| /* tmul -- test file for mpc_mul. |
| |
| Copyright (C) 2002, 2005, 2008, 2009, 2010, 2011, 2012 INRIA |
| |
| This file is part of GNU MPC. |
| |
| GNU MPC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU Lesser General Public License as published by the |
| Free Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for |
| more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with this program. If not, see http://www.gnu.org/licenses/ . |
| */ |
| |
| #include <stdlib.h> |
| #ifdef TIMING |
| #include <sys/times.h> |
| #endif |
| #include "mpc-tests.h" |
| |
| static void |
| cmpmul (mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd) |
| /* computes the product of x and y with the naive and Karatsuba methods */ |
| /* using the rounding mode rnd and compares the results and return */ |
| /* values. */ |
| /* In our current test suite, the real and imaginary parts of x and y */ |
| /* all have the same precision, and we use this precision also for the */ |
| /* result. */ |
| { |
| mpc_t z, t; |
| int inex_z, inex_t; |
| |
| mpc_init2 (z, MPC_MAX_PREC (x)); |
| mpc_init2 (t, MPC_MAX_PREC (x)); |
| |
| inex_z = mpc_mul_naive (z, x, y, rnd); |
| inex_t = mpc_mul_karatsuba (t, x, y, rnd); |
| |
| if (mpc_cmp (z, t) != 0 || inex_z != inex_t) { |
| fprintf (stderr, "mul_naive and mul_karatsuba differ for rnd=(%s,%s)\n", |
| mpfr_print_rnd_mode(MPC_RND_RE(rnd)), |
| mpfr_print_rnd_mode(MPC_RND_IM(rnd))); |
| MPC_OUT (x); |
| MPC_OUT (y); |
| MPC_OUT (z); |
| MPC_OUT (t); |
| if (inex_z != inex_t) { |
| fprintf (stderr, "inex_re (z): %s\n", MPC_INEX_STR (inex_z)); |
| fprintf (stderr, "inex_re (t): %s\n", MPC_INEX_STR (inex_t)); |
| } |
| exit (1); |
| } |
| |
| mpc_clear (z); |
| mpc_clear (t); |
| } |
| |
| |
| static void |
| testmul (long a, long b, long c, long d, mpfr_prec_t prec, mpc_rnd_t rnd) |
| { |
| mpc_t x, y; |
| |
| mpc_init2 (x, prec); |
| mpc_init2 (y, prec); |
| |
| mpc_set_si_si (x, a, b, rnd); |
| mpc_set_si_si (y, c, d, rnd); |
| |
| cmpmul (x, y, rnd); |
| |
| mpc_clear (x); |
| mpc_clear (y); |
| } |
| |
| |
| static void |
| check_regular (void) |
| { |
| mpc_t x, y; |
| int rnd_re, rnd_im; |
| mpfr_prec_t prec; |
| |
| testmul (247, -65, -223, 416, 8, 24); |
| testmul (5, -896, 5, -32, 3, 2); |
| testmul (-3, -512, -1, -1, 2, 16); |
| testmul (266013312, 121990769, 110585572, 116491059, 27, 0); |
| testmul (170, 9, 450, 251, 8, 0); |
| testmul (768, 85, 169, 440, 8, 16); |
| testmul (145, 1816, 848, 169, 8, 24); |
| |
| mpc_init2 (x, 1000); |
| mpc_init2 (y, 1000); |
| |
| /* Bug 20081114: mpc_mul_karatsuba returned wrong inexact value for |
| imaginary part */ |
| mpc_set_prec (x, 7); |
| mpc_set_prec (y, 7); |
| mpfr_set_str (mpc_realref (x), "0xB4p+733", 16, GMP_RNDN); |
| mpfr_set_str (mpc_imagref (x), "0x90p+244", 16, GMP_RNDN); |
| mpfr_set_str (mpc_realref (y), "0xECp-146", 16, GMP_RNDN); |
| mpfr_set_str (mpc_imagref (y), "0xACp-471", 16, GMP_RNDN); |
| cmpmul (x, y, MPC_RNDNN); |
| mpfr_set_str (mpc_realref (x), "0xB4p+733", 16, GMP_RNDN); |
| mpfr_set_str (mpc_imagref (x), "0x90p+244", 16, GMP_RNDN); |
| mpfr_set_str (mpc_realref (y), "0xACp-471", 16, GMP_RNDN); |
| mpfr_set_str (mpc_imagref (y), "-0xECp-146", 16, GMP_RNDN); |
| cmpmul (x, y, MPC_RNDNN); |
| |
| for (prec = 2; prec < 1000; prec = (mpfr_prec_t) (prec * 1.1 + 1)) |
| { |
| mpc_set_prec (x, prec); |
| mpc_set_prec (y, prec); |
| |
| test_default_random (x, -1024, 1024, 128, 0); |
| test_default_random (y, -1024, 1024, 128, 0); |
| |
| for (rnd_re = 0; rnd_re < 4; rnd_re ++) |
| for (rnd_im = 0; rnd_im < 4; rnd_im ++) |
| cmpmul (x, y, MPC_RND (rnd_re, rnd_im)); |
| } |
| |
| mpc_clear (x); |
| mpc_clear (y); |
| } |
| |
| |
| #ifdef TIMING |
| static void |
| timemul (void) |
| { |
| /* measures the time needed with different precisions for naive and */ |
| /* Karatsuba multiplication */ |
| |
| mpc_t x, y, z; |
| unsigned long int i, j; |
| const unsigned long int tests = 10000; |
| struct tms time_old, time_new; |
| double passed1, passed2; |
| |
| mpc_init (x); |
| mpc_init (y); |
| mpc_init_set_ui_ui (z, 1, 0, MPC_RNDNN); |
| |
| for (i = 1; i < 50; i++) |
| { |
| mpc_set_prec (x, i * BITS_PER_MP_LIMB); |
| mpc_set_prec (y, i * BITS_PER_MP_LIMB); |
| mpc_set_prec (z, i * BITS_PER_MP_LIMB); |
| test_default_random (x, -1, 1, 128, 25); |
| test_default_random (y, -1, 1, 128, 25); |
| |
| times (&time_old); |
| for (j = 0; j < tests; j++) |
| mpc_mul_naive (z, x, y, MPC_RNDNN); |
| times (&time_new); |
| passed1 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100; |
| |
| times (&time_old); |
| for (j = 0; j < tests; j++) |
| mpc_mul_karatsuba (z, x, y, MPC_RNDNN); |
| times (&time_new); |
| passed2 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100; |
| |
| printf ("Time for %3li limbs naive/Karatsuba: %5.2f %5.2f\n", i, |
| passed1, passed2); |
| } |
| |
| mpc_clear (x); |
| mpc_clear (y); |
| mpc_clear (z); |
| } |
| #endif |
| |
| |
| int |
| main (void) |
| { |
| DECL_FUNC (C_CC, f, mpc_mul); |
| f.properties = FUNC_PROP_SYMETRIC; |
| |
| test_start (); |
| |
| #ifdef TIMING |
| timemul (); |
| #endif |
| |
| check_regular (); |
| |
| data_check (f, "mul.dat"); |
| tgeneric (f, 2, 4096, 41, 100); |
| |
| test_end (); |
| return 0; |
| } |