BUF->srcipaddr ); | |
| /* Set our IP address as the source address. */ | |
| uip_ipaddr_copy( &BUF->srcipaddr, &uip_hostaddr ); | |
| /* The size of the ICMP destination unreachable packet is 36 + the | |
| size of the IP header (20) = 56. */ | |
| uip_len = 36 + UIP_IPH_LEN; | |
| ICMPBUF->len[ 0 ] = 0; | |
| ICMPBUF->len[ 1 ] = ( u8_t ) uip_len; | |
| ICMPBUF->ttl = UIP_TTL; | |
| ICMPBUF->proto = UIP_PROTO_ICMP; | |
| goto ip_send_nolen; | |
| #else /* UIP_CONF_ICMP_DEST_UNREACH */ | |
| goto drop; | |
| #endif /* UIP_CONF_ICMP_DEST_UNREACH */ | |
| udp_found : uip_conn = NULL; | |
| uip_flags = UIP_NEWDATA; | |
| uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | |
| uip_slen = 0; | |
| UIP_UDP_APPCALL(); | |
| udp_send: | |
| if( uip_slen == 0 ) | |
| { | |
| goto drop; | |
| } | |
| uip_len = uip_slen + UIP_IPUDPH_LEN; | |
| #if UIP_CONF_IPV6 | |
| /* For IPv6, the IP length field does not include the IPv6 IP header | |
| length. */ | |
| BUF->len[ 0 ] = ( (uip_len - UIP_IPH_LEN) >> 8 ); | |
| BUF->len[ 1 ] = ( (uip_len - UIP_IPH_LEN) & 0xff ); | |
| #else /* UIP_CONF_IPV6 */ | |
| BUF->len[ 0 ] = ( uip_len >> 8 ); | |
| BUF->len[ 1 ] = ( uip_len & 0xff ); | |
| #endif /* UIP_CONF_IPV6 */ | |
| BUF->ttl = uip_udp_conn->ttl; | |
| BUF->proto = UIP_PROTO_UDP; | |
| UDPBUF->udplen = HTONS( uip_slen + UIP_UDPH_LEN ); | |
| UDPBUF->udpchksum = 0; | |
| BUF->srcport = uip_udp_conn->lport; | |
| BUF->destport = uip_udp_conn->rport; | |
| uip_ipaddr_copy( &BUF->srcipaddr, &uip_hostaddr ); | |
| uip_ipaddr_copy( &BUF->destipaddr, &uip_udp_conn->ripaddr ); | |
| uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN]; | |
| #if UIP_UDP_CHECKSUMS | |
| /* Calculate UDP checksum. */ | |
| UDPBUF->udpchksum = ~( uip_udpchksum() ); | |
| if( UDPBUF->udpchksum == 0 ) | |
| { | |
| UDPBUF->udpchksum = 0xffff; | |
| } | |
| #endif /* UIP_UDP_CHECKSUMS */ | |
| goto ip_send_nolen; | |
| #endif /* UIP_UDP */ | |
| /* TCP input processing. */ | |
| tcp_input : UIP_STAT( ++uip_stat.tcp.recv ); | |
| /* Start of TCP input header processing code. */ | |
| if( uip_tcpchksum() != 0xffff ) | |
| { | |
| /* Compute and check the TCP checksum. */ | |
| UIP_STAT( ++uip_stat.tcp.drop ); | |
| UIP_STAT( ++uip_stat.tcp.chkerr ); | |
| UIP_LOG( "tcp: bad checksum." ); | |
| goto drop; | |
| } | |
| /* Demultiplex this segment. */ | |
| /* First check any active connections. */ | |
| for( uip_connr = &uip_conns[ 0 ]; uip_connr <= &uip_conns[UIP_CONNS - 1]; ++uip_connr ) | |
| { | |
| if | |
| ( | |
| uip_connr->tcpstateflags != UIP_CLOSED && | |
| BUF->destport == uip_connr->lport && | |
| BUF->srcport == uip_connr->rport && | |
| uip_ipaddr_cmp(&BUF->srcipaddr, &uip_connr->ripaddr) | |
| ) | |
| { | |
| goto found; | |
| } | |
| } | |
| /* If we didn't find and active connection that expected the packet, | |
| either this packet is an old duplicate, or this is a SYN packet | |
| destined for a connection in LISTEN. If the SYN flag isn't set, | |
| it is an old packet and we send a RST. */ | |
| if( (BUF->flags & TCP_CTL) != TCP_SYN ) | |
| { | |
| goto reset; | |
| } | |
| tmp16 = BUF->destport; | |
| /* Next, check listening connections. */ | |
| for( c = 0; c < UIP_LISTENPORTS; ++c ) | |
| { | |
| if( tmp16 == uip_listenports[ c ] ) | |
| { | |
| goto found_listen; | |
| } | |
| } | |
| /* No matching connection found, so we send a RST packet. */ | |
| UIP_STAT( ++uip_stat.tcp.synrst ); | |
| reset: | |
| /* We do not send resets in response to resets. */ | |
| if( BUF->flags & TCP_RST ) | |
| { | |
| goto drop; | |
| } | |
| UIP_STAT( ++uip_stat.tcp.rst ); | |
| BUF->flags = TCP_RST | TCP_ACK; | |
| uip_len = UIP_IPTCPH_LEN; | |
| BUF->tcpoffset = 5 << 4; | |
| /* Flip the seqno and ackno fields in the TCP header. */ | |
| c = BUF->seqno[ 3 ]; | |
| BUF->seqno[ 3 ] = BUF->ackno[ 3 ]; | |
| BUF->ackno[ 3 ] = c; | |
| c = BUF->seqno[ 2 ]; | |
| BUF->seqno[ 2 ] = BUF->ackno[ 2 ]; | |
| BUF->ackno[ 2 ] = c; | |
| c = BUF->seqno[ 1 ]; | |
| BUF->seqno[ 1 ] = BUF->ackno[ 1 ]; | |
| BUF->ackno[ 1 ] = c; | |
| c = BUF->seqno[ 0 ]; | |
| BUF->seqno[ 0 ] = BUF->ackno[ 0 ]; | |
| BUF->ackno[ 0 ] = c; | |
| /* We also have to increase the sequence number we are | |
| acknowledging. If the least significant byte overflowed, we need | |
| to propagate the carry to the other bytes as well. */ | |
| if( ++BUF->ackno[ 3 ] == 0 ) | |
| { | |
| if( ++BUF->ackno[ 2 ] == 0 ) | |
| { | |
| if( ++BUF->ackno[ 1 ] == 0 ) | |
| { | |
| ++BUF->ackno[ 0 ]; | |
| } | |
| } | |
| } | |
| /* Swap port numbers. */ | |
| tmp16 = BUF->srcport; | |
| BUF->srcport = BUF->destport; | |
| BUF->destport = tmp16; | |
| /* Swap IP addresses. */ | |
| uip_ipaddr_copy( &BUF->destipaddr, &BUF->srcipaddr ); | |
| uip_ipaddr_copy( &BUF->srcipaddr, &uip_hostaddr ); | |
| /* And send out the RST packet! */ | |
| goto tcp_send_noconn; | |
| /* This label will be jumped to if we matched the incoming packet | |
| with a connection in LISTEN. In that case, we should create a new | |
| connection and send a SYNACK in return. */ | |
| found_listen: | |
| /* First we check if there are any connections avaliable. Unused | |
| connections are kept in the same table as used connections, but | |
| unused ones have the tcpstate set to CLOSED. Also, connections in | |
| TIME_WAIT are kept track of and we'll use the oldest one if no | |
| CLOSED connections are found. Thanks to Eddie C. Dost for a very | |
| nice algorithm for the TIME_WAIT search. */ | |
| uip_connr = 0; | |
| for( c = 0; c < UIP_CONNS; ++c ) | |
| { | |
| if( uip_conns[ c ].tcpstateflags == UIP_CLOSED ) | |
| { | |
| uip_connr = &uip_conns[ c ]; | |
| break; | |
| } | |
| if( uip_conns[ c ].tcpstateflags == UIP_TIME_WAIT ) | |
| { | |
| if( uip_connr == 0 || uip_conns[ c ].timer > uip_connr->timer ) | |
| { | |
| uip_connr = &uip_conns[ c ]; | |
| } | |
| } | |
| } | |
| if( uip_connr == 0 ) | |
| { | |
| /* All connections are used already, we drop packet and hope that | |
| the remote end will retransmit the packet at a time when we | |
| have more spare connections. */ | |
| UIP_STAT( ++uip_stat.tcp.syndrop ); | |
| UIP_LOG( "tcp: found no unused connections." ); | |
| goto drop; | |
| } | |
| uip_conn = uip_connr; | |
| /* Fill in the necessary fields for the new connection. */ | |
| uip_connr->rto = uip_connr->timer = UIP_RTO; | |
| uip_connr->sa = 0; | |
| uip_connr->sv = 4; | |
| uip_connr->nrtx = 0; | |
| uip_connr->lport = BUF->destport; | |
| uip_connr->rport = BUF->srcport; | |
| uip_ipaddr_copy( &uip_connr->ripaddr, &BUF->srcipaddr ); | |
| uip_connr->tcpstateflags = UIP_SYN_RCVD; | |
| uip_connr->snd_nxt[ 0 ] = iss[ 0 ]; | |
| uip_connr->snd_nxt[ 1 ] = iss[ 1 ]; | |
| uip_connr->snd_nxt[ 2 ] = iss[ 2 ]; | |
| uip_connr->snd_nxt[ 3 ] = iss[ 3 ]; | |
| uip_connr->len = 1; | |
| /* rcv_nxt should be the seqno from the incoming packet + 1. */ | |
| uip_connr->rcv_nxt[ 3 ] = BUF->seqno[ 3 ]; | |
| uip_connr->rcv_nxt[ 2 ] = BUF->seqno[ 2 ]; | |
| uip_connr->rcv_nxt[ 1 ] = BUF->seqno[ 1 ]; | |
| uip_connr->rcv_nxt[ 0 ] = BUF->seqno[ 0 ]; | |
| uip_add_rcv_nxt( 1 ); | |
| /* Parse the TCP MSS option, if present. */ | |
| if( (BUF->tcpoffset & 0xf0) > 0x50 ) | |
| { | |
| for( c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2; ) | |
| { | |
| opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c]; | |
| if( opt == TCP_OPT_END ) | |
| { | |
| /* End of options. */ | |
| break; | |
| } | |
| else if( opt == TCP_OPT_NOOP ) | |
| { | |
| ++c; | |
| /* NOP option. */ | |
| } | |
| else if( opt == TCP_OPT_MSS && uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN ) | |
| { | |
| /* An MSS option with the right option length. */ | |
| tmp16 = ( (u16_t) uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8 ) | ( u16_t ) uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c]; | |
| uip_connr->initialmss = uip_connr->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16; | |
| /* And we are done processing options. */ | |
| break; | |
| } | |
| else | |
| { | |
| /* All other options have a length field, so that we easily | |
| can skip past them. */ | |
| if( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0 ) | |
| { | |
| /* If the length field is zero, the options are malformed | |
| and we don't process them further. */ | |
| break; | |
| } | |
| c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | |
| } | |
| } | |
| } | |
| /* Our response will be a SYNACK. */ | |
| #if UIP_ACTIVE_OPEN | |
| tcp_send_synack : BUF->flags = TCP_ACK; | |
| tcp_send_syn: | |
| BUF->flags |= TCP_SYN; | |
| #else /* UIP_ACTIVE_OPEN */ | |
| tcp_send_synack : BUF->flags = TCP_SYN | TCP_ACK; | |
| #endif /* UIP_ACTIVE_OPEN */ | |
| /* We send out the TCP Maximum Segment Size option with our | |
| SYNACK. */ | |
| BUF->optdata[ 0 ] = TCP_OPT_MSS; | |
| BUF->optdata[ 1 ] = TCP_OPT_MSS_LEN; | |
| BUF->optdata[ 2 ] = ( UIP_TCP_MSS ) / 256; | |
| BUF->optdata[ 3 ] = ( UIP_TCP_MSS ) & 255; | |
| uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN; | |
| BUF->tcpoffset = ( (UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4 ) << 4; | |
| goto tcp_send; | |
| /* This label will be jumped to if we found an active connection. */ | |
| found: | |
| uip_conn = uip_connr; | |
| uip_flags = 0; | |
| /* We do a very naive form of TCP reset processing; we just accept | |
| any RST and kill our connection. We should in fact check if the | |
| sequence number of this reset is wihtin our advertised window | |
| before we accept the reset. */ | |
| if( BUF->flags & TCP_RST ) | |
| { | |
| uip_connr->tcpstateflags = UIP_CLOSED; | |
| UIP_LOG( "tcp: got reset, aborting connection." ); | |
| uip_flags = UIP_ABORT; | |
| UIP_APPCALL(); | |
| goto drop; | |
| } | |
| /* Calculate the length of the data, if the application has sent | |
| any data to us. */ | |
| c = ( BUF->tcpoffset >> 4 ) << 2; | |
| /* uip_len will contain the length of the actual TCP data. This is | |
| calculated by subtracing the length of the TCP header (in | |
| c) and the length of the IP header (20 bytes). */ | |
| uip_len = uip_len - c - UIP_IPH_LEN; | |
| /* First, check if the sequence number of the incoming packet is | |
| what we're expecting next. If not, we send out an ACK with the | |
| correct numbers in. */ | |
| if( !(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) && ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK))) ) | |
| { | |
| if | |
| ( | |
| (uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) && | |
| ( | |
| BUF->seqno[ 0 ] != uip_connr->rcv_nxt[ 0 ] || | |
| BUF->seqno[ 1 ] != uip_connr->rcv_nxt[ 1 ] || | |
| BUF->seqno[ 2 ] != uip_connr->rcv_nxt[ 2 ] || | |
| BUF->seqno[ 3 ] != uip_connr->rcv_nxt[ 3 ] | |
| ) | |
| ) | |
| { | |
| goto tcp_send_ack; | |
| } | |
| } | |
| /* Next, check if the incoming segment acknowledges any outstanding | |
| data. If so, we update the sequence number, reset the length of | |
| the outstanding data, calculate RTT estimations, and reset the | |
| retransmission timer. */ | |
| if( (BUF->flags & TCP_ACK) && uip_outstanding(uip_connr) ) | |
| { | |
| uip_add32( uip_connr->snd_nxt, uip_connr->len ); | |
| if | |
| ( | |
| BUF->ackno[ 0 ] == uip_acc32[ 0 ] && | |
| BUF->ackno[ 1 ] == uip_acc32[ 1 ] && | |
| BUF->ackno[ 2 ] == uip_acc32[ 2 ] && | |
| BUF->ackno[ 3 ] == uip_acc32[ 3 ] | |
| ) | |
| { | |
| /* Update sequence number. */ | |
| uip_connr->snd_nxt[ 0 ] = uip_acc32[ 0 ]; | |
| uip_connr->snd_nxt[ 1 ] = uip_acc32[ 1 ]; | |
| uip_connr->snd_nxt[ 2 ] = uip_acc32[ 2 ]; | |
| uip_connr->snd_nxt[ 3 ] = uip_acc32[ 3 ]; | |
| /* Do RTT estimation, unless we have done retransmissions. */ | |
| if( uip_connr->nrtx == 0 ) | |
| { | |
| signed char m; | |
| m = uip_connr->rto - uip_connr->timer; | |
| /* This is taken directly from VJs original code in his paper */ | |
| m = m - ( uip_connr->sa >> 3 ); | |
| uip_connr->sa += m; | |
| if( m < 0 ) | |
| { | |
| m = -m; | |
| } | |
| m = m - ( uip_connr->sv >> 2 ); | |
| uip_connr->sv += m; | |
| uip_connr->rto = ( uip_connr->sa >> 3 ) + uip_connr->sv; | |
| } | |
| /* Set the acknowledged flag. */ | |
| uip_flags = UIP_ACKDATA; | |
| /* Reset the retransmission timer. */ | |
| uip_connr->timer = uip_connr->rto; | |
| /* Reset length of outstanding data. */ | |
| uip_connr->len = 0; | |
| } | |
| } | |
| /* Do different things depending on in what state the connection is. */ | |
| switch( uip_connr->tcpstateflags & UIP_TS_MASK ) | |
| { | |
| /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not | |
| implemented, since we force the application to close when the | |
| peer sends a FIN (hence the application goes directly from | |
| ESTABLISHED to LAST_ACK). */ | |
| case UIP_SYN_RCVD: | |
| /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and | |
| we are waiting for an ACK that acknowledges the data we sent | |
| out the last time. Therefore, we want to have the UIP_ACKDATA | |
| flag set. If so, we enter the ESTABLISHED state. */ | |
| if( uip_flags & UIP_ACKDATA ) | |
| { | |
| uip_connr->tcpstateflags = UIP_ESTABLISHED; | |
| uip_flags = UIP_CONNECTED; | |
| uip_connr->len = 0; | |
| if( uip_len > 0 ) | |
| { | |
| uip_flags |= UIP_NEWDATA; | |
| uip_add_rcv_nxt( uip_len ); | |
| } | |
| uip_slen = 0; | |
| UIP_APPCALL(); | |
| goto appsend; | |
| } | |
| goto drop; | |
| #if UIP_ACTIVE_OPEN | |
| case UIP_SYN_SENT: | |
| /* In SYN_SENT, we wait for a SYNACK that is sent in response to | |
| our SYN. The rcv_nxt is set to sequence number in the SYNACK | |
| plus one, and we send an ACK. We move into the ESTABLISHED | |
| state. */ | |
| if( (uip_flags & UIP_ACKDATA) && (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK) ) | |
| { | |
| /* Parse the TCP MSS option, if present. */ | |
| if( (BUF->tcpoffset & 0xf0) > 0x50 ) | |
| { | |
| for( c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2; ) | |
| { | |
| opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c]; | |
| if( opt == TCP_OPT_END ) | |
| { | |
| /* End of options. */ | |
| break; | |
| } | |
| else if( opt == TCP_OPT_NOOP ) | |
| { | |
| ++c; | |
| /* NOP option. */ | |
| } | |
| else if( opt == TCP_OPT_MSS && uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN ) | |
| { | |
| /* An MSS option with the right option length. */ | |
| tmp16 = ( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8 ) | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c]; | |
| uip_connr->initialmss = uip_connr->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16; | |
| /* And we are done processing options. */ | |
| break; | |
| } | |
| else | |
| { | |
| /* All other options have a length field, so that we easily | |
| can skip past them. */ | |
| if( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0 ) | |
| { | |
| /* If the length field is zero, the options are malformed | |
| and we don't process them further. */ | |
| break; | |
| } | |
| c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | |
| } | |
| } | |
| } | |
| uip_connr->tcpstateflags = UIP_ESTABLISHED; | |
| uip_connr->rcv_nxt[ 0 ] = BUF->seqno[ 0 ]; | |
| uip_connr->rcv_nxt[ 1 ] = BUF->seqno[ 1 ]; | |
| uip_connr->rcv_nxt[ 2 ] = BUF->seqno[ 2 ]; | |
| uip_connr->rcv_nxt[ 3 ] = BUF->seqno[ 3 ]; | |
| uip_add_rcv_nxt( 1 ); | |
| uip_flags = UIP_CONNECTED | UIP_NEWDATA; | |
| uip_connr->len = 0; | |
| uip_len = 0; | |
| uip_slen = 0; | |
| UIP_APPCALL(); | |
| goto appsend; | |
| } | |
| /* Inform the application that the connection failed */ | |
| uip_flags = UIP_ABORT; | |
| UIP_APPCALL(); | |
| /* The connection is closed after we send the RST */ | |
| uip_conn->tcpstateflags = UIP_CLOSED; | |
| goto reset; | |
| #endif /* UIP_ACTIVE_OPEN */ | |
| case UIP_ESTABLISHED: | |
| /* In the ESTABLISHED state, we call upon the application to feed | |
| data into the uip_buf. If the UIP_ACKDATA flag is set, the | |
| application should put new data into the buffer, otherwise we are | |
| retransmitting an old segment, and the application should put that | |
| data into the buffer. | |
| If the incoming packet is a FIN, we should close the connection on | |
| this side as well, and we send out a FIN and enter the LAST_ACK | |
| state. We require that there is no outstanding data; otherwise the | |
| sequence numbers will be screwed up. */ | |
| if( BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED) ) | |
| { | |
| if( uip_outstanding(uip_connr) ) | |
| { | |
| goto drop; | |
| } | |
| uip_add_rcv_nxt( 1 + uip_len ); | |
| uip_flags |= UIP_CLOSE; | |
| if( uip_len > 0 ) | |
| { | |
| uip_flags |= UIP_NEWDATA; | |
| } | |
| UIP_APPCALL(); | |
| uip_connr->len = 1; | |
| uip_connr->tcpstateflags = UIP_LAST_ACK; | |
| uip_connr->nrtx = 0; | |
| tcp_send_finack: | |
| BUF->flags = TCP_FIN | TCP_ACK; | |
| goto tcp_send_nodata; | |
| } | |
| /* Check the URG flag. If this is set, the segment carries urgent | |
| data that we must pass to the application. */ | |
| if( (BUF->flags & TCP_URG) != 0 ) | |
| { | |
| #if UIP_URGDATA > 0 | |
| uip_urglen = ( BUF->urgp[ 0 ] << 8 ) | BUF->urgp[ 1 ]; | |
| if( uip_urglen > uip_len ) | |
| { | |
| /* There is more urgent data in the next segment to come. */ | |
| uip_urglen = uip_len; | |
| } | |
| uip_add_rcv_nxt( uip_urglen ); | |
| uip_len -= uip_urglen; | |
| uip_urgdata = uip_appdata; | |
| uip_appdata += uip_urglen; | |
| } | |
| else | |
| { | |
| uip_urglen = 0; | |
| #else /* UIP_URGDATA > 0 */ | |
| uip_appdata = ( ( char * ) uip_appdata ) + ( (BUF->urgp[ 0 ] << 8) | BUF->urgp[ 1 ] ); | |
| uip_len -= ( BUF->urgp[ 0 ] << 8 ) | BUF->urgp[ 1 ]; | |
| #endif /* UIP_URGDATA > 0 */ | |
| } | |
| /* If uip_len > 0 we have TCP data in the packet, and we flag this | |
| by setting the UIP_NEWDATA flag and update the sequence number | |
| we acknowledge. If the application has stopped the dataflow | |
| using uip_stop(), we must not accept any data packets from the | |
| remote host. */ | |
| if( uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED) ) | |
| { | |
| uip_flags |= UIP_NEWDATA; | |
| uip_add_rcv_nxt( uip_len ); | |
| } | |
| /* Check if the available buffer space advertised by the other end | |
| is smaller than the initial MSS for this connection. If so, we | |
| set the current MSS to the window size to ensure that the | |
| application does not send more data than the other end can | |
| handle. | |
| If the remote host advertises a zero window, we set the MSS to | |
| the initial MSS so that the application will send an entire MSS | |
| of data. This data will not be acknowledged by the receiver, | |
| and the application will retransmit it. This is called the | |
| "persistent timer" and uses the retransmission mechanim. | |
| */ | |
| tmp16 = ( (u16_t) BUF->wnd[ 0 ] << 8 ) + ( u16_t ) BUF->wnd[ 1 ]; | |
| if( tmp16 > uip_connr->initialmss || tmp16 == 0 ) | |
| { | |
| tmp16 = uip_connr->initialmss; | |
| } | |
| uip_connr->mss = tmp16; | |
| /* If this packet constitutes an ACK for outstanding data (flagged | |
| by the UIP_ACKDATA flag, we should call the application since it | |
| might want to send more data. If the incoming packet had data | |
| from the peer (as flagged by the UIP_NEWDATA flag), the | |
| application must also be notified. | |
| When the application is called, the global variable uip_len | |
| contains the length of the incoming data. The application can | |
| access the incoming data through the global pointer | |
| uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN | |
| bytes into the uip_buf array. | |
| If the application wishes to send any data, this data should be | |
| put into the uip_appdata and the length of the data should be | |
| put into uip_len. If the application don't have any data to | |
| send, uip_len must be set to 0. */ | |
| if( uip_flags & (UIP_NEWDATA | UIP_ACKDATA) ) | |
| { | |
| uip_slen = 0; | |
| UIP_APPCALL(); | |
| appsend: | |
| if( uip_flags & UIP_ABORT ) | |
| { | |
| uip_slen = 0; | |
| uip_connr->tcpstateflags = UIP_CLOSED; | |
| BUF->flags = TCP_RST | TCP_ACK; | |
| goto tcp_send_nodata; | |
| } | |
| if( uip_flags & UIP_CLOSE ) | |
| { | |
| uip_slen = 0; | |
| uip_connr->len = 1; | |
| uip_connr->tcpstateflags = UIP_FIN_WAIT_1; | |
| uip_connr->nrtx = 0; | |
| BUF->flags = TCP_FIN | TCP_ACK; | |
| goto tcp_send_nodata; | |
| } | |
| /* If uip_slen > 0, the application has data to be sent. */ | |
| if( uip_slen > 0 ) | |
| { | |
| /* If the connection has acknowledged data, the contents of | |
| the ->len variable should be discarded. */ | |
| if( (uip_flags & UIP_ACKDATA) != 0 ) | |
| { | |
| uip_connr->len = 0; | |
| } | |
| /* If the ->len variable is non-zero the connection has | |
| already data in transit and cannot send anymore right | |
| now. */ | |
| if( uip_connr->len == 0 ) | |
| { | |
| /* The application cannot send more than what is allowed by | |
| the mss (the minumum of the MSS and the available | |
| window). */ | |
| if( uip_slen > uip_connr->mss ) | |
| { | |
| uip_slen = uip_connr->mss; | |
| } | |
| /* Remember how much data we send out now so that we know | |
| when everything has been acknowledged. */ | |
| uip_connr->len = uip_slen; | |
| } | |
| else | |
| { | |
| /* If the application already had unacknowledged data, we | |
| make sure that the application does not send (i.e., | |
| retransmit) out more than it previously sent out. */ | |
| uip_slen = uip_connr->len; | |
| } | |
| } | |
| uip_connr->nrtx = 0; | |
| apprexmit: | |
| uip_appdata = uip_sappdata; | |
| /* If the application has data to be sent, or if the incoming | |
| packet had new data in it, we must send out a packet. */ | |
| if( uip_slen > 0 && uip_connr->len > 0 ) | |
| { | |
| /* Add the length of the IP and TCP headers. */ | |
| uip_len = uip_connr->len + UIP_TCPIP_HLEN; | |
| /* We always set the ACK flag in response packets. */ | |
| BUF->flags = TCP_ACK | TCP_PSH; | |
| /* Send the packet. */ | |
| goto tcp_send_noopts; | |
| } | |
| /* If there is no data to send, just send out a pure ACK if | |
| there is newdata. */ | |
| if( uip_flags & UIP_NEWDATA ) | |
| { | |
| uip_len = UIP_TCPIP_HLEN; | |
| BUF->flags = TCP_ACK; | |
| goto tcp_send_noopts; | |
| } | |
| } | |
| goto drop; | |
| case UIP_LAST_ACK: | |
| /* We can close this connection if the peer has acknowledged our | |
| FIN. This is indicated by the UIP_ACKDATA flag. */ | |
| if( uip_flags & UIP_ACKDATA ) | |
| { | |
| uip_connr->tcpstateflags = UIP_CLOSED; | |
| uip_flags = UIP_CLOSE; | |
| UIP_APPCALL(); | |
| } | |
| break; | |
| case UIP_FIN_WAIT_1: | |
| /* The application has closed the connection, but the remote host | |
| hasn't closed its end yet. Thus we do nothing but wait for a | |
| FIN from the other side. */ | |
| if( uip_len > 0 ) | |
| { | |
| uip_add_rcv_nxt( uip_len ); | |
| } | |
| if( BUF->flags & TCP_FIN ) | |
| { | |
| if( uip_flags & UIP_ACKDATA ) | |
| { | |
| uip_connr->tcpstateflags = UIP_TIME_WAIT; | |
| uip_connr->timer = 0; | |
| uip_connr->len = 0; | |
| } | |
| else | |
| { | |
| uip_connr->tcpstateflags = UIP_CLOSING; | |
| } | |
| uip_add_rcv_nxt( 1 ); | |
| uip_flags = UIP_CLOSE; | |
| UIP_APPCALL(); | |
| goto tcp_send_ack; | |
| } | |
| else if( uip_flags & UIP_ACKDATA ) | |
| { | |
| uip_connr->tcpstateflags = UIP_FIN_WAIT_2; | |
| uip_connr->len = 0; | |
| goto drop; | |
| } | |
| if( uip_len > 0 ) | |
| { | |
| goto tcp_send_ack; | |
| } | |
| goto drop; | |
| case UIP_FIN_WAIT_2: | |
| if( uip_len > 0 ) | |
| { | |
| uip_add_rcv_nxt( uip_len ); | |
| } | |
| if( BUF->flags & TCP_FIN ) | |
| { | |
| uip_connr->tcpstateflags = UIP_TIME_WAIT; | |
| uip_connr->timer = 0; | |
| uip_add_rcv_nxt( 1 ); | |
| uip_flags = UIP_CLOSE; | |
| UIP_APPCALL(); | |
| goto tcp_send_ack; | |
| } | |
| if( uip_len > 0 ) | |
| { | |
| goto tcp_send_ack; | |
| } | |
| goto drop; | |
| case UIP_TIME_WAIT: | |
| goto tcp_send_ack; | |
| case UIP_CLOSING: | |
| if( uip_flags & UIP_ACKDATA ) | |
| { | |
| uip_connr->tcpstateflags = UIP_TIME_WAIT; | |
| uip_connr->timer = 0; | |
| } | |
| } | |
| goto drop; | |
| /* We jump here when we are ready to send the packet, and just want | |
| to set the appropriate TCP sequence numbers in the TCP header. */ | |
| tcp_send_ack: | |
| BUF->flags = TCP_ACK; | |
| tcp_send_nodata: | |
| uip_len = UIP_IPTCPH_LEN; | |
| tcp_send_noopts: | |
| BUF->tcpoffset = ( UIP_TCPH_LEN / 4 ) << 4; | |
| /* We're done with the input processing. We are now ready to send a | |
| reply. Our job is to fill in all the fields of the TCP and IP | |
| headers before calculating the checksum and finally send the | |
| packet. */ | |
| tcp_send: | |
| BUF->ackno[ 0 ] = uip_connr->rcv_nxt[ 0 ]; | |
| BUF->ackno[ 1 ] = uip_connr->rcv_nxt[ 1 ]; | |
| BUF->ackno[ 2 ] = uip_connr->rcv_nxt[ 2 ]; | |
| BUF->ackno[ 3 ] = uip_connr->rcv_nxt[ 3 ]; | |
| BUF->seqno[ 0 ] = uip_connr->snd_nxt[ 0 ]; | |
| BUF->seqno[ 1 ] = uip_connr->snd_nxt[ 1 ]; | |
| BUF->seqno[ 2 ] = uip_connr->snd_nxt[ 2 ]; | |
| BUF->seqno[ 3 ] = uip_connr->snd_nxt[ 3 ]; | |
| BUF->proto = UIP_PROTO_TCP; | |
| BUF->srcport = uip_connr->lport; | |
| BUF->destport = uip_connr->rport; | |
| uip_ipaddr_copy( &BUF->srcipaddr, &uip_hostaddr ); | |
| uip_ipaddr_copy( &BUF->destipaddr, &uip_connr->ripaddr ); | |
| if( uip_connr->tcpstateflags & UIP_STOPPED ) | |
| { | |
| /* If the connection has issued uip_stop(), we advertise a zero | |
| window so that the remote host will stop sending data. */ | |
| BUF->wnd[ 0 ] = BUF->wnd[ 1 ] = 0; | |
| } | |
| else | |
| { | |
| BUF->wnd[ 0 ] = ( (UIP_RECEIVE_WINDOW) >> 8 ); | |
| BUF->wnd[ 1 ] = ( (UIP_RECEIVE_WINDOW) & 0xff ); | |
| } | |
| tcp_send_noconn: | |
| BUF->ttl = UIP_TTL; | |
| #if UIP_CONF_IPV6 | |
| /* For IPv6, the IP length field does not include the IPv6 IP header | |
| length. */ | |
| BUF->len[ 0 ] = ( (uip_len - UIP_IPH_LEN) >> 8 ); | |
| BUF->len[ 1 ] = ( (uip_len - UIP_IPH_LEN) & 0xff ); | |
| #else /* UIP_CONF_IPV6 */ | |
| BUF->len[ 0 ] = ( uip_len >> 8 ); | |
| BUF->len[ 1 ] = ( uip_len & 0xff ); | |
| #endif /* UIP_CONF_IPV6 */ | |
| BUF->urgp[ 0 ] = BUF->urgp[ 1 ] = 0; | |
| /* Calculate TCP checksum. */ | |
| BUF->tcpchksum = 0; | |
| BUF->tcpchksum = ~( uip_tcpchksum() ); | |
| ip_send_nolen: | |
| #if UIP_CONF_IPV6 | |
| BUF->vtc = 0x60; | |
| BUF->tcflow = 0x00; | |
| BUF->flow = 0x00; | |
| #else /* UIP_CONF_IPV6 */ | |
| BUF->vhl = 0x45; | |
| BUF->tos = 0; | |
| BUF->ipoffset[ 0 ] = BUF->ipoffset[ 1 ] = 0; | |
| ++ipid; | |
| BUF->ipid[ 0 ] = ipid >> 8; | |
| BUF->ipid[ 1 ] = ipid & 0xff; | |
| /* Calculate IP checksum. */ | |
| BUF->ipchksum = 0; | |
| BUF->ipchksum = ~( uip_ipchksum() ); | |
| //DEBUG_PRINTF( "uip ip_send_nolen: chkecum 0x%04x\n", uip_ipchksum() ); | |
| #endif /* UIP_CONF_IPV6 */ | |
| UIP_STAT( ++uip_stat.tcp.sent ); | |
| #if UIP_CONF_IPV6 | |
| send : | |
| #endif /* UIP_CONF_IPV6 */ | |
| //DEBUG_PRINTF( "Sending packet with length %d (%d)\n", uip_len, (BUF->len[ 0 ] << 8) | BUF->len[ 1 ] ); | |
| UIP_STAT( ++uip_stat.ip.sent ); | |
| /* Return and let the caller do the actual transmission. */ | |
| uip_flags = 0; | |
| return; | |
| drop: | |
| uip_len = 0; | |
| uip_flags = 0; | |
| return; | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| u16_t htons( u16_t val ) | |
| { | |
| return HTONS( val ); | |
| } | |
| u32_t htonl( u32_t val ) | |
| { | |
| return HTONL( val ); | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| void uip_send( const void *data, int len ) | |
| { | |
| int copylen; | |
| #define MIN( a, b ) ( (a) < (b) ? (a) : (b) ) | |
| copylen = MIN( len, UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN - ( int ) | |
| (( char * ) uip_sappdata - ( char * ) &uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]) ); | |
| if( copylen > 0 ) | |
| { | |
| uip_slen = copylen; | |
| if( data != uip_sappdata ) | |
| { | |
| memcpy( uip_sappdata, (data), uip_slen ); | |
| } | |
| } | |
| } | |
| /*---------------------------------------------------------------------------*/ | |
| /** @} */ | |
| #endif /* UIP_CONF_IPV6 */ |