| /* | |
| FreeRTOS V8.0.1 - Copyright (C) 2014 Real Time Engineers Ltd. | |
| All rights reserved | |
| VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. | |
| *************************************************************************** | |
| * * | |
| * FreeRTOS provides completely free yet professionally developed, * | |
| * robust, strictly quality controlled, supported, and cross * | |
| * platform software that has become a de facto standard. * | |
| * * | |
| * Help yourself get started quickly and support the FreeRTOS * | |
| * project by purchasing a FreeRTOS tutorial book, reference * | |
| * manual, or both from: http://www.FreeRTOS.org/Documentation * | |
| * * | |
| * Thank you! * | |
| * * | |
| *************************************************************************** | |
| This file is part of the FreeRTOS distribution. | |
| FreeRTOS is free software; you can redistribute it and/or modify it under | |
| the terms of the GNU General Public License (version 2) as published by the | |
| Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception. | |
| >>! NOTE: The modification to the GPL is included to allow you to !<< | |
| >>! distribute a combined work that includes FreeRTOS without being !<< | |
| >>! obliged to provide the source code for proprietary components !<< | |
| >>! outside of the FreeRTOS kernel. !<< | |
| FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY | |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | |
| FOR A PARTICULAR PURPOSE. Full license text is available from the following | |
| link: http://www.freertos.org/a00114.html | |
| 1 tab == 4 spaces! | |
| *************************************************************************** | |
| * * | |
| * Having a problem? Start by reading the FAQ "My application does * | |
| * not run, what could be wrong?" * | |
| * * | |
| * http://www.FreeRTOS.org/FAQHelp.html * | |
| * * | |
| *************************************************************************** | |
| http://www.FreeRTOS.org - Documentation, books, training, latest versions, | |
| license and Real Time Engineers Ltd. contact details. | |
| http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, | |
| including FreeRTOS+Trace - an indispensable productivity tool, a DOS | |
| compatible FAT file system, and our tiny thread aware UDP/IP stack. | |
| http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High | |
| Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS | |
| licenses offer ticketed support, indemnification and middleware. | |
| http://www.SafeRTOS.com - High Integrity Systems also provide a safety | |
| engineered and independently SIL3 certified version for use in safety and | |
| mission critical applications that require provable dependability. | |
| 1 tab == 4 spaces! | |
| */ | |
| /* Standard includes. */ | |
| #include <stdlib.h> | |
| #include <string.h> | |
| /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining | |
| all the API functions to use the MPU wrappers. That should only be done when | |
| task.h is included from an application file. */ | |
| #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE | |
| /* FreeRTOS includes. */ | |
| #include "FreeRTOS.h" | |
| #include "task.h" | |
| #include "timers.h" | |
| #include "StackMacros.h" | |
| #include "static-allocator.h" | |
| /* Lint e961 and e750 are suppressed as a MISRA exception justified because the | |
| MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the | |
| header files above, but not in this file, in order to generate the correct | |
| privileged Vs unprivileged linkage and placement. */ | |
| #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */ | |
| #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) | |
| /* At the bottom of this file are two optional functions that can be used | |
| to generate human readable text from the raw data generated by the | |
| uxTaskGetSystemState() function. Note the formatting functions are provided | |
| for convenience only, and are NOT considered part of the kernel. */ | |
| #include <stdio.h> | |
| #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */ | |
| /* Sanity check the configuration. */ | |
| #if configUSE_TICKLESS_IDLE != 0 | |
| #if INCLUDE_vTaskSuspend != 1 | |
| #error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0 | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| #endif /* configUSE_TICKLESS_IDLE */ | |
| /* | |
| * Defines the size, in words, of the stack allocated to the idle task. | |
| */ | |
| #define tskIDLE_STACK_SIZE configMINIMAL_STACK_SIZE | |
| portSTACK_TYPE sIdleStack[tskIDLE_STACK_SIZE] configSYMBOL_SECTION(".stack"); | |
| #if( configUSE_PREEMPTION == 0 ) | |
| /* If the cooperative scheduler is being used then a yield should not be | |
| performed just because a higher priority task has been woken. */ | |
| #define taskYIELD_IF_USING_PREEMPTION() | |
| #else | |
| #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() | |
| #endif | |
| /* | |
| * Task control block. A task control block (TCB) is allocated for each task, | |
| * and stores task state information, including a pointer to the task's context | |
| * (the task's run time environment, including register values) | |
| */ | |
| typedef struct tskTaskControlBlock | |
| { | |
| volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */ | |
| #if ( portUSING_MPU_WRAPPERS == 1 ) | |
| xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */ | |
| #endif | |
| ListItem_t xGenericListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */ | |
| ListItem_t xEventListItem; /*< Used to reference a task from an event list. */ | |
| UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */ | |
| StackType_t *pxStack; /*< Points to the start of the stack. */ | |
| char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| #if ( portSTACK_GROWTH > 0 ) | |
| StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */ | |
| #endif | |
| #if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
| UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */ | |
| #endif | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */ | |
| UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */ | |
| #endif | |
| #if ( configUSE_MUTEXES == 1 ) | |
| UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */ | |
| #endif | |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
| TaskHookFunction_t pxTaskTag; | |
| #endif | |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
| uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */ | |
| #endif | |
| #if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
| /* Allocate a Newlib reent structure that is specific to this task. | |
| Note Newlib support has been included by popular demand, but is not | |
| used by the FreeRTOS maintainers themselves. FreeRTOS is not | |
| responsible for resulting newlib operation. User must be familiar with | |
| newlib and must provide system-wide implementations of the necessary | |
| stubs. Be warned that (at the time of writing) the current newlib design | |
| implements a system-wide malloc() that must be provided with locks. */ | |
| struct _reent xNewLib_reent; | |
| #endif | |
| } tskTCB; | |
| /* The old tskTCB name is maintained above then typedefed to the new TCB_t name | |
| below to enable the use of older kernel aware debuggers. */ | |
| typedef tskTCB TCB_t; | |
| #define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0])) | |
| static struct { | |
| static_pool_header_t pool_header; | |
| tskTCB pool[configMAX_NUM_TASKS]; | |
| } sTCBsPool configSYMBOL_SECTION(".noinit"); | |
| void xInitTCBs(void); | |
| void xInitTCBs(void) | |
| { | |
| poolInit( (static_pool_t*)&sTCBsPool, | |
| sizeof(sTCBsPool.pool[0]), | |
| ARRAY_SIZE(sTCBsPool.pool)); | |
| } | |
| /* | |
| * Some kernel aware debuggers require the data the debugger needs access to to | |
| * be global, rather than file scope. | |
| */ | |
| #ifdef portREMOVE_STATIC_QUALIFIER | |
| #define static | |
| #endif | |
| /*lint -e956 A manual analysis and inspection has been used to determine which | |
| static variables must be declared volatile. */ | |
| PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL; | |
| /* Lists for ready and blocked tasks. --------------------*/ | |
| PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */ | |
| PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */ | |
| PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ | |
| PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */ | |
| PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ | |
| PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */ | |
| #if ( INCLUDE_vTaskDelete == 1 ) | |
| PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */ | |
| PRIVILEGED_DATA static volatile UBaseType_t uxTasksDeleted = ( UBaseType_t ) 0U; | |
| #endif | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */ | |
| #endif | |
| #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) | |
| PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */ | |
| #endif | |
| /* Other file private variables. --------------------------------*/ | |
| PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U; | |
| PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U; | |
| PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY; | |
| PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE; | |
| PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U; | |
| PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE; | |
| PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0; | |
| PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U; | |
| PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = portMAX_DELAY; | |
| /* Context switches are held pending while the scheduler is suspended. Also, | |
| interrupts must not manipulate the xStateListItem of a TCB, or any of the | |
| lists the xStateListItem can be referenced from, if the scheduler is suspended. | |
| If an interrupt needs to unblock a task while the scheduler is suspended then it | |
| moves the task's event list item into the xPendingReadyList, ready for the | |
| kernel to move the task from the pending ready list into the real ready list | |
| when the scheduler is unsuspended. The pending ready list itself can only be | |
| accessed from a critical section. */ | |
| PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE; | |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
| PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */ | |
| PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */ | |
| #endif | |
| /*lint +e956 */ | |
| /* Debugging and trace facilities private variables and macros. ------------*/ | |
| /* | |
| * The value used to fill the stack of a task when the task is created. This | |
| * is used purely for checking the high water mark for tasks. | |
| */ | |
| #define tskSTACK_FILL_BYTE ( 0xa5U ) | |
| /* | |
| * Macros used by vListTask to indicate which state a task is in. | |
| */ | |
| #define tskBLOCKED_CHAR ( 'B' ) | |
| #define tskREADY_CHAR ( 'R' ) | |
| #define tskDELETED_CHAR ( 'D' ) | |
| #define tskSUSPENDED_CHAR ( 'S' ) | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) | |
| /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is | |
| performed in a generic way that is not optimised to any particular | |
| microcontroller architecture. */ | |
| /* uxTopReadyPriority holds the priority of the highest priority ready | |
| state task. */ | |
| #define taskRECORD_READY_PRIORITY( uxPriority ) \ | |
| { \ | |
| if( ( uxPriority ) > uxTopReadyPriority ) \ | |
| { \ | |
| uxTopReadyPriority = ( uxPriority ); \ | |
| } \ | |
| } /* taskRECORD_READY_PRIORITY */ | |
| /*-----------------------------------------------------------*/ | |
| #define taskSELECT_HIGHEST_PRIORITY_TASK() \ | |
| { \ | |
| /* Find the highest priority queue that contains ready tasks. */ \ | |
| while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) ) \ | |
| { \ | |
| configASSERT( uxTopReadyPriority ); \ | |
| --uxTopReadyPriority; \ | |
| } \ | |
| \ | |
| /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \ | |
| the same priority get an equal share of the processor time. */ \ | |
| listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) ); \ | |
| } /* taskSELECT_HIGHEST_PRIORITY_TASK */ | |
| /*-----------------------------------------------------------*/ | |
| /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as | |
| they are only required when a port optimised method of task selection is | |
| being used. */ | |
| #define taskRESET_READY_PRIORITY( uxPriority ) | |
| #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority ) | |
| #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ | |
| /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is | |
| performed in a way that is tailored to the particular microcontroller | |
| architecture being used. */ | |
| /* A port optimised version is provided. Call the port defined macros. */ | |
| #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority ) | |
| /*-----------------------------------------------------------*/ | |
| #define taskSELECT_HIGHEST_PRIORITY_TASK() \ | |
| { \ | |
| UBaseType_t uxTopPriority; \ | |
| \ | |
| /* Find the highest priority queue that contains ready tasks. */ \ | |
| portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \ | |
| configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \ | |
| listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ | |
| } /* taskSELECT_HIGHEST_PRIORITY_TASK() */ | |
| /*-----------------------------------------------------------*/ | |
| /* A port optimised version is provided, call it only if the TCB being reset | |
| is being referenced from a ready list. If it is referenced from a delayed | |
| or suspended list then it won't be in a ready list. */ | |
| #define taskRESET_READY_PRIORITY( uxPriority ) \ | |
| { \ | |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == 0 ) \ | |
| { \ | |
| portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \ | |
| } \ | |
| } | |
| #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ | |
| /*-----------------------------------------------------------*/ | |
| /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick | |
| count overflows. */ | |
| #define taskSWITCH_DELAYED_LISTS() \ | |
| { \ | |
| List_t *pxTemp; \ | |
| \ | |
| /* The delayed tasks list should be empty when the lists are switched. */ \ | |
| configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \ | |
| \ | |
| pxTemp = pxDelayedTaskList; \ | |
| pxDelayedTaskList = pxOverflowDelayedTaskList; \ | |
| pxOverflowDelayedTaskList = pxTemp; \ | |
| xNumOfOverflows++; \ | |
| prvResetNextTaskUnblockTime(); \ | |
| } | |
| /*-----------------------------------------------------------*/ | |
| /* | |
| * Place the task represented by pxTCB into the appropriate ready list for | |
| * the task. It is inserted at the end of the list. | |
| */ | |
| #define prvAddTaskToReadyList( pxTCB ) \ | |
| traceMOVED_TASK_TO_READY_STATE( pxTCB ) \ | |
| taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \ | |
| vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) ) | |
| /*-----------------------------------------------------------*/ | |
| /* | |
| * Several functions take an TaskHandle_t parameter that can optionally be NULL, | |
| * where NULL is used to indicate that the handle of the currently executing | |
| * task should be used in place of the parameter. This macro simply checks to | |
| * see if the parameter is NULL and returns a pointer to the appropriate TCB. | |
| */ | |
| #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) ) | |
| /* The item value of the event list item is normally used to hold the priority | |
| of the task to which it belongs (coded to allow it to be held in reverse | |
| priority order). However, it is occasionally borrowed for other purposes. It | |
| is important its value is not updated due to a task priority change while it is | |
| being used for another purpose. The following bit definition is used to inform | |
| the scheduler that the value should not be changed - in which case it is the | |
| responsibility of whichever module is using the value to ensure it gets set back | |
| to its original value when it is released. */ | |
| #if configUSE_16_BIT_TICKS == 1 | |
| #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U | |
| #else | |
| #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL | |
| #endif | |
| /* Callback function prototypes. --------------------------*/ | |
| #if configCHECK_FOR_STACK_OVERFLOW > 0 | |
| extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ); | |
| #endif | |
| #if configUSE_TICK_HOOK > 0 | |
| extern void vApplicationTickHook( void ); | |
| #endif | |
| /* File private functions. --------------------------------*/ | |
| /* | |
| * Utility to ready a TCB for a given task. Mainly just copies the parameters | |
| * into the TCB structure. | |
| */ | |
| static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| /** | |
| * Utility task that simply returns pdTRUE if the task referenced by xTask is | |
| * currently in the Suspended state, or pdFALSE if the task referenced by xTask | |
| * is in any other state. | |
| */ | |
| static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Utility to ready all the lists used by the scheduler. This is called | |
| * automatically upon the creation of the first task. | |
| */ | |
| static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION; | |
| /* | |
| * The idle task, which as all tasks is implemented as a never ending loop. | |
| * The idle task is automatically created and added to the ready lists upon | |
| * creation of the first user task. | |
| * | |
| * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific | |
| * language extensions. The equivalent prototype for this function is: | |
| * | |
| * void prvIdleTask( void *pvParameters ); | |
| * | |
| */ | |
| static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ); | |
| /* | |
| * Utility to free all memory allocated by the scheduler to hold a TCB, | |
| * including the stack pointed to by the TCB. | |
| * | |
| * This does not free memory allocated by the task itself (i.e. memory | |
| * allocated by calls to pvPortMalloc from within the tasks application code). | |
| */ | |
| #if ( INCLUDE_vTaskDelete == 1 ) | |
| static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION; | |
| #endif | |
| /* | |
| * Used only by the idle task. This checks to see if anything has been placed | |
| * in the list of tasks waiting to be deleted. If so the task is cleaned up | |
| * and its TCB deleted. | |
| */ | |
| static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION; | |
| /* | |
| * The currently executing task is entering the Blocked state. Add the task to | |
| * either the current or the overflow delayed task list. | |
| */ | |
| static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Allocates memory from the heap for a TCB and associated stack. Checks the | |
| * allocation was successful. | |
| */ | |
| static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Fills an TaskStatus_t structure with information on each task that is | |
| * referenced from the pxList list (which may be a ready list, a delayed list, | |
| * a suspended list, etc.). | |
| * | |
| * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM | |
| * NORMAL APPLICATION CODE. | |
| */ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION; | |
| #endif | |
| /* | |
| * When a task is created, the stack of the task is filled with a known value. | |
| * This function determines the 'high water mark' of the task stack by | |
| * determining how much of the stack remains at the original preset value. | |
| */ | |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
| static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION; | |
| #endif | |
| /* | |
| * Return the amount of time, in ticks, that will pass before the kernel will | |
| * next move a task from the Blocked state to the Running state. | |
| * | |
| * This conditional compilation should use inequality to 0, not equality to 1. | |
| * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user | |
| * defined low power mode implementations require configUSE_TICKLESS_IDLE to be | |
| * set to a value other than 1. | |
| */ | |
| #if ( configUSE_TICKLESS_IDLE != 0 ) | |
| static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION; | |
| #endif | |
| /* | |
| * Set xNextTaskUnblockTime to the time at which the next Blocked state task | |
| * will exit the Blocked state. | |
| */ | |
| static void prvResetNextTaskUnblockTime( void ); | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| { | |
| BaseType_t xReturn; | |
| TCB_t * pxNewTCB; | |
| configASSERT( pxTaskCode ); | |
| configASSERT( puxStackBuffer ); | |
| configASSERT( ( ( uxPriority & ( ~portPRIVILEGE_BIT ) ) < configMAX_PRIORITIES ) ); | |
| /* Allocate the memory required by the TCB and stack for the new task, | |
| checking that the allocation was successful. */ | |
| pxNewTCB = prvAllocateTCBAndStack( usStackDepth, puxStackBuffer ); | |
| if( pxNewTCB != NULL ) | |
| { | |
| StackType_t *pxTopOfStack; | |
| #if( portUSING_MPU_WRAPPERS == 1 ) | |
| /* Should the task be created in privileged mode? */ | |
| BaseType_t xRunPrivileged; | |
| if( ( uxPriority & portPRIVILEGE_BIT ) != 0U ) | |
| { | |
| xRunPrivileged = pdTRUE; | |
| } | |
| else | |
| { | |
| xRunPrivileged = pdFALSE; | |
| } | |
| uxPriority &= ~portPRIVILEGE_BIT; | |
| #endif /* portUSING_MPU_WRAPPERS == 1 */ | |
| /* Calculate the top of stack address. This depends on whether the | |
| stack grows from high memory to low (as per the 80x86) or vice versa. | |
| portSTACK_GROWTH is used to make the result positive or negative as | |
| required by the port. */ | |
| #if( portSTACK_GROWTH < 0 ) | |
| { | |
| pxTopOfStack = pxNewTCB->pxStack + ( usStackDepth - ( uint16_t ) 1 ); | |
| pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */ | |
| /* Check the alignment of the calculated top of stack is correct. */ | |
| configASSERT( ( ( ( uint32_t ) pxTopOfStack & ( uint32_t ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); | |
| } | |
| #else /* portSTACK_GROWTH */ | |
| { | |
| pxTopOfStack = pxNewTCB->pxStack; | |
| /* Check the alignment of the stack buffer is correct. */ | |
| configASSERT( ( ( ( uint32_t ) pxNewTCB->pxStack & ( uint32_t ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); | |
| /* If we want to use stack checking on architectures that use | |
| a positive stack growth direction then we also need to store the | |
| other extreme of the stack space. */ | |
| pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 ); | |
| } | |
| #endif /* portSTACK_GROWTH */ | |
| /* Setup the newly allocated TCB with the initial state of the task. */ | |
| prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority, xRegions, usStackDepth ); | |
| /* Initialize the TCB stack to look as if the task was already running, | |
| but had been interrupted by the scheduler. The return address is set | |
| to the start of the task function. Once the stack has been initialised | |
| the top of stack variable is updated. */ | |
| #if( portUSING_MPU_WRAPPERS == 1 ) | |
| { | |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged ); | |
| } | |
| #else /* portUSING_MPU_WRAPPERS */ | |
| { | |
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters ); | |
| } | |
| #endif /* portUSING_MPU_WRAPPERS */ | |
| if( ( void * ) pxCreatedTask != NULL ) | |
| { | |
| /* Pass the TCB out - in an anonymous way. The calling function/ | |
| task can use this as a handle to delete the task later if | |
| required.*/ | |
| *pxCreatedTask = ( TaskHandle_t ) pxNewTCB; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Ensure interrupts don't access the task lists while they are being | |
| updated. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| uxCurrentNumberOfTasks++; | |
| if( pxCurrentTCB == NULL ) | |
| { | |
| /* There are no other tasks, or all the other tasks are in | |
| the suspended state - make this the current task. */ | |
| pxCurrentTCB = pxNewTCB; | |
| if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) | |
| { | |
| /* This is the first task to be created so do the preliminary | |
| initialisation required. We will not recover if this call | |
| fails, but we will report the failure. */ | |
| prvInitialiseTaskLists(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* If the scheduler is not already running, make this task the | |
| current task if it is the highest priority task to be created | |
| so far. */ | |
| if( xSchedulerRunning == pdFALSE ) | |
| { | |
| if( pxCurrentTCB->uxPriority <= uxPriority ) | |
| { | |
| pxCurrentTCB = pxNewTCB; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| uxTaskNumber++; | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| { | |
| /* Add a counter into the TCB for tracing only. */ | |
| pxNewTCB->uxTCBNumber = uxTaskNumber; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| traceTASK_CREATE( pxNewTCB ); | |
| prvAddTaskToReadyList( pxNewTCB ); | |
| xReturn = pdPASS; | |
| portSETUP_TCB( pxNewTCB ); | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| else | |
| { | |
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; | |
| traceTASK_CREATE_FAILED(); | |
| } | |
| if( xReturn == pdPASS ) | |
| { | |
| if( xSchedulerRunning != pdFALSE ) | |
| { | |
| /* If the created task is of a higher priority than the current task | |
| then it should run now. */ | |
| if( pxCurrentTCB->uxPriority < uxPriority ) | |
| { | |
| taskYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskDelete == 1 ) | |
| void vTaskDelete( TaskHandle_t xTaskToDelete ) | |
| { | |
| TCB_t *pxTCB; | |
| taskENTER_CRITICAL(); | |
| { | |
| /* If null is passed in here then it is the calling task that is | |
| being deleted. */ | |
| pxTCB = prvGetTCBFromHandle( xTaskToDelete ); | |
| /* Remove task from the ready list and place in the termination list. | |
| This will stop the task from be scheduled. The idle task will check | |
| the termination list and free up any memory allocated by the | |
| scheduler for the TCB and stack. */ | |
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| taskRESET_READY_PRIORITY( pxTCB->uxPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Is the task waiting on an event also? */ | |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) | |
| { | |
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) ); | |
| /* Increment the ucTasksDeleted variable so the idle task knows | |
| there is a task that has been deleted and that it should therefore | |
| check the xTasksWaitingTermination list. */ | |
| ++uxTasksDeleted; | |
| /* Increment the uxTaskNumberVariable also so kernel aware debuggers | |
| can detect that the task lists need re-generating. */ | |
| uxTaskNumber++; | |
| traceTASK_DELETE( pxTCB ); | |
| } | |
| taskEXIT_CRITICAL(); | |
| /* Force a reschedule if it is the currently running task that has just | |
| been deleted. */ | |
| if( xSchedulerRunning != pdFALSE ) | |
| { | |
| if( pxTCB == pxCurrentTCB ) | |
| { | |
| configASSERT( uxSchedulerSuspended == 0 ); | |
| /* The pre-delete hook is primarily for the Windows simulator, | |
| in which Windows specific clean up operations are performed, | |
| after which it is not possible to yield away from this task - | |
| hence xYieldPending is used to latch that a context switch is | |
| required. */ | |
| portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending ); | |
| portYIELD_WITHIN_API(); | |
| } | |
| else | |
| { | |
| /* Reset the next expected unblock time in case it referred to | |
| the task that has just been deleted. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| prvResetNextTaskUnblockTime(); | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| } | |
| } | |
| #endif /* INCLUDE_vTaskDelete */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskDelayUntil == 1 ) | |
| void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) | |
| { | |
| TickType_t xTimeToWake; | |
| BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE; | |
| configASSERT( pxPreviousWakeTime ); | |
| configASSERT( ( xTimeIncrement > 0U ) ); | |
| configASSERT( uxSchedulerSuspended == 0 ); | |
| vTaskSuspendAll(); | |
| { | |
| /* Minor optimisation. The tick count cannot change in this | |
| block. */ | |
| const TickType_t xConstTickCount = xTickCount; | |
| /* Generate the tick time at which the task wants to wake. */ | |
| xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; | |
| if( xConstTickCount < *pxPreviousWakeTime ) | |
| { | |
| /* The tick count has overflowed since this function was | |
| lasted called. In this case the only time we should ever | |
| actually delay is if the wake time has also overflowed, | |
| and the wake time is greater than the tick time. When this | |
| is the case it is as if neither time had overflowed. */ | |
| if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) ) | |
| { | |
| xShouldDelay = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* The tick time has not overflowed. In this case we will | |
| delay if either the wake time has overflowed, and/or the | |
| tick time is less than the wake time. */ | |
| if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) ) | |
| { | |
| xShouldDelay = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| /* Update the wake time ready for the next call. */ | |
| *pxPreviousWakeTime = xTimeToWake; | |
| if( xShouldDelay != pdFALSE ) | |
| { | |
| traceTASK_DELAY_UNTIL(); | |
| /* Remove the task from the ready list before adding it to the | |
| blocked list as the same list item is used for both lists. */ | |
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| /* The current task must be in a ready list, so there is | |
| no need to check, and the port reset macro can be called | |
| directly. */ | |
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| xAlreadyYielded = xTaskResumeAll(); | |
| /* Force a reschedule if xTaskResumeAll has not already done so, we may | |
| have put ourselves to sleep. */ | |
| if( xAlreadyYielded == pdFALSE ) | |
| { | |
| portYIELD_WITHIN_API(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* INCLUDE_vTaskDelayUntil */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskDelay == 1 ) | |
| void vTaskDelay( const TickType_t xTicksToDelay ) | |
| { | |
| TickType_t xTimeToWake; | |
| BaseType_t xAlreadyYielded = pdFALSE; | |
| /* A delay time of zero just forces a reschedule. */ | |
| if( xTicksToDelay > ( TickType_t ) 0U ) | |
| { | |
| configASSERT( uxSchedulerSuspended == 0 ); | |
| vTaskSuspendAll(); | |
| { | |
| traceTASK_DELAY(); | |
| /* A task that is removed from the event list while the | |
| scheduler is suspended will not get placed in the ready | |
| list or removed from the blocked list until the scheduler | |
| is resumed. | |
| This task cannot be in an event list as it is the currently | |
| executing task. */ | |
| /* Calculate the time to wake - this may overflow but this is | |
| not a problem. */ | |
| xTimeToWake = xTickCount + xTicksToDelay; | |
| /* We must remove ourselves from the ready list before adding | |
| ourselves to the blocked list as the same list item is used for | |
| both lists. */ | |
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| /* The current task must be in a ready list, so there is | |
| no need to check, and the port reset macro can be called | |
| directly. */ | |
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
| } | |
| xAlreadyYielded = xTaskResumeAll(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Force a reschedule if xTaskResumeAll has not already done so, we may | |
| have put ourselves to sleep. */ | |
| if( xAlreadyYielded == pdFALSE ) | |
| { | |
| portYIELD_WITHIN_API(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* INCLUDE_vTaskDelay */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_eTaskGetState == 1 ) | |
| eTaskState eTaskGetState( TaskHandle_t xTask ) | |
| { | |
| eTaskState eReturn; | |
| List_t *pxStateList; | |
| const TCB_t * const pxTCB = ( TCB_t * ) xTask; | |
| configASSERT( pxTCB ); | |
| if( pxTCB == pxCurrentTCB ) | |
| { | |
| /* The task calling this function is querying its own state. */ | |
| eReturn = eRunning; | |
| } | |
| else | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xGenericListItem ) ); | |
| } | |
| taskEXIT_CRITICAL(); | |
| if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) ) | |
| { | |
| /* The task being queried is referenced from one of the Blocked | |
| lists. */ | |
| eReturn = eBlocked; | |
| } | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| else if( pxStateList == &xSuspendedTaskList ) | |
| { | |
| /* The task being queried is referenced from the suspended | |
| list. Is it genuinely suspended or is it block | |
| indefinitely? */ | |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ) | |
| { | |
| eReturn = eSuspended; | |
| } | |
| else | |
| { | |
| eReturn = eBlocked; | |
| } | |
| } | |
| #endif | |
| #if ( INCLUDE_vTaskDelete == 1 ) | |
| else if( pxStateList == &xTasksWaitingTermination ) | |
| { | |
| /* The task being queried is referenced from the deleted | |
| tasks list. */ | |
| eReturn = eDeleted; | |
| } | |
| #endif | |
| else | |
| { | |
| /* If the task is not in any other state, it must be in the | |
| Ready (including pending ready) state. */ | |
| eReturn = eReady; | |
| } | |
| } | |
| return eReturn; | |
| } | |
| #endif /* INCLUDE_eTaskGetState */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_uxTaskPriorityGet == 1 ) | |
| UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask ) | |
| { | |
| TCB_t *pxTCB; | |
| UBaseType_t uxReturn; | |
| taskENTER_CRITICAL(); | |
| { | |
| /* If null is passed in here then we are changing the | |
| priority of the calling function. */ | |
| pxTCB = prvGetTCBFromHandle( xTask ); | |
| uxReturn = pxTCB->uxPriority; | |
| } | |
| taskEXIT_CRITICAL(); | |
| return uxReturn; | |
| } | |
| #endif /* INCLUDE_uxTaskPriorityGet */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskPrioritySet == 1 ) | |
| void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) | |
| { | |
| TCB_t *pxTCB; | |
| UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry; | |
| BaseType_t xYieldRequired = pdFALSE; | |
| configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) ); | |
| /* Ensure the new priority is valid. */ | |
| if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) | |
| { | |
| uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| taskENTER_CRITICAL(); | |
| { | |
| /* If null is passed in here then it is the priority of the calling | |
| task that is being changed. */ | |
| pxTCB = prvGetTCBFromHandle( xTask ); | |
| traceTASK_PRIORITY_SET( pxTCB, uxNewPriority ); | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| uxCurrentBasePriority = pxTCB->uxBasePriority; | |
| } | |
| #else | |
| { | |
| uxCurrentBasePriority = pxTCB->uxPriority; | |
| } | |
| #endif | |
| if( uxCurrentBasePriority != uxNewPriority ) | |
| { | |
| /* The priority change may have readied a task of higher | |
| priority than the calling task. */ | |
| if( uxNewPriority > uxCurrentBasePriority ) | |
| { | |
| if( pxTCB != pxCurrentTCB ) | |
| { | |
| /* The priority of a task other than the currently | |
| running task is being raised. Is the priority being | |
| raised above that of the running task? */ | |
| if( uxNewPriority >= pxCurrentTCB->uxPriority ) | |
| { | |
| xYieldRequired = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* The priority of the running task is being raised, | |
| but the running task must already be the highest | |
| priority task able to run so no yield is required. */ | |
| } | |
| } | |
| else if( pxTCB == pxCurrentTCB ) | |
| { | |
| /* Setting the priority of the running task down means | |
| there may now be another task of higher priority that | |
| is ready to execute. */ | |
| xYieldRequired = pdTRUE; | |
| } | |
| else | |
| { | |
| /* Setting the priority of any other task down does not | |
| require a yield as the running task must be above the | |
| new priority of the task being modified. */ | |
| } | |
| /* Remember the ready list the task might be referenced from | |
| before its uxPriority member is changed so the | |
| taskRESET_READY_PRIORITY() macro can function correctly. */ | |
| uxPriorityUsedOnEntry = pxTCB->uxPriority; | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| /* Only change the priority being used if the task is not | |
| currently using an inherited priority. */ | |
| if( pxTCB->uxBasePriority == pxTCB->uxPriority ) | |
| { | |
| pxTCB->uxPriority = uxNewPriority; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* The base priority gets set whatever. */ | |
| pxTCB->uxBasePriority = uxNewPriority; | |
| } | |
| #else | |
| { | |
| pxTCB->uxPriority = uxNewPriority; | |
| } | |
| #endif | |
| /* Only reset the event list item value if the value is not | |
| being used for anything else. */ | |
| if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) | |
| { | |
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* If the task is in the blocked or suspended list we need do | |
| nothing more than change it's priority variable. However, if | |
| the task is in a ready list it needs to be removed and placed | |
| in the list appropriate to its new priority. */ | |
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE ) | |
| { | |
| /* The task is currently in its ready list - remove before adding | |
| it to it's new ready list. As we are in a critical section we | |
| can do this even if the scheduler is suspended. */ | |
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| /* It is known that the task is in its ready list so | |
| there is no need to check again and the port level | |
| reset macro can be called directly. */ | |
| portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| prvAddTaskToReadyList( pxTCB ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| if( xYieldRequired == pdTRUE ) | |
| { | |
| taskYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Remove compiler warning about unused variables when the port | |
| optimised task selection is not being used. */ | |
| ( void ) uxPriorityUsedOnEntry; | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| #endif /* INCLUDE_vTaskPrioritySet */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| void vTaskSuspend( TaskHandle_t xTaskToSuspend ) | |
| { | |
| TCB_t *pxTCB; | |
| taskENTER_CRITICAL(); | |
| { | |
| /* If null is passed in here then it is the running task that is | |
| being suspended. */ | |
| pxTCB = prvGetTCBFromHandle( xTaskToSuspend ); | |
| traceTASK_SUSPEND( pxTCB ); | |
| /* Remove task from the ready/delayed list and place in the | |
| suspended list. */ | |
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| taskRESET_READY_PRIORITY( pxTCB->uxPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Is the task waiting on an event also? */ | |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) | |
| { | |
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ); | |
| } | |
| taskEXIT_CRITICAL(); | |
| if( pxTCB == pxCurrentTCB ) | |
| { | |
| if( xSchedulerRunning != pdFALSE ) | |
| { | |
| /* The current task has just been suspended. */ | |
| configASSERT( uxSchedulerSuspended == 0 ); | |
| portYIELD_WITHIN_API(); | |
| } | |
| else | |
| { | |
| /* The scheduler is not running, but the task that was pointed | |
| to by pxCurrentTCB has just been suspended and pxCurrentTCB | |
| must be adjusted to point to a different task. */ | |
| if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) | |
| { | |
| /* No other tasks are ready, so set pxCurrentTCB back to | |
| NULL so when the next task is created pxCurrentTCB will | |
| be set to point to it no matter what its relative priority | |
| is. */ | |
| pxCurrentTCB = NULL; | |
| } | |
| else | |
| { | |
| vTaskSwitchContext(); | |
| } | |
| } | |
| } | |
| else | |
| { | |
| if( xSchedulerRunning != pdFALSE ) | |
| { | |
| /* A task other than the currently running task was suspended, | |
| reset the next expected unblock time in case it referred to the | |
| task that is now in the Suspended state. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| prvResetNextTaskUnblockTime(); | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) | |
| { | |
| BaseType_t xReturn = pdFALSE; | |
| const TCB_t * const pxTCB = ( TCB_t * ) xTask; | |
| /* Accesses xPendingReadyList so must be called from a critical | |
| section. */ | |
| /* It does not make sense to check if the calling task is suspended. */ | |
| configASSERT( xTask ); | |
| /* Is the task being resumed actually in the suspended list? */ | |
| if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE ) | |
| { | |
| /* Has the task already been resumed from within an ISR? */ | |
| if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE ) | |
| { | |
| /* Is it in the suspended list because it is in the Suspended | |
| state, or because is is blocked with no timeout? */ | |
| if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) | |
| { | |
| xReturn = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| return xReturn; | |
| } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| void vTaskResume( TaskHandle_t xTaskToResume ) | |
| { | |
| TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume; | |
| /* It does not make sense to resume the calling task. */ | |
| configASSERT( xTaskToResume ); | |
| /* The parameter cannot be NULL as it is impossible to resume the | |
| currently executing task. */ | |
| if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) ) | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE ) | |
| { | |
| traceTASK_RESUME( pxTCB ); | |
| /* As we are in a critical section we can access the ready | |
| lists even if the scheduler is suspended. */ | |
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
| prvAddTaskToReadyList( pxTCB ); | |
| /* We may have just resumed a higher priority task. */ | |
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
| { | |
| /* This yield may not cause the task just resumed to run, | |
| but will leave the lists in the correct state for the | |
| next yield. */ | |
| taskYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) | |
| BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) | |
| { | |
| BaseType_t xYieldRequired = pdFALSE; | |
| TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume; | |
| UBaseType_t uxSavedInterruptStatus; | |
| configASSERT( xTaskToResume ); | |
| /* RTOS ports that support interrupt nesting have the concept of a | |
| maximum system call (or maximum API call) interrupt priority. | |
| Interrupts that are above the maximum system call priority are keep | |
| permanently enabled, even when the RTOS kernel is in a critical section, | |
| but cannot make any calls to FreeRTOS API functions. If configASSERT() | |
| is defined in FreeRTOSConfig.h then | |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
| failure if a FreeRTOS API function is called from an interrupt that has | |
| been assigned a priority above the configured maximum system call | |
| priority. Only FreeRTOS functions that end in FromISR can be called | |
| from interrupts that have been assigned a priority at or (logically) | |
| below the maximum system call interrupt priority. FreeRTOS maintains a | |
| separate interrupt safe API to ensure interrupt entry is as fast and as | |
| simple as possible. More information (albeit Cortex-M specific) is | |
| provided on the following link: | |
| http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
| { | |
| if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE ) | |
| { | |
| traceTASK_RESUME_FROM_ISR( pxTCB ); | |
| /* Check the ready lists can be accessed. */ | |
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
| { | |
| /* Ready lists can be accessed so move the task from the | |
| suspended list to the ready list directly. */ | |
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
| { | |
| xYieldRequired = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
| prvAddTaskToReadyList( pxTCB ); | |
| } | |
| else | |
| { | |
| /* The delayed or ready lists cannot be accessed so the task | |
| is held in the pending ready list until the scheduler is | |
| unsuspended. */ | |
| vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
| return xYieldRequired; | |
| } | |
| #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */ | |
| /*-----------------------------------------------------------*/ | |
| void vTaskStartScheduler( void ) | |
| { | |
| BaseType_t xReturn; | |
| /* Add the idle task at the lowest priority. */ | |
| #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) | |
| { | |
| /* Create the idle task, storing its handle in xIdleTaskHandle so it can | |
| be returned by the xTaskGetIdleTaskHandle() function. */ | |
| xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle, (void*)&sIdleStack, NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ | |
| } | |
| #else | |
| { | |
| /* Create the idle task without storing its handle. */ | |
| xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL, (void*)&sIdleStack, NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ | |
| } | |
| #endif /* INCLUDE_xTaskGetIdleTaskHandle */ | |
| #if ( configUSE_TIMERS == 1 ) | |
| { | |
| if( xReturn == pdPASS ) | |
| { | |
| xReturn = xTimerCreateTimerTask(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_TIMERS */ | |
| if( xReturn == pdPASS ) | |
| { | |
| /* Interrupts are turned off here, to ensure a tick does not occur | |
| before or during the call to xPortStartScheduler(). The stacks of | |
| the created tasks contain a status word with interrupts switched on | |
| so interrupts will automatically get re-enabled when the first task | |
| starts to run. */ | |
| portDISABLE_INTERRUPTS(); | |
| #if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
| { | |
| /* Switch Newlib's _impure_ptr variable to point to the _reent | |
| structure specific to the task that will run first. */ | |
| _impure_ptr = &( pxCurrentTCB->xNewLib_reent ); | |
| } | |
| #endif /* configUSE_NEWLIB_REENTRANT */ | |
| xSchedulerRunning = pdTRUE; | |
| xTickCount = ( TickType_t ) 0U; | |
| /* If configGENERATE_RUN_TIME_STATS is defined then the following | |
| macro must be defined to configure the timer/counter used to generate | |
| the run time counter time base. */ | |
| portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); | |
| /* Setting up the timer tick is hardware specific and thus in the | |
| portable interface. */ | |
| if( xPortStartScheduler() != pdFALSE ) | |
| { | |
| /* Should not reach here as if the scheduler is running the | |
| function will not return. */ | |
| } | |
| else | |
| { | |
| /* Should only reach here if a task calls xTaskEndScheduler(). */ | |
| } | |
| } | |
| else | |
| { | |
| /* This line will only be reached if the kernel could not be started, | |
| because there was not enough FreeRTOS heap to create the idle task | |
| or the timer task. */ | |
| configASSERT( xReturn ); | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| void vTaskEndScheduler( void ) | |
| { | |
| /* Stop the scheduler interrupts and call the portable scheduler end | |
| routine so the original ISRs can be restored if necessary. The port | |
| layer must ensure interrupts enable bit is left in the correct state. */ | |
| portDISABLE_INTERRUPTS(); | |
| xSchedulerRunning = pdFALSE; | |
| vPortEndScheduler(); | |
| } | |
| /*----------------------------------------------------------*/ | |
| void vTaskSuspendAll( void ) | |
| { | |
| /* A critical section is not required as the variable is of type | |
| BaseType_t. Please read Richard Barry's reply in the following link to a | |
| post in the FreeRTOS support forum before reporting this as a bug! - | |
| http://goo.gl/wu4acr */ | |
| ++uxSchedulerSuspended; | |
| } | |
| /*----------------------------------------------------------*/ | |
| #if ( configUSE_TICKLESS_IDLE != 0 ) | |
| static TickType_t prvGetExpectedIdleTime( void ) | |
| { | |
| TickType_t xReturn; | |
| if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY ) | |
| { | |
| xReturn = 0; | |
| } | |
| else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 ) | |
| { | |
| /* There are other idle priority tasks in the ready state. If | |
| time slicing is used then the very next tick interrupt must be | |
| processed. */ | |
| xReturn = 0; | |
| } | |
| else | |
| { | |
| xReturn = xNextTaskUnblockTime - xTickCount; | |
| } | |
| return xReturn; | |
| } | |
| #endif /* configUSE_TICKLESS_IDLE */ | |
| /*----------------------------------------------------------*/ | |
| BaseType_t xTaskResumeAll( void ) | |
| { | |
| TCB_t *pxTCB; | |
| BaseType_t xAlreadyYielded = pdFALSE; | |
| /* If uxSchedulerSuspended is zero then this function does not match a | |
| previous call to vTaskSuspendAll(). */ | |
| configASSERT( uxSchedulerSuspended ); | |
| /* It is possible that an ISR caused a task to be removed from an event | |
| list while the scheduler was suspended. If this was the case then the | |
| removed task will have been added to the xPendingReadyList. Once the | |
| scheduler has been resumed it is safe to move all the pending ready | |
| tasks from this list into their appropriate ready list. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| --uxSchedulerSuspended; | |
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
| { | |
| if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U ) | |
| { | |
| /* Move any readied tasks from the pending list into the | |
| appropriate ready list. */ | |
| while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE ) | |
| { | |
| pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); | |
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
| prvAddTaskToReadyList( pxTCB ); | |
| /* If we have moved a task that has a priority higher than | |
| the current task then we should yield. */ | |
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
| { | |
| xYieldPending = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| /* If any ticks occurred while the scheduler was suspended then | |
| they should be processed now. This ensures the tick count does | |
| not slip, and that any delayed tasks are resumed at the correct | |
| time. */ | |
| if( uxPendedTicks > ( UBaseType_t ) 0U ) | |
| { | |
| while( uxPendedTicks > ( UBaseType_t ) 0U ) | |
| { | |
| if( xTaskIncrementTick() != pdFALSE ) | |
| { | |
| xYieldPending = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| --uxPendedTicks; | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| if( xYieldPending == pdTRUE ) | |
| { | |
| #if( configUSE_PREEMPTION != 0 ) | |
| { | |
| xAlreadyYielded = pdTRUE; | |
| } | |
| #endif | |
| taskYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| return xAlreadyYielded; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| TickType_t xTaskGetTickCount( void ) | |
| { | |
| TickType_t xTicks; | |
| /* Critical section required if running on a 16 bit processor. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| xTicks = xTickCount; | |
| } | |
| taskEXIT_CRITICAL(); | |
| return xTicks; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| TickType_t xTaskGetTickCountFromISR( void ) | |
| { | |
| TickType_t xReturn; | |
| UBaseType_t uxSavedInterruptStatus; | |
| /* RTOS ports that support interrupt nesting have the concept of a maximum | |
| system call (or maximum API call) interrupt priority. Interrupts that are | |
| above the maximum system call priority are kept permanently enabled, even | |
| when the RTOS kernel is in a critical section, but cannot make any calls to | |
| FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h | |
| then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
| failure if a FreeRTOS API function is called from an interrupt that has been | |
| assigned a priority above the configured maximum system call priority. | |
| Only FreeRTOS functions that end in FromISR can be called from interrupts | |
| that have been assigned a priority at or (logically) below the maximum | |
| system call interrupt priority. FreeRTOS maintains a separate interrupt | |
| safe API to ensure interrupt entry is as fast and as simple as possible. | |
| More information (albeit Cortex-M specific) is provided on the following | |
| link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
| { | |
| xReturn = xTickCount; | |
| } | |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| UBaseType_t uxTaskGetNumberOfTasks( void ) | |
| { | |
| /* A critical section is not required because the variables are of type | |
| BaseType_t. */ | |
| return uxCurrentNumberOfTasks; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_pcTaskGetTaskName == 1 ) | |
| char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) | |
| { | |
| TCB_t *pxTCB; | |
| /* If null is passed in here then the name of the calling task is being queried. */ | |
| pxTCB = prvGetTCBFromHandle( xTaskToQuery ); | |
| configASSERT( pxTCB ); | |
| return &( pxTCB->pcTaskName[ 0 ] ); | |
| } | |
| #endif /* INCLUDE_pcTaskGetTaskName */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime ) | |
| { | |
| UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES; | |
| vTaskSuspendAll(); | |
| { | |
| /* Is there a space in the array for each task in the system? */ | |
| if( uxArraySize >= uxCurrentNumberOfTasks ) | |
| { | |
| /* Fill in an TaskStatus_t structure with information on each | |
| task in the Ready state. */ | |
| do | |
| { | |
| uxQueue--; | |
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ); | |
| } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| /* Fill in an TaskStatus_t structure with information on each | |
| task in the Blocked state. */ | |
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ); | |
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ); | |
| #if( INCLUDE_vTaskDelete == 1 ) | |
| { | |
| /* Fill in an TaskStatus_t structure with information on | |
| each task that has been deleted but not yet cleaned up. */ | |
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ); | |
| } | |
| #endif | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| { | |
| /* Fill in an TaskStatus_t structure with information on | |
| each task in the Suspended state. */ | |
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ); | |
| } | |
| #endif | |
| #if ( configGENERATE_RUN_TIME_STATS == 1) | |
| { | |
| if( pulTotalRunTime != NULL ) | |
| { | |
| #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE | |
| portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) ); | |
| #else | |
| *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); | |
| #endif | |
| } | |
| } | |
| #else | |
| { | |
| if( pulTotalRunTime != NULL ) | |
| { | |
| *pulTotalRunTime = 0; | |
| } | |
| } | |
| #endif | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| ( void ) xTaskResumeAll(); | |
| return uxTask; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| /*----------------------------------------------------------*/ | |
| #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) | |
| TaskHandle_t xTaskGetIdleTaskHandle( void ) | |
| { | |
| /* If xTaskGetIdleTaskHandle() is called before the scheduler has been | |
| started, then xIdleTaskHandle will be NULL. */ | |
| configASSERT( ( xIdleTaskHandle != NULL ) ); | |
| return xIdleTaskHandle; | |
| } | |
| #endif /* INCLUDE_xTaskGetIdleTaskHandle */ | |
| /*----------------------------------------------------------*/ | |
| /* This conditional compilation should use inequality to 0, not equality to 1. | |
| This is to ensure vTaskStepTick() is available when user defined low power mode | |
| implementations require configUSE_TICKLESS_IDLE to be set to a value other than | |
| 1. */ | |
| #if ( configUSE_TICKLESS_IDLE != 0 ) | |
| void vTaskStepTick( const TickType_t xTicksToJump ) | |
| { | |
| /* Correct the tick count value after a period during which the tick | |
| was suppressed. Note this does *not* call the tick hook function for | |
| each stepped tick. */ | |
| configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime ); | |
| xTickCount += xTicksToJump; | |
| traceINCREASE_TICK_COUNT( xTicksToJump ); | |
| } | |
| #endif /* configUSE_TICKLESS_IDLE */ | |
| /*----------------------------------------------------------*/ | |
| BaseType_t xTaskIncrementTick( void ) | |
| { | |
| TCB_t * pxTCB; | |
| TickType_t xItemValue; | |
| BaseType_t xSwitchRequired = pdFALSE; | |
| /* Called by the portable layer each time a tick interrupt occurs. | |
| Increments the tick then checks to see if the new tick value will cause any | |
| tasks to be unblocked. */ | |
| traceTASK_INCREMENT_TICK( xTickCount ); | |
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
| { | |
| /* Increment the RTOS tick, switching the delayed and overflowed | |
| delayed lists if it wraps to 0. */ | |
| ++xTickCount; | |
| { | |
| /* Minor optimisation. The tick count cannot change in this | |
| block. */ | |
| const TickType_t xConstTickCount = xTickCount; | |
| if( xConstTickCount == ( TickType_t ) 0U ) | |
| { | |
| taskSWITCH_DELAYED_LISTS(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* See if this tick has made a timeout expire. Tasks are stored in | |
| the queue in the order of their wake time - meaning once one task | |
| has been found whose block time has not expired there is no need to | |
| look any further down the list. */ | |
| if( xConstTickCount >= xNextTaskUnblockTime ) | |
| { | |
| for( ;; ) | |
| { | |
| if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) | |
| { | |
| /* The delayed list is empty. Set xNextTaskUnblockTime | |
| to the maximum possible value so it is extremely | |
| unlikely that the | |
| if( xTickCount >= xNextTaskUnblockTime ) test will pass | |
| next time through. */ | |
| xNextTaskUnblockTime = portMAX_DELAY; | |
| break; | |
| } | |
| else | |
| { | |
| /* The delayed list is not empty, get the value of the | |
| item at the head of the delayed list. This is the time | |
| at which the task at the head of the delayed list must | |
| be removed from the Blocked state. */ | |
| pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); | |
| xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) ); | |
| if( xConstTickCount < xItemValue ) | |
| { | |
| /* It is not time to unblock this item yet, but the | |
| item value is the time at which the task at the head | |
| of the blocked list must be removed from the Blocked | |
| state - so record the item value in | |
| xNextTaskUnblockTime. */ | |
| xNextTaskUnblockTime = xItemValue; | |
| break; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* It is time to remove the item from the Blocked state. */ | |
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
| /* Is the task waiting on an event also? If so remove | |
| it from the event list. */ | |
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) | |
| { | |
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Place the unblocked task into the appropriate ready | |
| list. */ | |
| prvAddTaskToReadyList( pxTCB ); | |
| /* A task being unblocked cannot cause an immediate | |
| context switch if preemption is turned off. */ | |
| #if ( configUSE_PREEMPTION == 1 ) | |
| { | |
| /* Preemption is on, but a context switch should | |
| only be performed if the unblocked task has a | |
| priority that is equal to or higher than the | |
| currently executing task. */ | |
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
| { | |
| xSwitchRequired = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_PREEMPTION */ | |
| } | |
| } | |
| } | |
| } | |
| /* Tasks of equal priority to the currently running task will share | |
| processing time (time slice) if preemption is on, and the application | |
| writer has not explicitly turned time slicing off. */ | |
| #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) | |
| { | |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 ) | |
| { | |
| xSwitchRequired = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */ | |
| #if ( configUSE_TICK_HOOK == 1 ) | |
| { | |
| /* Guard against the tick hook being called when the pended tick | |
| count is being unwound (when the scheduler is being unlocked). */ | |
| if( uxPendedTicks == ( UBaseType_t ) 0U ) | |
| { | |
| vApplicationTickHook(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_TICK_HOOK */ | |
| } | |
| else | |
| { | |
| ++uxPendedTicks; | |
| /* The tick hook gets called at regular intervals, even if the | |
| scheduler is locked. */ | |
| #if ( configUSE_TICK_HOOK == 1 ) | |
| { | |
| vApplicationTickHook(); | |
| } | |
| #endif | |
| } | |
| #if ( configUSE_PREEMPTION == 1 ) | |
| { | |
| if( xYieldPending != pdFALSE ) | |
| { | |
| xSwitchRequired = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_PREEMPTION */ | |
| return xSwitchRequired; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
| void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) | |
| { | |
| TCB_t *xTCB; | |
| /* If xTask is NULL then it is the task hook of the calling task that is | |
| getting set. */ | |
| if( xTask == NULL ) | |
| { | |
| xTCB = ( TCB_t * ) pxCurrentTCB; | |
| } | |
| else | |
| { | |
| xTCB = ( TCB_t * ) xTask; | |
| } | |
| /* Save the hook function in the TCB. A critical section is required as | |
| the value can be accessed from an interrupt. */ | |
| taskENTER_CRITICAL(); | |
| xTCB->pxTaskTag = pxHookFunction; | |
| taskEXIT_CRITICAL(); | |
| } | |
| #endif /* configUSE_APPLICATION_TASK_TAG */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
| TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) | |
| { | |
| TCB_t *xTCB; | |
| TaskHookFunction_t xReturn; | |
| /* If xTask is NULL then we are setting our own task hook. */ | |
| if( xTask == NULL ) | |
| { | |
| xTCB = ( TCB_t * ) pxCurrentTCB; | |
| } | |
| else | |
| { | |
| xTCB = ( TCB_t * ) xTask; | |
| } | |
| /* Save the hook function in the TCB. A critical section is required as | |
| the value can be accessed from an interrupt. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| xReturn = xTCB->pxTaskTag; | |
| } | |
| taskEXIT_CRITICAL(); | |
| return xReturn; | |
| } | |
| #endif /* configUSE_APPLICATION_TASK_TAG */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
| BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter ) | |
| { | |
| TCB_t *xTCB; | |
| BaseType_t xReturn; | |
| /* If xTask is NULL then we are calling our own task hook. */ | |
| if( xTask == NULL ) | |
| { | |
| xTCB = ( TCB_t * ) pxCurrentTCB; | |
| } | |
| else | |
| { | |
| xTCB = ( TCB_t * ) xTask; | |
| } | |
| if( xTCB->pxTaskTag != NULL ) | |
| { | |
| xReturn = xTCB->pxTaskTag( pvParameter ); | |
| } | |
| else | |
| { | |
| xReturn = pdFAIL; | |
| } | |
| return xReturn; | |
| } | |
| #endif /* configUSE_APPLICATION_TASK_TAG */ | |
| /*-----------------------------------------------------------*/ | |
| void vTaskSwitchContext( void ) | |
| { | |
| if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE ) | |
| { | |
| /* The scheduler is currently suspended - do not allow a context | |
| switch. */ | |
| xYieldPending = pdTRUE; | |
| } | |
| else | |
| { | |
| xYieldPending = pdFALSE; | |
| traceTASK_SWITCHED_OUT(); | |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
| { | |
| #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE | |
| portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime ); | |
| #else | |
| ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); | |
| #endif | |
| /* Add the amount of time the task has been running to the | |
| accumulated time so far. The time the task started running was | |
| stored in ulTaskSwitchedInTime. Note that there is no overflow | |
| protection here so count values are only valid until the timer | |
| overflows. The guard against negative values is to protect | |
| against suspect run time stat counter implementations - which | |
| are provided by the application, not the kernel. */ | |
| if( ulTotalRunTime > ulTaskSwitchedInTime ) | |
| { | |
| pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| ulTaskSwitchedInTime = ulTotalRunTime; | |
| } | |
| #endif /* configGENERATE_RUN_TIME_STATS */ | |
| taskFIRST_CHECK_FOR_STACK_OVERFLOW(); | |
| taskSECOND_CHECK_FOR_STACK_OVERFLOW(); | |
| taskSELECT_HIGHEST_PRIORITY_TASK(); | |
| traceTASK_SWITCHED_IN(); | |
| #if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
| { | |
| /* Switch Newlib's _impure_ptr variable to point to the _reent | |
| structure specific to this task. */ | |
| _impure_ptr = &( pxCurrentTCB->xNewLib_reent ); | |
| } | |
| #endif /* configUSE_NEWLIB_REENTRANT */ | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) | |
| { | |
| TickType_t xTimeToWake; | |
| configASSERT( pxEventList ); | |
| /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE | |
| SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */ | |
| /* Place the event list item of the TCB in the appropriate event list. | |
| This is placed in the list in priority order so the highest priority task | |
| is the first to be woken by the event. The queue that contains the event | |
| list is locked, preventing simultaneous access from interrupts. */ | |
| vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) ); | |
| /* The task must be removed from from the ready list before it is added to | |
| the blocked list as the same list item is used for both lists. Exclusive | |
| access to the ready lists guaranteed because the scheduler is locked. */ | |
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| /* The current task must be in a ready list, so there is no need to | |
| check, and the port reset macro can be called directly. */ | |
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| { | |
| if( xTicksToWait == portMAX_DELAY ) | |
| { | |
| /* Add the task to the suspended task list instead of a delayed task | |
| list to ensure the task is not woken by a timing event. It will | |
| block indefinitely. */ | |
| vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
| } | |
| else | |
| { | |
| /* Calculate the time at which the task should be woken if the event | |
| does not occur. This may overflow but this doesn't matter, the | |
| scheduler will handle it. */ | |
| xTimeToWake = xTickCount + xTicksToWait; | |
| prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
| } | |
| } | |
| #else /* INCLUDE_vTaskSuspend */ | |
| { | |
| /* Calculate the time at which the task should be woken if the event does | |
| not occur. This may overflow but this doesn't matter, the scheduler | |
| will handle it. */ | |
| xTimeToWake = xTickCount + xTicksToWait; | |
| prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
| } | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| } | |
| /*-----------------------------------------------------------*/ | |
| void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) | |
| { | |
| TickType_t xTimeToWake; | |
| configASSERT( pxEventList ); | |
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by | |
| the event groups implementation. */ | |
| configASSERT( uxSchedulerSuspended != 0 ); | |
| /* Store the item value in the event list item. It is safe to access the | |
| event list item here as interrupts won't access the event list item of a | |
| task that is not in the Blocked state. */ | |
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); | |
| /* Place the event list item of the TCB at the end of the appropriate event | |
| list. It is safe to access the event list here because it is part of an | |
| event group implementation - and interrupts don't access event groups | |
| directly (instead they access them indirectly by pending function calls to | |
| the task level). */ | |
| vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) ); | |
| /* The task must be removed from the ready list before it is added to the | |
| blocked list. Exclusive access can be assured to the ready list as the | |
| scheduler is locked. */ | |
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| /* The current task must be in a ready list, so there is no need to | |
| check, and the port reset macro can be called directly. */ | |
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| { | |
| if( xTicksToWait == portMAX_DELAY ) | |
| { | |
| /* Add the task to the suspended task list instead of a delayed task | |
| list to ensure it is not woken by a timing event. It will block | |
| indefinitely. */ | |
| vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
| } | |
| else | |
| { | |
| /* Calculate the time at which the task should be woken if the event | |
| does not occur. This may overflow but this doesn't matter, the | |
| kernel will manage it correctly. */ | |
| xTimeToWake = xTickCount + xTicksToWait; | |
| prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
| } | |
| } | |
| #else /* INCLUDE_vTaskSuspend */ | |
| { | |
| /* Calculate the time at which the task should be woken if the event does | |
| not occur. This may overflow but this doesn't matter, the kernel | |
| will manage it correctly. */ | |
| xTimeToWake = xTickCount + xTicksToWait; | |
| prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
| } | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if configUSE_TIMERS == 1 | |
| void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait ) | |
| { | |
| TickType_t xTimeToWake; | |
| configASSERT( pxEventList ); | |
| /* This function should not be called by application code hence the | |
| 'Restricted' in its name. It is not part of the public API. It is | |
| designed for use by kernel code, and has special calling requirements - | |
| it should be called from a critical section. */ | |
| /* Place the event list item of the TCB in the appropriate event list. | |
| In this case it is assume that this is the only task that is going to | |
| be waiting on this event list, so the faster vListInsertEnd() function | |
| can be used in place of vListInsert. */ | |
| vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) ); | |
| /* We must remove this task from the ready list before adding it to the | |
| blocked list as the same list item is used for both lists. This | |
| function is called form a critical section. */ | |
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| /* The current task must be in a ready list, so there is no need to | |
| check, and the port reset macro can be called directly. */ | |
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Calculate the time at which the task should be woken if the event does | |
| not occur. This may overflow but this doesn't matter. */ | |
| xTimeToWake = xTickCount + xTicksToWait; | |
| traceTASK_DELAY_UNTIL(); | |
| prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
| } | |
| #endif /* configUSE_TIMERS */ | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) | |
| { | |
| TCB_t *pxUnblockedTCB; | |
| BaseType_t xReturn; | |
| /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be | |
| called from a critical section within an ISR. */ | |
| /* The event list is sorted in priority order, so the first in the list can | |
| be removed as it is known to be the highest priority. Remove the TCB from | |
| the delayed list, and add it to the ready list. | |
| If an event is for a queue that is locked then this function will never | |
| get called - the lock count on the queue will get modified instead. This | |
| means exclusive access to the event list is guaranteed here. | |
| This function assumes that a check has already been made to ensure that | |
| pxEventList is not empty. */ | |
| pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); | |
| configASSERT( pxUnblockedTCB ); | |
| ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) ); | |
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
| { | |
| ( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) ); | |
| prvAddTaskToReadyList( pxUnblockedTCB ); | |
| } | |
| else | |
| { | |
| /* The delayed and ready lists cannot be accessed, so hold this task | |
| pending until the scheduler is resumed. */ | |
| vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) ); | |
| } | |
| if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) | |
| { | |
| /* Return true if the task removed from the event list has a higher | |
| priority than the calling task. This allows the calling task to know if | |
| it should force a context switch now. */ | |
| xReturn = pdTRUE; | |
| /* Mark that a yield is pending in case the user is not using the | |
| "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ | |
| xYieldPending = pdTRUE; | |
| } | |
| else | |
| { | |
| xReturn = pdFALSE; | |
| } | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) | |
| { | |
| TCB_t *pxUnblockedTCB; | |
| BaseType_t xReturn; | |
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by | |
| the event flags implementation. */ | |
| configASSERT( uxSchedulerSuspended != pdFALSE ); | |
| /* Store the new item value in the event list. */ | |
| listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); | |
| /* Remove the event list form the event flag. Interrupts do not access | |
| event flags. */ | |
| pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem ); | |
| configASSERT( pxUnblockedTCB ); | |
| ( void ) uxListRemove( pxEventListItem ); | |
| /* Remove the task from the delayed list and add it to the ready list. The | |
| scheduler is suspended so interrupts will not be accessing the ready | |
| lists. */ | |
| ( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) ); | |
| prvAddTaskToReadyList( pxUnblockedTCB ); | |
| if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) | |
| { | |
| /* Return true if the task removed from the event list has | |
| a higher priority than the calling task. This allows | |
| the calling task to know if it should force a context | |
| switch now. */ | |
| xReturn = pdTRUE; | |
| /* Mark that a yield is pending in case the user is not using the | |
| "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ | |
| xYieldPending = pdTRUE; | |
| } | |
| else | |
| { | |
| xReturn = pdFALSE; | |
| } | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) | |
| { | |
| configASSERT( pxTimeOut ); | |
| pxTimeOut->xOverflowCount = xNumOfOverflows; | |
| pxTimeOut->xTimeOnEntering = xTickCount; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) | |
| { | |
| BaseType_t xReturn; | |
| configASSERT( pxTimeOut ); | |
| configASSERT( pxTicksToWait ); | |
| taskENTER_CRITICAL(); | |
| { | |
| /* Minor optimisation. The tick count cannot change in this block. */ | |
| const TickType_t xConstTickCount = xTickCount; | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| /* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is | |
| the maximum block time then the task should block indefinitely, and | |
| therefore never time out. */ | |
| if( *pxTicksToWait == portMAX_DELAY ) | |
| { | |
| xReturn = pdFALSE; | |
| } | |
| else /* We are not blocking indefinitely, perform the checks below. */ | |
| #endif | |
| if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */ | |
| { | |
| /* The tick count is greater than the time at which vTaskSetTimeout() | |
| was called, but has also overflowed since vTaskSetTimeOut() was called. | |
| It must have wrapped all the way around and gone past us again. This | |
| passed since vTaskSetTimeout() was called. */ | |
| xReturn = pdTRUE; | |
| } | |
| else if( ( xConstTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait ) | |
| { | |
| /* Not a genuine timeout. Adjust parameters for time remaining. */ | |
| *pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering ); | |
| vTaskSetTimeOutState( pxTimeOut ); | |
| xReturn = pdFALSE; | |
| } | |
| else | |
| { | |
| xReturn = pdTRUE; | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| void vTaskMissedYield( void ) | |
| { | |
| xYieldPending = pdTRUE; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) | |
| { | |
| UBaseType_t uxReturn; | |
| TCB_t *pxTCB; | |
| if( xTask != NULL ) | |
| { | |
| pxTCB = ( TCB_t * ) xTask; | |
| uxReturn = pxTCB->uxTaskNumber; | |
| } | |
| else | |
| { | |
| uxReturn = 0U; | |
| } | |
| return uxReturn; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) | |
| { | |
| TCB_t *pxTCB; | |
| if( xTask != NULL ) | |
| { | |
| pxTCB = ( TCB_t * ) xTask; | |
| pxTCB->uxTaskNumber = uxHandle; | |
| } | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| /* | |
| * ----------------------------------------------------------- | |
| * The Idle task. | |
| * ---------------------------------------------------------- | |
| * | |
| * The portTASK_FUNCTION() macro is used to allow port/compiler specific | |
| * language extensions. The equivalent prototype for this function is: | |
| * | |
| * void prvIdleTask( void *pvParameters ); | |
| * | |
| */ | |
| static portTASK_FUNCTION( prvIdleTask, pvParameters ) | |
| { | |
| /* Stop warnings. */ | |
| ( void ) pvParameters; | |
| for( ;; ) | |
| { | |
| /* See if any tasks have been deleted. */ | |
| prvCheckTasksWaitingTermination(); | |
| #if ( configUSE_PREEMPTION == 0 ) | |
| { | |
| /* If we are not using preemption we keep forcing a task switch to | |
| see if any other task has become available. If we are using | |
| preemption we don't need to do this as any task becoming available | |
| will automatically get the processor anyway. */ | |
| taskYIELD(); | |
| } | |
| #endif /* configUSE_PREEMPTION */ | |
| #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) | |
| { | |
| /* When using preemption tasks of equal priority will be | |
| timesliced. If a task that is sharing the idle priority is ready | |
| to run then the idle task should yield before the end of the | |
| timeslice. | |
| A critical region is not required here as we are just reading from | |
| the list, and an occasional incorrect value will not matter. If | |
| the ready list at the idle priority contains more than one task | |
| then a task other than the idle task is ready to execute. */ | |
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 ) | |
| { | |
| taskYIELD(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ | |
| #if ( configUSE_IDLE_HOOK == 1 ) | |
| { | |
| extern void vApplicationIdleHook( void ); | |
| /* Call the user defined function from within the idle task. This | |
| allows the application designer to add background functionality | |
| without the overhead of a separate task. | |
| NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, | |
| CALL A FUNCTION THAT MIGHT BLOCK. */ | |
| vApplicationIdleHook(); | |
| } | |
| #endif /* configUSE_IDLE_HOOK */ | |
| /* This conditional compilation should use inequality to 0, not equality | |
| to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when | |
| user defined low power mode implementations require | |
| configUSE_TICKLESS_IDLE to be set to a value other than 1. */ | |
| #if ( configUSE_TICKLESS_IDLE != 0 ) | |
| { | |
| TickType_t xExpectedIdleTime; | |
| /* It is not desirable to suspend then resume the scheduler on | |
| each iteration of the idle task. Therefore, a preliminary | |
| test of the expected idle time is performed without the | |
| scheduler suspended. The result here is not necessarily | |
| valid. */ | |
| xExpectedIdleTime = prvGetExpectedIdleTime(); | |
| if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) | |
| { | |
| vTaskSuspendAll(); | |
| { | |
| /* Now the scheduler is suspended, the expected idle | |
| time can be sampled again, and this time its value can | |
| be used. */ | |
| configASSERT( xNextTaskUnblockTime >= xTickCount ); | |
| xExpectedIdleTime = prvGetExpectedIdleTime(); | |
| if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) | |
| { | |
| traceLOW_POWER_IDLE_BEGIN(); | |
| portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ); | |
| traceLOW_POWER_IDLE_END(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| ( void ) xTaskResumeAll(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_TICKLESS_IDLE */ | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if configUSE_TICKLESS_IDLE != 0 | |
| eSleepModeStatus eTaskConfirmSleepModeStatus( void ) | |
| { | |
| eSleepModeStatus eReturn = eStandardSleep; | |
| if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 ) | |
| { | |
| /* A task was made ready while the scheduler was suspended. */ | |
| eReturn = eAbortSleep; | |
| } | |
| else if( xYieldPending != pdFALSE ) | |
| { | |
| /* A yield was pended while the scheduler was suspended. */ | |
| eReturn = eAbortSleep; | |
| } | |
| else | |
| { | |
| #if configUSE_TIMERS == 0 | |
| { | |
| /* The idle task exists in addition to the application tasks. */ | |
| const UBaseType_t uxNonApplicationTasks = 1; | |
| /* If timers are not being used and all the tasks are in the | |
| suspended list (which might mean they have an infinite block | |
| time rather than actually being suspended) then it is safe to | |
| turn all clocks off and just wait for external interrupts. */ | |
| if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) ) | |
| { | |
| eReturn = eNoTasksWaitingTimeout; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_TIMERS */ | |
| } | |
| return eReturn; | |
| } | |
| #endif /* configUSE_TICKLESS_IDLE */ | |
| /*-----------------------------------------------------------*/ | |
| static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| { | |
| UBaseType_t x; | |
| /* Store the task name in the TCB. */ | |
| for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) | |
| { | |
| pxTCB->pcTaskName[ x ] = pcName[ x ]; | |
| /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than | |
| configMAX_TASK_NAME_LEN characters just in case the memory after the | |
| string is not accessible (extremely unlikely). */ | |
| if( pcName[ x ] == 0x00 ) | |
| { | |
| break; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| /* Ensure the name string is terminated in the case that the string length | |
| was greater or equal to configMAX_TASK_NAME_LEN. */ | |
| pxTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0'; | |
| /* This is used as an array index so must ensure it's not too large. First | |
| remove the privilege bit if one is present. */ | |
| if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) | |
| { | |
| uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| pxTCB->uxPriority = uxPriority; | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| pxTCB->uxBasePriority = uxPriority; | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| vListInitialiseItem( &( pxTCB->xGenericListItem ) ); | |
| vListInitialiseItem( &( pxTCB->xEventListItem ) ); | |
| /* Set the pxTCB as a link back from the ListItem_t. This is so we can get | |
| back to the containing TCB from a generic item in a list. */ | |
| listSET_LIST_ITEM_OWNER( &( pxTCB->xGenericListItem ), pxTCB ); | |
| /* Event lists are always in priority order. */ | |
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| listSET_LIST_ITEM_OWNER( &( pxTCB->xEventListItem ), pxTCB ); | |
| #if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
| { | |
| pxTCB->uxCriticalNesting = ( UBaseType_t ) 0U; | |
| } | |
| #endif /* portCRITICAL_NESTING_IN_TCB */ | |
| #if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
| { | |
| pxTCB->pxTaskTag = NULL; | |
| } | |
| #endif /* configUSE_APPLICATION_TASK_TAG */ | |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
| { | |
| pxTCB->ulRunTimeCounter = 0UL; | |
| } | |
| #endif /* configGENERATE_RUN_TIME_STATS */ | |
| #if ( portUSING_MPU_WRAPPERS == 1 ) | |
| { | |
| vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, pxTCB->pxStack, usStackDepth ); | |
| } | |
| #else /* portUSING_MPU_WRAPPERS */ | |
| { | |
| ( void ) xRegions; | |
| ( void ) usStackDepth; | |
| } | |
| #endif /* portUSING_MPU_WRAPPERS */ | |
| #if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
| { | |
| /* Initialise this task's Newlib reent structure. */ | |
| _REENT_INIT_PTR( ( &( pxTCB->xNewLib_reent ) ) ); | |
| } | |
| #endif /* configUSE_NEWLIB_REENTRANT */ | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( portUSING_MPU_WRAPPERS == 1 ) | |
| void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions ) | |
| { | |
| TCB_t *pxTCB; | |
| /* If null is passed in here then we are deleting ourselves. */ | |
| pxTCB = prvGetTCBFromHandle( xTaskToModify ); | |
| vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 ); | |
| } | |
| #endif /* portUSING_MPU_WRAPPERS */ | |
| /*-----------------------------------------------------------*/ | |
| static void prvInitialiseTaskLists( void ) | |
| { | |
| UBaseType_t uxPriority; | |
| for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ ) | |
| { | |
| vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) ); | |
| } | |
| vListInitialise( &xDelayedTaskList1 ); | |
| vListInitialise( &xDelayedTaskList2 ); | |
| vListInitialise( &xPendingReadyList ); | |
| #if ( INCLUDE_vTaskDelete == 1 ) | |
| { | |
| vListInitialise( &xTasksWaitingTermination ); | |
| } | |
| #endif /* INCLUDE_vTaskDelete */ | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| { | |
| vListInitialise( &xSuspendedTaskList ); | |
| } | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList | |
| using list2. */ | |
| pxDelayedTaskList = &xDelayedTaskList1; | |
| pxOverflowDelayedTaskList = &xDelayedTaskList2; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| static void prvCheckTasksWaitingTermination( void ) | |
| { | |
| #if ( INCLUDE_vTaskDelete == 1 ) | |
| { | |
| BaseType_t xListIsEmpty; | |
| /* ucTasksDeleted is used to prevent vTaskSuspendAll() being called | |
| too often in the idle task. */ | |
| while( uxTasksDeleted > ( UBaseType_t ) 0U ) | |
| { | |
| vTaskSuspendAll(); | |
| { | |
| xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination ); | |
| } | |
| ( void ) xTaskResumeAll(); | |
| if( xListIsEmpty == pdFALSE ) | |
| { | |
| TCB_t *pxTCB; | |
| taskENTER_CRITICAL(); | |
| { | |
| pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); | |
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
| --uxCurrentNumberOfTasks; | |
| --uxTasksDeleted; | |
| } | |
| taskEXIT_CRITICAL(); | |
| prvDeleteTCB( pxTCB ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| #endif /* vTaskDelete */ | |
| } | |
| /*-----------------------------------------------------------*/ | |
| static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake ) | |
| { | |
| /* The list item will be inserted in wake time order. */ | |
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake ); | |
| if( xTimeToWake < xTickCount ) | |
| { | |
| /* Wake time has overflowed. Place this item in the overflow list. */ | |
| vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
| } | |
| else | |
| { | |
| /* The wake time has not overflowed, so the current block list is used. */ | |
| vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
| /* If the task entering the blocked state was placed at the head of the | |
| list of blocked tasks then xNextTaskUnblockTime needs to be updated | |
| too. */ | |
| if( xTimeToWake < xNextTaskUnblockTime ) | |
| { | |
| xNextTaskUnblockTime = xTimeToWake; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) | |
| { | |
| TCB_t *pxNewTCB; | |
| pxNewTCB = ( tskTCB * ) poolAllocateBuffer( (static_pool_t*)&sTCBsPool ); | |
| if( pxNewTCB != NULL ) | |
| { | |
| /* Allocate space for the stack used by the task being created. | |
| The base of the stack memory stored in the TCB so the task can | |
| be deleted later if required. */ | |
| pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| if( pxNewTCB->pxStack == NULL ) | |
| { | |
| /* Could not allocate the stack. Delete the allocated TCB. */ | |
| poolFreeBuffer( (static_pool_t*)&sTCBsPool, pxNewTCB ); | |
| pxNewTCB = NULL; | |
| } | |
| else | |
| { | |
| /* Avoid dependency on memset() if it is not required. */ | |
| #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
| { | |
| /* Just to help debugging. */ | |
| ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) usStackDepth * sizeof( StackType_t ) ); | |
| } | |
| #endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */ | |
| } | |
| } | |
| return pxNewTCB; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) | |
| { | |
| volatile TCB_t *pxNextTCB, *pxFirstTCB; | |
| UBaseType_t uxTask = 0; | |
| if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) | |
| { | |
| listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); | |
| /* Populate an TaskStatus_t structure within the | |
| pxTaskStatusArray array for each task that is referenced from | |
| pxList. See the definition of TaskStatus_t in task.h for the | |
| meaning of each TaskStatus_t structure member. */ | |
| do | |
| { | |
| listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); | |
| pxTaskStatusArray[ uxTask ].xHandle = ( TaskHandle_t ) pxNextTCB; | |
| pxTaskStatusArray[ uxTask ].pcTaskName = ( const char * ) &( pxNextTCB->pcTaskName [ 0 ] ); | |
| pxTaskStatusArray[ uxTask ].xTaskNumber = pxNextTCB->uxTCBNumber; | |
| pxTaskStatusArray[ uxTask ].eCurrentState = eState; | |
| pxTaskStatusArray[ uxTask ].uxCurrentPriority = pxNextTCB->uxPriority; | |
| #if ( INCLUDE_vTaskSuspend == 1 ) | |
| { | |
| /* If the task is in the suspended list then there is a chance | |
| it is actually just blocked indefinitely - so really it should | |
| be reported as being in the Blocked state. */ | |
| if( eState == eSuspended ) | |
| { | |
| if( listLIST_ITEM_CONTAINER( &( pxNextTCB->xEventListItem ) ) != NULL ) | |
| { | |
| pxTaskStatusArray[ uxTask ].eCurrentState = eBlocked; | |
| } | |
| } | |
| } | |
| #endif /* INCLUDE_vTaskSuspend */ | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| pxTaskStatusArray[ uxTask ].uxBasePriority = pxNextTCB->uxBasePriority; | |
| } | |
| #else | |
| { | |
| pxTaskStatusArray[ uxTask ].uxBasePriority = 0; | |
| } | |
| #endif | |
| #if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
| { | |
| pxTaskStatusArray[ uxTask ].ulRunTimeCounter = pxNextTCB->ulRunTimeCounter; | |
| } | |
| #else | |
| { | |
| pxTaskStatusArray[ uxTask ].ulRunTimeCounter = 0; | |
| } | |
| #endif | |
| #if ( portSTACK_GROWTH > 0 ) | |
| { | |
| pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxEndOfStack ); | |
| } | |
| #else | |
| { | |
| pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxStack ); | |
| } | |
| #endif | |
| uxTask++; | |
| } while( pxNextTCB != pxFirstTCB ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| return uxTask; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
| static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) | |
| { | |
| uint32_t ulCount = 0U; | |
| while( *pucStackByte == tskSTACK_FILL_BYTE ) | |
| { | |
| pucStackByte -= portSTACK_GROWTH; | |
| ulCount++; | |
| } | |
| ulCount /= ( uint32_t ) sizeof( StackType_t ); | |
| return ( uint16_t ) ulCount; | |
| } | |
| #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) | |
| UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) | |
| { | |
| TCB_t *pxTCB; | |
| uint8_t *pucEndOfStack; | |
| UBaseType_t uxReturn; | |
| pxTCB = prvGetTCBFromHandle( xTask ); | |
| #if portSTACK_GROWTH < 0 | |
| { | |
| pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; | |
| } | |
| #else | |
| { | |
| pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; | |
| } | |
| #endif | |
| uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack ); | |
| return uxReturn; | |
| } | |
| #endif /* INCLUDE_uxTaskGetStackHighWaterMark */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( INCLUDE_vTaskDelete == 1 ) | |
| static void prvDeleteTCB( TCB_t *pxTCB ) | |
| { | |
| /* This call is required specifically for the TriCore port. It must be | |
| above the vPortFree() calls. The call is also used by ports/demos that | |
| want to allocate and clean RAM statically. */ | |
| portCLEAN_UP_TCB( pxTCB ); | |
| /* Free up the memory allocated by the scheduler for the task. It is up | |
| to the task to free any memory allocated at the application level. */ | |
| #if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
| { | |
| _reclaim_reent( &( pxTCB->xNewLib_reent ) ); | |
| } | |
| #endif /* configUSE_NEWLIB_REENTRANT */ | |
| poolFreeBuffer( (static_pool_t*)&sTCBsPool, pxTCB ); | |
| } | |
| #endif /* INCLUDE_vTaskDelete */ | |
| /*-----------------------------------------------------------*/ | |
| static void prvResetNextTaskUnblockTime( void ) | |
| { | |
| TCB_t *pxTCB; | |
| if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) | |
| { | |
| /* The new current delayed list is empty. Set | |
| xNextTaskUnblockTime to the maximum possible value so it is | |
| extremely unlikely that the | |
| if( xTickCount >= xNextTaskUnblockTime ) test will pass until | |
| there is an item in the delayed list. */ | |
| xNextTaskUnblockTime = portMAX_DELAY; | |
| } | |
| else | |
| { | |
| /* The new current delayed list is not empty, get the value of | |
| the item at the head of the delayed list. This is the time at | |
| which the task at the head of the delayed list should be removed | |
| from the Blocked state. */ | |
| ( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); | |
| xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xGenericListItem ) ); | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) | |
| TaskHandle_t xTaskGetCurrentTaskHandle( void ) | |
| { | |
| TaskHandle_t xReturn; | |
| /* A critical section is not required as this is not called from | |
| an interrupt and the current TCB will always be the same for any | |
| individual execution thread. */ | |
| xReturn = pxCurrentTCB; | |
| return xReturn; | |
| } | |
| #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) | |
| BaseType_t xTaskGetSchedulerState( void ) | |
| { | |
| BaseType_t xReturn; | |
| if( xSchedulerRunning == pdFALSE ) | |
| { | |
| xReturn = taskSCHEDULER_NOT_STARTED; | |
| } | |
| else | |
| { | |
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
| { | |
| xReturn = taskSCHEDULER_RUNNING; | |
| } | |
| else | |
| { | |
| xReturn = taskSCHEDULER_SUSPENDED; | |
| } | |
| } | |
| return xReturn; | |
| } | |
| #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_MUTEXES == 1 ) | |
| void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) | |
| { | |
| TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder; | |
| /* If the mutex was given back by an interrupt while the queue was | |
| locked then the mutex holder might now be NULL. */ | |
| if( pxMutexHolder != NULL ) | |
| { | |
| if( pxTCB->uxPriority < pxCurrentTCB->uxPriority ) | |
| { | |
| /* Adjust the mutex holder state to account for its new | |
| priority. Only reset the event list item value if the value is | |
| not being used for anything else. */ | |
| if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) | |
| { | |
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* If the task being modified is in the ready state it will need to | |
| be moved into a new list. */ | |
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE ) | |
| { | |
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| taskRESET_READY_PRIORITY( pxTCB->uxPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Inherit the priority before being moved into the new list. */ | |
| pxTCB->uxPriority = pxCurrentTCB->uxPriority; | |
| prvAddTaskToReadyList( pxTCB ); | |
| } | |
| else | |
| { | |
| /* Just inherit the priority. */ | |
| pxTCB->uxPriority = pxCurrentTCB->uxPriority; | |
| } | |
| traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB->uxPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_MUTEXES == 1 ) | |
| void vTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) | |
| { | |
| TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder; | |
| if( pxMutexHolder != NULL ) | |
| { | |
| if( pxTCB->uxPriority != pxTCB->uxBasePriority ) | |
| { | |
| /* We must be the running task to be able to give the mutex back. | |
| Remove ourselves from the ready list we currently appear in. */ | |
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
| { | |
| taskRESET_READY_PRIORITY( pxTCB->uxPriority ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Disinherit the priority before adding the task into the new | |
| ready list. */ | |
| traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); | |
| pxTCB->uxPriority = pxTCB->uxBasePriority; | |
| /* Only reset the event list item value if the value is not | |
| being used for anything else. */ | |
| if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) | |
| { | |
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| prvAddTaskToReadyList( pxTCB ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
| void vTaskEnterCritical( void ) | |
| { | |
| portDISABLE_INTERRUPTS(); | |
| if( xSchedulerRunning != pdFALSE ) | |
| { | |
| ( pxCurrentTCB->uxCriticalNesting )++; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* portCRITICAL_NESTING_IN_TCB */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
| void vTaskExitCritical( void ) | |
| { | |
| if( xSchedulerRunning != pdFALSE ) | |
| { | |
| if( pxCurrentTCB->uxCriticalNesting > 0U ) | |
| { | |
| ( pxCurrentTCB->uxCriticalNesting )--; | |
| if( pxCurrentTCB->uxCriticalNesting == 0U ) | |
| { | |
| portENABLE_INTERRUPTS(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* portCRITICAL_NESTING_IN_TCB */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) ) | |
| void vTaskList( char * pcWriteBuffer ) | |
| { | |
| TaskStatus_t *pxTaskStatusArray; | |
| volatile UBaseType_t uxArraySize, x; | |
| char cStatus; | |
| /* | |
| * PLEASE NOTE: | |
| * | |
| * This function is provided for convenience only, and is used by many | |
| * of the demo applications. Do not consider it to be part of the | |
| * scheduler. | |
| * | |
| * vTaskList() calls uxTaskGetSystemState(), then formats part of the | |
| * uxTaskGetSystemState() output into a human readable table that | |
| * displays task names, states and stack usage. | |
| * | |
| * vTaskList() has a dependency on the sprintf() C library function that | |
| * might bloat the code size, use a lot of stack, and provide different | |
| * results on different platforms. An alternative, tiny, third party, | |
| * and limited functionality implementation of sprintf() is provided in | |
| * many of the FreeRTOS/Demo sub-directories in a file called | |
| * printf-stdarg.c (note printf-stdarg.c does not provide a full | |
| * snprintf() implementation!). | |
| * | |
| * It is recommended that production systems call uxTaskGetSystemState() | |
| * directly to get access to raw stats data, rather than indirectly | |
| * through a call to vTaskList(). | |
| */ | |
| /* Make sure the write buffer does not contain a string. */ | |
| *pcWriteBuffer = 0x00; | |
| /* Take a snapshot of the number of tasks in case it changes while this | |
| function is executing. */ | |
| uxArraySize = uxCurrentNumberOfTasks; | |
| /* Allocate an array index for each task. */ | |
| pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); | |
| if( pxTaskStatusArray != NULL ) | |
| { | |
| /* Generate the (binary) data. */ | |
| uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL ); | |
| /* Create a human readable table from the binary data. */ | |
| for( x = 0; x < uxArraySize; x++ ) | |
| { | |
| switch( pxTaskStatusArray[ x ].eCurrentState ) | |
| { | |
| case eReady: cStatus = tskREADY_CHAR; | |
| break; | |
| case eBlocked: cStatus = tskBLOCKED_CHAR; | |
| break; | |
| case eSuspended: cStatus = tskSUSPENDED_CHAR; | |
| break; | |
| case eDeleted: cStatus = tskDELETED_CHAR; | |
| break; | |
| default: /* Should not get here, but it is included | |
| to prevent static checking errors. */ | |
| cStatus = 0x00; | |
| break; | |
| } | |
| sprintf( pcWriteBuffer, "%s\t\t%c\t%u\t%u\t%u\r\n", pxTaskStatusArray[ x ].pcTaskName, cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); | |
| pcWriteBuffer += strlen( pcWriteBuffer ); | |
| } | |
| /* Free the array again. */ | |
| vPortFree( pxTaskStatusArray ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) ) */ | |
| /*----------------------------------------------------------*/ | |
| #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) ) | |
| void vTaskGetRunTimeStats( char *pcWriteBuffer ) | |
| { | |
| TaskStatus_t *pxTaskStatusArray; | |
| volatile UBaseType_t uxArraySize, x; | |
| uint32_t ulTotalTime, ulStatsAsPercentage; | |
| #if( configUSE_TRACE_FACILITY != 1 ) | |
| { | |
| #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats(). | |
| } | |
| #endif | |
| /* | |
| * PLEASE NOTE: | |
| * | |
| * This function is provided for convenience only, and is used by many | |
| * of the demo applications. Do not consider it to be part of the | |
| * scheduler. | |
| * | |
| * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part | |
| * of the uxTaskGetSystemState() output into a human readable table that | |
| * displays the amount of time each task has spent in the Running state | |
| * in both absolute and percentage terms. | |
| * | |
| * vTaskGetRunTimeStats() has a dependency on the sprintf() C library | |
| * function that might bloat the code size, use a lot of stack, and | |
| * provide different results on different platforms. An alternative, | |
| * tiny, third party, and limited functionality implementation of | |
| * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in | |
| * a file called printf-stdarg.c (note printf-stdarg.c does not provide | |
| * a full snprintf() implementation!). | |
| * | |
| * It is recommended that production systems call uxTaskGetSystemState() | |
| * directly to get access to raw stats data, rather than indirectly | |
| * through a call to vTaskGetRunTimeStats(). | |
| */ | |
| /* Make sure the write buffer does not contain a string. */ | |
| *pcWriteBuffer = 0x00; | |
| /* Take a snapshot of the number of tasks in case it changes while this | |
| function is executing. */ | |
| uxArraySize = uxCurrentNumberOfTasks; | |
| /* Allocate an array index for each task. */ | |
| pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); | |
| if( pxTaskStatusArray != NULL ) | |
| { | |
| /* Generate the (binary) data. */ | |
| uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime ); | |
| /* For percentage calculations. */ | |
| ulTotalTime /= 100UL; | |
| /* Avoid divide by zero errors. */ | |
| if( ulTotalTime > 0 ) | |
| { | |
| /* Create a human readable table from the binary data. */ | |
| for( x = 0; x < uxArraySize; x++ ) | |
| { | |
| /* What percentage of the total run time has the task used? | |
| This will always be rounded down to the nearest integer. | |
| ulTotalRunTimeDiv100 has already been divided by 100. */ | |
| ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime; | |
| if( ulStatsAsPercentage > 0UL ) | |
| { | |
| #ifdef portLU_PRINTF_SPECIFIER_REQUIRED | |
| { | |
| sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage ); | |
| } | |
| #else | |
| { | |
| /* sizeof( int ) == sizeof( long ) so a smaller | |
| printf() library can be used. */ | |
| sprintf( pcWriteBuffer, "%s\t\t%u\t\t%u%%\r\n", pxTaskStatusArray[ x ].pcTaskName, ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); | |
| } | |
| #endif | |
| } | |
| else | |
| { | |
| /* If the percentage is zero here then the task has | |
| consumed less than 1% of the total run time. */ | |
| #ifdef portLU_PRINTF_SPECIFIER_REQUIRED | |
| { | |
| sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter ); | |
| } | |
| #else | |
| { | |
| /* sizeof( int ) == sizeof( long ) so a smaller | |
| printf() library can be used. */ | |
| sprintf( pcWriteBuffer, "%s\t\t%u\t\t<1%%\r\n", pxTaskStatusArray[ x ].pcTaskName, ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); | |
| } | |
| #endif | |
| } | |
| pcWriteBuffer += strlen( pcWriteBuffer ); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| /* Free the array again. */ | |
| vPortFree( pxTaskStatusArray ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) ) */ | |
| /*-----------------------------------------------------------*/ | |
| TickType_t uxTaskResetEventItemValue( void ) | |
| { | |
| TickType_t uxReturn; | |
| uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) ); | |
| /* Reset the event list item to its normal value - so it can be used with | |
| queues and semaphores. */ | |
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| return uxReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #ifdef FREERTOS_MODULE_TEST | |
| #include "tasks_test_access_functions.h" | |
| #endif | |