| /* thread.cc: Locking and threading module functions |
| |
| This file is part of Cygwin. |
| |
| This software is a copyrighted work licensed under the terms of the |
| Cygwin license. Please consult the file "CYGWIN_LICENSE" for |
| details. */ |
| |
| /* Implementation overview and caveats: |
| |
| Win32 puts some contraints on what can and cannot be implemented. Where |
| possible we work around those contrainsts. Where we cannot work around |
| the constraints we either pretend to be conformant, or return an error |
| code. |
| |
| Some caveats: PROCESS_SHARED objects, while they pretend to be process |
| shared, may not actually work. Some test cases are needed to determine |
| win32's behaviour. My suspicion is that the win32 handle needs to be |
| opened with different flags for proper operation. |
| |
| R.Collins, April 2001. */ |
| |
| #include "winsup.h" |
| #include "miscfuncs.h" |
| #include "path.h" |
| #include <stdlib.h> |
| #include "sigproc.h" |
| #include "fhandler.h" |
| #include "dtable.h" |
| #include "cygheap.h" |
| #include "ntdll.h" |
| #include "cygwait.h" |
| |
| extern "C" void __fp_lock_all (); |
| extern "C" void __fp_unlock_all (); |
| extern "C" bool valid_sched_parameters(const struct sched_param *); |
| extern "C" int sched_get_thread_priority(HANDLE thread); |
| extern "C" int sched_set_thread_priority(HANDLE thread, int priority); |
| static inline verifyable_object_state |
| verifyable_object_isvalid (void const * objectptr, thread_magic_t magic, |
| void *static_ptr1 = NULL, |
| void *static_ptr2 = NULL, |
| void *static_ptr3 = NULL); |
| |
| extern int threadsafe; |
| |
| const pthread_t pthread_mutex::_new_mutex = (pthread_t) 1; |
| const pthread_t pthread_mutex::_unlocked_mutex = (pthread_t) 2; |
| const pthread_t pthread_mutex::_destroyed_mutex = (pthread_t) 3; |
| |
| |
| template <typename T> |
| static inline |
| void |
| delete_and_clear (T * * const ptr) |
| { |
| delete *ptr; |
| *ptr = 0; |
| } |
| |
| |
| inline bool |
| pthread_mutex::no_owner() |
| { |
| int res; |
| if (!owner) |
| { |
| debug_printf ("NULL owner value"); |
| res = 1; |
| } |
| else if (owner == _destroyed_mutex) |
| { |
| paranoid_printf ("attempt to use destroyed mutex"); |
| res = 1; |
| } |
| else if (owner == _new_mutex || owner == _unlocked_mutex) |
| res = 1; |
| else |
| res = 0; |
| return res; |
| } |
| |
| #undef __getreent |
| extern "C" struct _reent * |
| __getreent () |
| { |
| return &_my_tls.local_clib; |
| } |
| |
| extern "C" void |
| __cygwin_lock_init (_LOCK_T *lock) |
| { |
| *lock = _LOCK_T_INITIALIZER; |
| } |
| |
| extern "C" void |
| __cygwin_lock_init_recursive (_LOCK_T *lock) |
| { |
| *lock = _LOCK_T_RECURSIVE_INITIALIZER; |
| } |
| |
| extern "C" void |
| __cygwin_lock_fini (_LOCK_T *lock) |
| { |
| pthread_mutex_destroy ((pthread_mutex_t*) lock); |
| } |
| |
| extern "C" void |
| __cygwin_lock_lock (_LOCK_T *lock) |
| { |
| paranoid_printf ("threadcount %d. locking", MT_INTERFACE->threadcount); |
| pthread_mutex_lock ((pthread_mutex_t*) lock); |
| } |
| |
| extern "C" int |
| __cygwin_lock_trylock (_LOCK_T *lock) |
| { |
| return pthread_mutex_trylock ((pthread_mutex_t*) lock); |
| } |
| |
| |
| extern "C" void |
| __cygwin_lock_unlock (_LOCK_T *lock) |
| { |
| pthread_mutex_unlock ((pthread_mutex_t*) lock); |
| paranoid_printf ("threadcount %d. unlocked", MT_INTERFACE->threadcount); |
| } |
| |
| static inline verifyable_object_state |
| verifyable_object_isvalid (void const *objectptr, thread_magic_t magic, void *static_ptr1, |
| void *static_ptr2, void *static_ptr3) |
| { |
| verifyable_object_state state = INVALID_OBJECT; |
| |
| __try |
| { |
| if (!objectptr || !(*(const char **) objectptr)) |
| __leave; |
| |
| verifyable_object **object = (verifyable_object **) objectptr; |
| |
| if ((static_ptr1 && *object == static_ptr1) || |
| (static_ptr2 && *object == static_ptr2) || |
| (static_ptr3 && *object == static_ptr3)) |
| state = VALID_STATIC_OBJECT; |
| else if ((*object)->magic == magic) |
| state = VALID_OBJECT; |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| return state; |
| } |
| |
| /* static members */ |
| inline bool |
| pthread_attr::is_good_object (pthread_attr_t const *attr) |
| { |
| if (verifyable_object_isvalid (attr, PTHREAD_ATTR_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_condattr::is_good_object (pthread_condattr_t const *attr) |
| { |
| if (verifyable_object_isvalid (attr, PTHREAD_CONDATTR_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_rwlockattr::is_good_object (pthread_rwlockattr_t const *attr) |
| { |
| if (verifyable_object_isvalid (attr, PTHREAD_RWLOCKATTR_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_key::is_good_object (pthread_key_t const *key) |
| { |
| if (verifyable_object_isvalid (key, PTHREAD_KEY_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_spinlock::is_good_object (pthread_spinlock_t const *mutex) |
| { |
| if (verifyable_object_isvalid (mutex, PTHREAD_SPINLOCK_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_mutex::is_good_object (pthread_mutex_t const *mutex) |
| { |
| if (verifyable_object_isvalid (mutex, PTHREAD_MUTEX_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_mutex::is_initializer (pthread_mutex_t const *mutex) |
| { |
| if (verifyable_object_isvalid (mutex, PTHREAD_MUTEX_MAGIC, |
| PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP, |
| PTHREAD_NORMAL_MUTEX_INITIALIZER_NP, |
| PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP) != VALID_STATIC_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_mutex::is_initializer_or_object (pthread_mutex_t const *mutex) |
| { |
| if (verifyable_object_isvalid (mutex, PTHREAD_MUTEX_MAGIC, |
| PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP, |
| PTHREAD_NORMAL_MUTEX_INITIALIZER_NP, |
| PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP) == INVALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| /* FIXME: Accommodate PTHREAD_MUTEX_ERRORCHECK */ |
| inline bool |
| pthread_mutex::can_be_unlocked () |
| { |
| pthread_t self = pthread::self (); |
| /* Check if the mutex is owned by the current thread and can be unlocked. |
| * Also check for the ANONYMOUS owner to cover NORMAL mutexes as well. */ |
| bool res = type == PTHREAD_MUTEX_NORMAL || no_owner () |
| || (recursion_counter == 1 && pthread::equal (owner, self)); |
| pthread_printf ("recursion_counter %u res %d", recursion_counter, res); |
| return res; |
| } |
| |
| inline bool |
| pthread_mutexattr::is_good_object (pthread_mutexattr_t const * attr) |
| { |
| if (verifyable_object_isvalid (attr, PTHREAD_MUTEXATTR_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool __attribute__ ((used)) |
| pthread::is_good_object (pthread_t const *thread) |
| { |
| if (verifyable_object_isvalid (thread, PTHREAD_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| /* Thread synchronisation */ |
| inline bool |
| pthread_cond::is_good_object (pthread_cond_t const *cond) |
| { |
| if (verifyable_object_isvalid (cond, PTHREAD_COND_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_cond::is_initializer (pthread_cond_t const *cond) |
| { |
| if (verifyable_object_isvalid (cond, PTHREAD_COND_MAGIC, PTHREAD_COND_INITIALIZER) != VALID_STATIC_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_cond::is_initializer_or_object (pthread_cond_t const *cond) |
| { |
| if (verifyable_object_isvalid (cond, PTHREAD_COND_MAGIC, PTHREAD_COND_INITIALIZER) == INVALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_barrierattr::is_good_object (pthread_barrierattr_t const *cond) |
| { |
| if (verifyable_object_isvalid (cond, PTHREAD_BARRIERATTR_MAGIC) |
| != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_barrier::is_good_object (pthread_barrier_t const *cond) |
| { |
| if (verifyable_object_isvalid (cond, PTHREAD_BARRIER_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| /* RW locks */ |
| inline bool |
| pthread_rwlock::is_good_object (pthread_rwlock_t const *rwlock) |
| { |
| if (verifyable_object_isvalid (rwlock, PTHREAD_RWLOCK_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_rwlock::is_initializer (pthread_rwlock_t const *rwlock) |
| { |
| if (verifyable_object_isvalid (rwlock, PTHREAD_RWLOCK_MAGIC, PTHREAD_RWLOCK_INITIALIZER) != VALID_STATIC_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| pthread_rwlock::is_initializer_or_object (pthread_rwlock_t const *rwlock) |
| { |
| if (verifyable_object_isvalid (rwlock, PTHREAD_RWLOCK_MAGIC, PTHREAD_RWLOCK_INITIALIZER) == INVALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| inline bool |
| semaphore::is_good_object (sem_t const * sem) |
| { |
| if (verifyable_object_isvalid (sem, SEM_MAGIC) != VALID_OBJECT) |
| return false; |
| return true; |
| } |
| |
| void |
| MTinterface::Init () |
| { |
| pthread_mutex::init_mutex (); |
| pthread_cond::init_mutex (); |
| pthread_rwlock::init_mutex (); |
| } |
| |
| void |
| MTinterface::fixup_before_fork () |
| { |
| pthread_key::fixup_before_fork (); |
| semaphore::fixup_before_fork (); |
| } |
| |
| /* This function is called from a single threaded process */ |
| void |
| MTinterface::fixup_after_fork () |
| { |
| pthread_key::fixup_after_fork (); |
| |
| threadcount = 0; |
| pthread::init_mainthread (); |
| |
| pthread::fixup_after_fork (); |
| pthread_mutex::fixup_after_fork (); |
| pthread_cond::fixup_after_fork (); |
| pthread_rwlock::fixup_after_fork (); |
| semaphore::fixup_after_fork (); |
| } |
| |
| /* pthread calls */ |
| |
| /* static methods */ |
| void |
| pthread::init_mainthread () |
| { |
| pthread *thread = _my_tls.tid; |
| if (!thread) |
| { |
| thread = new pthread (); |
| if (!thread) |
| api_fatal ("failed to create mainthread object"); |
| } |
| |
| thread->set_tls_self_pointer (); |
| thread->thread_id = GetCurrentThreadId (); |
| if (!DuplicateHandle (GetCurrentProcess (), GetCurrentThread (), |
| GetCurrentProcess (), &thread->win32_obj_id, |
| 0, FALSE, DUPLICATE_SAME_ACCESS)) |
| api_fatal ("failed to create mainthread handle"); |
| if (!thread->create_cancel_event ()) |
| api_fatal ("couldn't create cancel event for main thread"); |
| VerifyHandle (thread->win32_obj_id); |
| /* Make sure the pthread mutex is recursive. See comment in |
| pthread::precreate (called only for subsequent pthreads) |
| for a description. */ |
| thread->mutex.set_type (PTHREAD_MUTEX_RECURSIVE); |
| thread->postcreate (); |
| } |
| |
| pthread * |
| pthread::self () |
| { |
| pthread *thread = _my_tls.tid; |
| if (!thread) |
| { |
| thread = pthread_null::get_null_pthread (); |
| thread->set_tls_self_pointer (); |
| } |
| return thread; |
| } |
| |
| void |
| pthread::set_tls_self_pointer () |
| { |
| cygtls = &_my_tls; |
| _my_tls.tid = this; |
| } |
| |
| List<pthread> pthread::threads; |
| |
| /* member methods */ |
| pthread::pthread ():verifyable_object (PTHREAD_MAGIC), win32_obj_id (0), |
| valid (false), suspended (false), canceled (false), |
| cancelstate (0), canceltype (0), cancel_event (0), |
| joiner (NULL), next (NULL), cleanup_stack (NULL) |
| { |
| if (this != pthread_null::get_null_pthread ()) |
| threads.insert (this); |
| sigprocmask (SIG_SETMASK, NULL, &parent_sigmask); |
| } |
| |
| pthread::~pthread () |
| { |
| if (win32_obj_id) |
| CloseHandle (win32_obj_id); |
| if (cancel_event) |
| CloseHandle (cancel_event); |
| |
| if (this != pthread_null::get_null_pthread ()) |
| threads.remove (this); |
| } |
| |
| bool |
| pthread::create_cancel_event () |
| { |
| cancel_event = ::CreateEvent (&sec_none_nih, true, false, NULL); |
| if (!cancel_event) |
| { |
| system_printf ("couldn't create cancel event, %E"); |
| /* we need the event for correct behaviour */ |
| return false; |
| } |
| return true; |
| } |
| |
| void |
| pthread::precreate (pthread_attr *newattr) |
| { |
| pthread_mutex *verifyable_mutex_obj = &mutex; |
| |
| /* already running ? */ |
| if (win32_obj_id) |
| return; |
| |
| if (newattr) |
| { |
| attr.joinable = newattr->joinable; |
| attr.contentionscope = newattr->contentionscope; |
| attr.inheritsched = newattr->inheritsched; |
| attr.stackaddr = newattr->stackaddr; |
| attr.stacksize = newattr->stacksize; |
| attr.guardsize = newattr->guardsize; |
| } |
| |
| if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) |
| { |
| thread_printf ("New thread object access mutex is not valid. this %p", |
| this); |
| magic = 0; |
| return; |
| } |
| /* This mutex MUST be recursive. Consider the following scenario: |
| - The thread installs a cleanup handler. |
| - The cleanup handler calls a function which itself installs a |
| cleanup handler. |
| - pthread_cancel is called for this thread. |
| - The thread's cleanup handler is called under mutex lock condition. |
| - The cleanup handler calls the subsequent function with cleanup handler. |
| - The function runs to completion, so it calls pthread_cleanup_pop. |
| - pthread_cleanup_pop calls pthread::pop_cleanup_handler which will again |
| try to lock the mutex. |
| - Deadlock. */ |
| mutex.set_type (PTHREAD_MUTEX_RECURSIVE); |
| if (!create_cancel_event ()) |
| magic = 0; |
| } |
| |
| bool |
| pthread::create (void *(*func) (void *), pthread_attr *newattr, |
| void *threadarg) |
| { |
| bool retval; |
| |
| precreate (newattr); |
| if (!magic) |
| return false; |
| |
| function = func; |
| arg = threadarg; |
| |
| mutex.lock (); |
| /* stackaddr holds the uppermost stack address. See the comments in |
| pthread_attr_setstack and pthread_attr_setstackaddr for a description. */ |
| ULONG stacksize = attr.stacksize ?: get_rlimit_stack (); |
| PVOID stackaddr = attr.stackaddr ? ((caddr_t) attr.stackaddr - stacksize) |
| : NULL; |
| win32_obj_id = CygwinCreateThread (thread_init_wrapper, this, stackaddr, |
| stacksize, attr.guardsize, 0, &thread_id); |
| |
| if (!win32_obj_id) |
| { |
| thread_printf ("CreateThread failed: this %p, %E", this); |
| magic = 0; |
| } |
| else |
| { |
| postcreate (); |
| while (!cygtls) |
| yield (); |
| } |
| retval = magic; |
| mutex.unlock (); |
| return retval; |
| } |
| |
| void |
| pthread::postcreate () |
| { |
| valid = true; |
| |
| InterlockedIncrement (&MT_INTERFACE->threadcount); |
| |
| /* Per POSIX the new thread inherits the sched priority from its caller |
| thread if PTHREAD_INHERIT_SCHED is set. |
| FIXME: set the priority appropriately for system contention scope */ |
| if (attr.inheritsched == PTHREAD_INHERIT_SCHED) |
| attr.schedparam.sched_priority |
| = sched_get_thread_priority (GetCurrentThread ()); |
| if (attr.schedparam.sched_priority) |
| sched_set_thread_priority (win32_obj_id, attr.schedparam.sched_priority); |
| } |
| |
| void |
| pthread::exit (void *value_ptr) |
| { |
| class pthread *thread = this; |
| _cygtls *tls = cygtls; /* Save cygtls before deleting this. */ |
| |
| // run cleanup handlers |
| pop_all_cleanup_handlers (); |
| |
| pthread_key::run_all_destructors (); |
| |
| mutex.lock (); |
| // cleanup if thread is in detached state and not joined |
| if (equal (joiner, thread)) |
| delete this; |
| else |
| { |
| valid = false; |
| return_ptr = value_ptr; |
| mutex.unlock (); |
| } |
| |
| if (_my_tls.local_clib.__sdidinit < 0) |
| _my_tls.local_clib.__sdidinit = 0; |
| _reclaim_reent (_REENT); |
| |
| if (InterlockedDecrement (&MT_INTERFACE->threadcount) == 0) |
| ::exit (0); |
| else |
| { |
| if (tls == _main_tls) |
| { |
| cygheap->find_tls (tls); /* Lock _main_tls mutex. */ |
| _cygtls *dummy = (_cygtls *) malloc (sizeof (_cygtls)); |
| *dummy = *_main_tls; |
| _main_tls = dummy; |
| _main_tls->initialized = 0; |
| } |
| /* This also unlocks and closes the _main_tls mutex. */ |
| tls->remove (INFINITE); |
| ExitThread (0); |
| } |
| } |
| |
| int |
| pthread::cancel () |
| { |
| class pthread *thread = this; |
| class pthread *self = pthread::self (); |
| |
| mutex.lock (); |
| |
| if (!valid) |
| { |
| mutex.unlock (); |
| return 0; |
| } |
| |
| if (canceltype == PTHREAD_CANCEL_DEFERRED || |
| cancelstate == PTHREAD_CANCEL_DISABLE) |
| { |
| // cancel deferred |
| mutex.unlock (); |
| canceled = true; |
| SetEvent (cancel_event); |
| return 0; |
| } |
| else if (equal (thread, self)) |
| { |
| mutex.unlock (); |
| cancel_self (); |
| return 0; // Never reached |
| } |
| |
| // cancel asynchronous |
| SuspendThread (win32_obj_id); |
| if (WaitForSingleObject (win32_obj_id, 0) == WAIT_TIMEOUT) |
| { |
| CONTEXT context; |
| context.ContextFlags = CONTEXT_CONTROL; |
| GetThreadContext (win32_obj_id, &context); |
| /* The OS is not foolproof in terms of asynchronous thread cancellation |
| and tends to hang infinitely if we change the instruction pointer. |
| So just don't cancel asynchronously if the thread is currently |
| executing Windows code. Rely on deferred cancellation in this case. */ |
| threadlist_t *tl_entry = cygheap->find_tls (cygtls); |
| if (!cygtls->inside_kernel (&context)) |
| { |
| #ifdef __x86_64__ |
| context.Rip = (ULONG_PTR) pthread::static_cancel_self; |
| #else |
| context.Eip = (DWORD) pthread::static_cancel_self; |
| #endif |
| SetThreadContext (win32_obj_id, &context); |
| } |
| cygheap->unlock_tls (tl_entry); |
| } |
| mutex.unlock (); |
| /* See above. For instance, a thread which waits for a semaphore in sem_wait |
| will call cygwait which in turn calls WFMO. While this WFMO call |
| is cancelable by setting the thread's cancel_event object, the OS |
| apparently refuses to set the thread's context and continues to wait for |
| the WFMO conditions. This is *not* reflected in the return value of |
| SetThreadContext or ResumeThread, btw. |
| So, what we do here is to set the cancel_event as well to allow at least |
| a deferred cancel. */ |
| canceled = true; |
| SetEvent (cancel_event); |
| ResumeThread (win32_obj_id); |
| |
| return 0; |
| } |
| |
| /* TODO: Insert pthread_testcancel into the required functions. |
| |
| Here are the lists of required and optional functions per POSIX.1-2001 |
| and POSIX.1-2008. A star (*) indicates that the Cygwin function already |
| is a cancellation point (aka "calls pthread_testcancel"), an o (o) |
| indicates that the function is not implemented in Cygwin. |
| |
| Required cancellation points: |
| |
| * accept () |
| o aio_suspend () |
| * clock_nanosleep () |
| * close () |
| * connect () |
| * creat () |
| * fcntl () F_SETLKW |
| * fdatasync () |
| * fsync () |
| o getmsg () |
| o getpmsg () |
| * lockf () F_LOCK |
| * mq_receive () |
| * mq_send () |
| * mq_timedreceive () |
| * mq_timedsend () |
| msgrcv () |
| msgsnd () |
| * msync () |
| * nanosleep () |
| * open () |
| * openat () |
| * pause () |
| * poll () |
| * pread () |
| * pselect () |
| * pthread_cond_timedwait () |
| * pthread_cond_wait () |
| * pthread_join () |
| * pthread_testcancel () |
| o putmsg () |
| o putpmsg () |
| * pwrite () |
| * read () |
| * readv () |
| * recv () |
| * recvfrom () |
| * recvmsg () |
| * select () |
| * sem_timedwait () |
| * sem_wait () |
| * send () |
| * sendmsg () |
| * sendto () |
| * sigpause () |
| * sigsuspend () |
| o sigtimedwait () |
| * sigwait () |
| * sigwaitinfo () |
| * sleep () |
| * system () |
| * tcdrain () |
| * usleep () |
| * wait () |
| * wait3() |
| o waitid () |
| * waitpid () |
| * write () |
| * writev () |
| |
| Optional cancellation points: |
| |
| access () |
| asctime () |
| asctime_r () |
| catclose () Implemented externally: libcatgets |
| catgets () Implemented externally: libcatgets |
| catopen () Implemented externally: libcatgets |
| chmod () |
| chown () |
| closedir () |
| closelog () |
| ctermid () |
| ctime () |
| ctime_r () |
| dbm_close () Implemented externally: libgdbm |
| dbm_delete () Implemented externally: libgdbm |
| dbm_fetch () Implemented externally: libgdbm |
| dbm_nextkey () Implemented externally: libgdbm |
| dbm_open () Implemented externally: libgdbm |
| dbm_store () Implemented externally: libgdbm |
| dlclose () |
| dlopen () |
| dprintf () |
| endgrent () |
| endhostent () |
| o endnetent () |
| endprotoent () |
| endpwent () |
| endservent () |
| endutxent () |
| faccessat () |
| fchmod () |
| fchmodat () |
| fchown () |
| fchownat () |
| * fclose () |
| * fcntl () (any value) |
| fflush () |
| fgetc () |
| fgetpos () |
| fgets () |
| fgetwc () |
| fgetws () |
| o fmtmsg () |
| fopen () |
| fpathconf () |
| fprintf () |
| fputc () |
| fputs () |
| fputwc () |
| fputws () |
| fread () |
| freopen () |
| fscanf () |
| fseek () |
| fseeko () |
| fsetpos () |
| fstat () |
| fstatat () |
| ftell () |
| ftello () |
| ftw () |
| futimens () |
| fwprintf () |
| fwrite () |
| fwscanf () |
| getaddrinfo () |
| getc () |
| getc_unlocked () |
| getchar () |
| getchar_unlocked () |
| getcwd () |
| o getdate () |
| getdelim () |
| getgrent () |
| getgrgid () |
| getgrgid_r () |
| getgrnam () |
| getgrnam_r () |
| gethostbyaddr () |
| gethostbyname () |
| gethostent () |
| gethostid () |
| gethostname () |
| getline () |
| getlogin () |
| getlogin_r () |
| getnameinfo () |
| o getnetbyaddr () |
| o getnetbyname () |
| o getnetent () |
| getopt () (if opterr is nonzero) |
| getprotobyname () |
| getprotobynumber () |
| getprotoent () |
| getpwent () |
| * getpwnam () |
| * getpwnam_r () |
| * getpwuid () |
| * getpwuid_r () |
| gets () |
| getservbyname () |
| getservbyport () |
| getservent () |
| getutxent () |
| getutxid () |
| getutxline () |
| getwc () |
| getwchar () |
| getwd () |
| glob () |
| iconv_close () Implemented externally: libiconv |
| iconv_open () Implemented externally: libiconv |
| ioctl () |
| link () |
| linkat () |
| o lio_listio () |
| localtime () |
| localtime_r () |
| * lockf () |
| lseek () |
| lstat () |
| mkdir () |
| mkdirat () |
| mkdtemp () |
| mkfifo () |
| mkfifoat () |
| mknod () |
| mknodat () |
| mkstemp () |
| mktime () |
| nftw () |
| opendir () |
| openlog () |
| pathconf () |
| pclose () |
| perror () |
| popen () |
| posix_fadvise () |
| posix_fallocate () |
| posix_madvise () |
| posix_openpt () |
| posix_spawn () |
| posix_spawnp () |
| o posix_trace_clear () |
| o posix_trace_close () |
| o posix_trace_create () |
| o posix_trace_create_withlog () |
| o posix_trace_eventtypelist_getnext_id () |
| o posix_trace_eventtypelist_rewind () |
| o posix_trace_flush () |
| o posix_trace_get_attr () |
| o posix_trace_get_filter () |
| o posix_trace_get_status () |
| o posix_trace_getnext_event () |
| o posix_trace_open () |
| o posix_trace_rewind () |
| o posix_trace_set_filter () |
| o posix_trace_shutdown () |
| o posix_trace_timedgetnext_event () |
| o posix_typed_mem_open () |
| printf () |
| psiginfo () |
| psignal () |
| pthread_rwlock_rdlock () |
| o pthread_rwlock_timedrdlock () |
| o pthread_rwlock_timedwrlock () |
| pthread_rwlock_wrlock () |
| putc () |
| putc_unlocked () |
| putchar () |
| putchar_unlocked () |
| puts () |
| pututxline () |
| putwc () |
| putwchar () |
| readdir () |
| readdir_r () |
| readlink () |
| readlinkat () |
| remove () |
| rename () |
| renameat () |
| rewind () |
| rewinddir () |
| scandir () |
| scanf () |
| seekdir () |
| semop () |
| setgrent () |
| sethostent () |
| o setnetent () |
| setprotoent () |
| setpwent () |
| setservent () |
| setutxent () |
| sigpause () |
| stat () |
| strerror () |
| strerror_r () |
| strftime () |
| symlink () |
| symlinkat () |
| sync () |
| syslog () |
| tmpfile () |
| tmpnam () |
| ttyname () |
| ttyname_r () |
| tzset () |
| ungetc () |
| ungetwc () |
| unlink () |
| unlinkat () |
| utime () |
| utimensat () |
| utimes () |
| vdprintf () |
| vfprintf () |
| vfwprintf () |
| vprintf () |
| vwprintf () |
| wcsftime () |
| wordexp () |
| wprintf () |
| wscanf () |
| |
| An implementation may also mark other functions not specified in the |
| standard as cancellation points. In particular, an implementation is |
| likely to mark any nonstandard function that may block as a |
| cancellation point. */ |
| |
| void |
| pthread::testcancel () |
| { |
| if (cancelstate == PTHREAD_CANCEL_DISABLE) |
| return; |
| |
| /* We check for the canceled flag first. This allows to use the |
| pthread_testcancel function a lot without adding the overhead of |
| an OS call. Only if the thread is marked as canceled, we wait for |
| cancel_event being really set, on the off-chance that pthread_cancel |
| gets interrupted before calling SetEvent. */ |
| if (canceled) |
| { |
| WaitForSingleObject (cancel_event, INFINITE); |
| cancel_self (); |
| } |
| } |
| |
| /* Return cancel event handle if it exists *and* cancel is not disabled. |
| This function is supposed to be used from other functions which are |
| cancelable and need the cancel event in a WFMO call. */ |
| HANDLE |
| pthread::get_cancel_event () |
| { |
| pthread_t thread = pthread::self (); |
| |
| return (thread && thread->cancel_event |
| && thread->cancelstate != PTHREAD_CANCEL_DISABLE) |
| ? thread->cancel_event : NULL; |
| } |
| |
| void |
| pthread::static_cancel_self () |
| { |
| pthread::self ()->cancel_self (); |
| } |
| |
| int |
| pthread::setcancelstate (int state, int *oldstate) |
| { |
| if (state != PTHREAD_CANCEL_ENABLE && state != PTHREAD_CANCEL_DISABLE) |
| return EINVAL; |
| |
| if (oldstate) |
| *oldstate = cancelstate; |
| cancelstate = state; |
| |
| return 0; |
| } |
| |
| int |
| pthread::setcanceltype (int type, int *oldtype) |
| { |
| if (type != PTHREAD_CANCEL_DEFERRED && type != PTHREAD_CANCEL_ASYNCHRONOUS) |
| return EINVAL; |
| |
| if (oldtype) |
| *oldtype = canceltype; |
| canceltype = type; |
| |
| return 0; |
| } |
| |
| void |
| pthread::push_cleanup_handler (__pthread_cleanup_handler *handler) |
| { |
| if (this != self ()) |
| // TODO: do it? |
| api_fatal ("Attempt to push a cleanup handler across threads"); |
| handler->next = cleanup_stack; |
| cleanup_stack = handler; |
| } |
| |
| void |
| pthread::pop_cleanup_handler (int const execute) |
| { |
| if (this != self ()) |
| // TODO: send a signal or something to the thread ? |
| api_fatal ("Attempt to execute a cleanup handler across threads"); |
| |
| mutex.lock (); |
| |
| if (cleanup_stack != NULL) |
| { |
| __pthread_cleanup_handler *handler = cleanup_stack; |
| |
| if (execute) |
| (*handler->function) (handler->arg); |
| cleanup_stack = handler->next; |
| } |
| |
| mutex.unlock (); |
| } |
| |
| void |
| pthread::pop_all_cleanup_handlers () |
| { |
| /* We will no honor cancels since the thread is exiting. */ |
| cancelstate = PTHREAD_CANCEL_DISABLE; |
| |
| while (cleanup_stack != NULL) |
| pop_cleanup_handler (1); |
| } |
| |
| void |
| pthread::cancel_self () |
| { |
| /* Can someone explain why the pthread:: is needed here? g++ complains |
| without it. */ |
| pthread::exit (PTHREAD_CANCELED); |
| } |
| |
| DWORD |
| pthread::get_thread_id () |
| { |
| return thread_id; |
| } |
| |
| void |
| pthread::_fixup_after_fork () |
| { |
| /* set thread to not running if it is not the forking thread */ |
| if (this != pthread::self ()) |
| { |
| magic = 0; |
| valid = false; |
| win32_obj_id = NULL; |
| canceled = false; |
| cancel_event = NULL; |
| } |
| } |
| |
| void |
| pthread::suspend_except_self () |
| { |
| if (valid && this != pthread::self ()) |
| SuspendThread (win32_obj_id); |
| } |
| |
| void |
| pthread::resume () |
| { |
| if (valid) |
| ResumeThread (win32_obj_id); |
| } |
| |
| /* instance members */ |
| |
| pthread_attr::pthread_attr ():verifyable_object (PTHREAD_ATTR_MAGIC), |
| joinable (PTHREAD_CREATE_JOINABLE), contentionscope (PTHREAD_SCOPE_PROCESS), |
| inheritsched (PTHREAD_INHERIT_SCHED), stackaddr (NULL), stacksize (0), |
| guardsize (wincap.def_guard_page_size ()), name (NULL) |
| { |
| schedparam.sched_priority = 0; |
| } |
| |
| pthread_attr::~pthread_attr () |
| { |
| } |
| |
| pthread_condattr::pthread_condattr ():verifyable_object |
| (PTHREAD_CONDATTR_MAGIC), shared (PTHREAD_PROCESS_PRIVATE), |
| clock_id (CLOCK_REALTIME) |
| { |
| } |
| |
| pthread_condattr::~pthread_condattr () |
| { |
| } |
| |
| List<pthread_cond> pthread_cond::conds; |
| |
| /* This is used for cond creation protection within a single process only */ |
| fast_mutex NO_COPY pthread_cond::cond_initialization_lock; |
| |
| /* We can only be called once. |
| TODO: (no rush) use a non copied memory section to |
| hold an initialization flag. */ |
| void |
| pthread_cond::init_mutex () |
| { |
| if (!cond_initialization_lock.init ()) |
| api_fatal ("Could not create win32 Mutex for pthread cond static initializer support."); |
| } |
| |
| pthread_cond::pthread_cond (pthread_condattr *attr) : |
| verifyable_object (PTHREAD_COND_MAGIC), |
| shared (0), clock_id (CLOCK_REALTIME), waiting (0), pending (0), |
| sem_wait (NULL), mtx_cond(NULL), next (NULL) |
| { |
| pthread_mutex *verifyable_mutex_obj; |
| |
| if (attr) |
| { |
| clock_id = attr->clock_id; |
| |
| if (attr->shared != PTHREAD_PROCESS_PRIVATE) |
| { |
| magic = 0; |
| return; |
| } |
| } |
| |
| verifyable_mutex_obj = &mtx_in; |
| if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) |
| { |
| thread_printf ("Internal cond mutex is not valid. this %p", this); |
| magic = 0; |
| return; |
| } |
| /* |
| * Change the mutex type to NORMAL. |
| * This mutex MUST be of type normal |
| */ |
| mtx_in.set_type (PTHREAD_MUTEX_NORMAL); |
| |
| verifyable_mutex_obj = &mtx_out; |
| if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) |
| { |
| thread_printf ("Internal cond mutex is not valid. this %p", this); |
| magic = 0; |
| return; |
| } |
| /* Change the mutex type to NORMAL to speed up mutex operations */ |
| mtx_out.set_type (PTHREAD_MUTEX_NORMAL); |
| |
| sem_wait = ::CreateSemaphore (&sec_none_nih, 0, INT32_MAX, NULL); |
| if (!sem_wait) |
| { |
| pthread_printf ("CreateSemaphore failed. %E"); |
| magic = 0; |
| return; |
| } |
| |
| conds.insert (this); |
| } |
| |
| pthread_cond::~pthread_cond () |
| { |
| if (sem_wait) |
| CloseHandle (sem_wait); |
| |
| conds.remove (this); |
| } |
| |
| void |
| pthread_cond::unblock (const bool all) |
| { |
| LONG releaseable; |
| |
| /* |
| * Block outgoing threads (and avoid simultanous unblocks) |
| */ |
| mtx_out.lock (); |
| |
| releaseable = waiting - pending; |
| if (releaseable) |
| { |
| LONG released; |
| |
| if (!pending) |
| { |
| /* |
| * Block incoming threads until all waiting threads are released. |
| */ |
| mtx_in.lock (); |
| |
| /* |
| * Calculate releaseable again because threads can enter until |
| * the semaphore has been taken, but they can not leave, therefore pending |
| * is unchanged and releaseable can only get higher |
| */ |
| releaseable = waiting - pending; |
| } |
| |
| released = all ? releaseable : 1; |
| pending += released; |
| /* |
| * Signal threads |
| */ |
| ::ReleaseSemaphore (sem_wait, released, NULL); |
| } |
| |
| /* |
| * And let the threads release. |
| */ |
| mtx_out.unlock (); |
| } |
| |
| int |
| pthread_cond::wait (pthread_mutex_t mutex, PLARGE_INTEGER timeout) |
| { |
| DWORD rv; |
| |
| mtx_in.lock (); |
| if (InterlockedIncrement (&waiting) == 1) |
| mtx_cond = mutex; |
| else if (mtx_cond != mutex) |
| { |
| InterlockedDecrement (&waiting); |
| mtx_in.unlock (); |
| return EINVAL; |
| } |
| mtx_in.unlock (); |
| |
| /* |
| * Release the mutex and wait on semaphore |
| */ |
| ++mutex->condwaits; |
| mutex->unlock (); |
| |
| rv = cygwait (sem_wait, timeout, cw_cancel | cw_sig_restart); |
| |
| mtx_out.lock (); |
| |
| if (rv != WAIT_OBJECT_0 && WaitForSingleObject (sem_wait, 0) == WAIT_OBJECT_0) |
| /* Thread got cancelled ot timed out while a signalling is in progress. |
| Set wait result back to signaled */ |
| rv = WAIT_OBJECT_0; |
| |
| InterlockedDecrement (&waiting); |
| |
| if (rv == WAIT_OBJECT_0 && --pending == 0) |
| /* |
| * All signaled threads are released, |
| * new threads can enter Wait |
| */ |
| mtx_in.unlock (); |
| |
| mtx_out.unlock (); |
| |
| mutex->lock (); |
| --mutex->condwaits; |
| |
| if (rv == WAIT_CANCELED) |
| pthread::static_cancel_self (); |
| else if (rv == WAIT_TIMEOUT) |
| return ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| void |
| pthread_cond::_fixup_after_fork () |
| { |
| waiting = pending = 0; |
| mtx_cond = NULL; |
| |
| /* Unlock eventually locked mutexes */ |
| mtx_in.unlock (); |
| mtx_out.unlock (); |
| |
| sem_wait = ::CreateSemaphore (&sec_none_nih, 0, INT32_MAX, NULL); |
| if (!sem_wait) |
| api_fatal ("pthread_cond::_fixup_after_fork () failed to recreate win32 semaphore"); |
| } |
| |
| pthread_barrierattr::pthread_barrierattr () |
| : verifyable_object (PTHREAD_BARRIERATTR_MAGIC) |
| , shared (PTHREAD_PROCESS_PRIVATE) |
| { |
| } |
| |
| pthread_barrierattr::~pthread_barrierattr () |
| { |
| } |
| |
| pthread_barrier::pthread_barrier () |
| : verifyable_object (PTHREAD_BARRIER_MAGIC) |
| { |
| } |
| |
| pthread_barrier::~pthread_barrier () |
| { |
| } |
| |
| pthread_rwlockattr::pthread_rwlockattr ():verifyable_object |
| (PTHREAD_RWLOCKATTR_MAGIC), shared (PTHREAD_PROCESS_PRIVATE) |
| { |
| } |
| |
| pthread_rwlockattr::~pthread_rwlockattr () |
| { |
| } |
| |
| List<pthread_rwlock> pthread_rwlock::rwlocks; |
| |
| /* This is used for rwlock creation protection within a single process only */ |
| fast_mutex NO_COPY pthread_rwlock::rwlock_initialization_lock; |
| |
| /* We can only be called once. |
| TODO: (no rush) use a non copied memory section to |
| hold an initialization flag. */ |
| void |
| pthread_rwlock::init_mutex () |
| { |
| if (!rwlock_initialization_lock.init ()) |
| api_fatal ("Could not create win32 Mutex for pthread rwlock static initializer support."); |
| } |
| |
| pthread_rwlock::pthread_rwlock (pthread_rwlockattr *attr) : |
| verifyable_object (PTHREAD_RWLOCK_MAGIC), |
| shared (0), waiting_readers (0), waiting_writers (0), writer (NULL), |
| readers (NULL), readers_mx (), mtx (NULL), cond_readers (NULL), cond_writers (NULL), |
| next (NULL) |
| { |
| pthread_mutex *verifyable_mutex_obj = &mtx; |
| pthread_cond *verifyable_cond_obj; |
| |
| if (!readers_mx.init ()) |
| { |
| thread_printf ("Internal rwlock synchronisation mutex is not valid. this %p", this); |
| magic = 0; |
| return; |
| } |
| |
| if (attr) |
| if (attr->shared != PTHREAD_PROCESS_PRIVATE) |
| { |
| magic = 0; |
| return; |
| } |
| |
| if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) |
| { |
| thread_printf ("Internal rwlock mutex is not valid. this %p", this); |
| magic = 0; |
| return; |
| } |
| /* Change the mutex type to NORMAL to speed up mutex operations */ |
| mtx.set_type (PTHREAD_MUTEX_NORMAL); |
| |
| verifyable_cond_obj = &cond_readers; |
| if (!pthread_cond::is_good_object (&verifyable_cond_obj)) |
| { |
| thread_printf ("Internal rwlock readers cond is not valid. this %p", this); |
| magic = 0; |
| return; |
| } |
| |
| verifyable_cond_obj = &cond_writers; |
| if (!pthread_cond::is_good_object (&verifyable_cond_obj)) |
| { |
| thread_printf ("Internal rwlock writers cond is not valid. this %p", this); |
| magic = 0; |
| return; |
| } |
| |
| |
| rwlocks.insert (this); |
| } |
| |
| pthread_rwlock::~pthread_rwlock () |
| { |
| rwlocks.remove (this); |
| } |
| |
| int |
| pthread_rwlock::rdlock (PLARGE_INTEGER timeout) |
| { |
| int result = 0; |
| struct RWLOCK_READER *reader; |
| |
| mtx.lock (); |
| |
| reader = lookup_reader (); |
| if (reader) |
| { |
| if (reader->n < UINT32_MAX) |
| ++reader->n; |
| else |
| result = EAGAIN; |
| goto DONE; |
| } |
| |
| while (writer || waiting_writers) |
| { |
| int ret; |
| |
| pthread_cleanup_push (pthread_rwlock::rdlock_cleanup, this); |
| |
| ++waiting_readers; |
| ret = cond_readers.wait (&mtx, timeout); |
| --waiting_readers; |
| |
| pthread_cleanup_pop (0); |
| |
| if (ret == ETIMEDOUT) |
| { |
| result = ETIMEDOUT; |
| goto DONE; |
| } |
| } |
| |
| if ((reader = add_reader ())) |
| ++reader->n; |
| else |
| { |
| result = EAGAIN; |
| goto DONE; |
| } |
| |
| DONE: |
| mtx.unlock (); |
| |
| return result; |
| } |
| |
| int |
| pthread_rwlock::tryrdlock () |
| { |
| int result = 0; |
| |
| mtx.lock (); |
| |
| if (writer || waiting_writers) |
| result = EBUSY; |
| else |
| { |
| RWLOCK_READER *reader = lookup_reader (); |
| if (!reader) |
| reader = add_reader (); |
| if (reader && reader->n < UINT32_MAX) |
| ++reader->n; |
| else |
| result = EAGAIN; |
| } |
| |
| mtx.unlock (); |
| |
| return result; |
| } |
| |
| int |
| pthread_rwlock::wrlock (PLARGE_INTEGER timeout) |
| { |
| int result = 0; |
| pthread_t self = pthread::self (); |
| |
| mtx.lock (); |
| |
| if (writer == self || lookup_reader ()) |
| { |
| result = EDEADLK; |
| goto DONE; |
| } |
| |
| while (writer || readers) |
| { |
| int ret; |
| |
| pthread_cleanup_push (pthread_rwlock::wrlock_cleanup, this); |
| |
| ++waiting_writers; |
| ret = cond_writers.wait (&mtx, timeout); |
| --waiting_writers; |
| |
| pthread_cleanup_pop (0); |
| |
| if (ret == ETIMEDOUT) |
| { |
| result = ETIMEDOUT; |
| goto DONE; |
| } |
| } |
| |
| writer = self; |
| |
| DONE: |
| mtx.unlock (); |
| |
| return result; |
| } |
| |
| int |
| pthread_rwlock::trywrlock () |
| { |
| int result = 0; |
| pthread_t self = pthread::self (); |
| |
| mtx.lock (); |
| |
| if (writer || readers) |
| result = EBUSY; |
| else |
| writer = self; |
| |
| mtx.unlock (); |
| |
| return result; |
| } |
| |
| int |
| pthread_rwlock::unlock () |
| { |
| int result = 0; |
| |
| mtx.lock (); |
| |
| if (writer) |
| { |
| if (writer != pthread::self ()) |
| { |
| result = EPERM; |
| goto DONE; |
| } |
| |
| writer = NULL; |
| } |
| else |
| { |
| struct RWLOCK_READER *reader = lookup_reader (); |
| |
| if (!reader) |
| { |
| result = EPERM; |
| goto DONE; |
| } |
| if (--reader->n > 0) |
| goto DONE; |
| |
| remove_reader (reader); |
| delete reader; |
| } |
| |
| release (); |
| |
| DONE: |
| mtx.unlock (); |
| |
| return result; |
| } |
| |
| pthread_rwlock::RWLOCK_READER * |
| pthread_rwlock::add_reader () |
| { |
| RWLOCK_READER *rd = new RWLOCK_READER; |
| if (rd) |
| List_insert (readers, rd); |
| return rd; |
| } |
| |
| void |
| pthread_rwlock::remove_reader (struct RWLOCK_READER *rd) |
| { |
| List_remove (readers_mx, readers, rd); |
| } |
| |
| struct pthread_rwlock::RWLOCK_READER * |
| pthread_rwlock::lookup_reader () |
| { |
| readers_mx.lock (); |
| pthread_t thread = pthread::self (); |
| |
| struct RWLOCK_READER *cur = readers; |
| |
| while (cur && cur->thread != thread) |
| cur = cur->next; |
| |
| readers_mx.unlock (); |
| |
| return cur; |
| } |
| |
| void |
| pthread_rwlock::rdlock_cleanup (void *arg) |
| { |
| pthread_rwlock *rwlock = (pthread_rwlock *) arg; |
| |
| --(rwlock->waiting_readers); |
| rwlock->release (); |
| rwlock->mtx.unlock (); |
| } |
| |
| void |
| pthread_rwlock::wrlock_cleanup (void *arg) |
| { |
| pthread_rwlock *rwlock = (pthread_rwlock *) arg; |
| |
| --(rwlock->waiting_writers); |
| rwlock->release (); |
| rwlock->mtx.unlock (); |
| } |
| |
| void |
| pthread_rwlock::_fixup_after_fork () |
| { |
| pthread_t self = pthread::self (); |
| struct RWLOCK_READER **temp = &readers; |
| |
| waiting_readers = 0; |
| waiting_writers = 0; |
| |
| if (!readers_mx.init ()) |
| api_fatal ("pthread_rwlock::_fixup_after_fork () failed to recreate mutex"); |
| |
| /* Unlock eventually locked mutex */ |
| mtx.unlock (); |
| /* |
| * Remove all readers except self |
| */ |
| while (*temp) |
| { |
| if ((*temp)->thread == self) |
| temp = &((*temp)->next); |
| else |
| { |
| struct RWLOCK_READER *cur = *temp; |
| *temp = (*temp)->next; |
| delete cur; |
| } |
| } |
| } |
| |
| /* pthread_key */ |
| /* static members */ |
| /* This stores pthread_key information across fork() boundaries */ |
| List<pthread_key> pthread_key::keys; |
| |
| /* non-static members */ |
| |
| pthread_key::pthread_key (void (*aDestructor) (void *)):verifyable_object (PTHREAD_KEY_MAGIC), destructor (aDestructor) |
| { |
| tls_index = TlsAlloc (); |
| if (tls_index == TLS_OUT_OF_INDEXES) |
| magic = 0; |
| else |
| keys.insert (this); |
| } |
| |
| pthread_key::~pthread_key () |
| { |
| /* We may need to make the list code lock the list during operations |
| */ |
| if (magic != 0) |
| { |
| keys.remove (this); |
| TlsFree (tls_index); |
| } |
| } |
| |
| void |
| pthread_key::_fixup_before_fork () |
| { |
| fork_buf = get (); |
| } |
| |
| void |
| pthread_key::_fixup_after_fork () |
| { |
| tls_index = TlsAlloc (); |
| if (tls_index == TLS_OUT_OF_INDEXES) |
| api_fatal ("pthread_key::recreate_key_from_buffer () failed to reallocate Tls storage"); |
| set (fork_buf); |
| } |
| |
| void |
| pthread_key::run_destructor () |
| { |
| if (destructor) |
| { |
| void *oldValue = get (); |
| if (oldValue) |
| { |
| set (NULL); |
| destructor (oldValue); |
| } |
| } |
| } |
| |
| /* pshared mutexs */ |
| |
| /* static members */ |
| |
| List<pthread_mutex> pthread_mutex::mutexes; |
| |
| /* This is used for mutex creation protection within a single process only */ |
| fast_mutex NO_COPY pthread_mutex::mutex_initialization_lock; |
| |
| void |
| pthread_mutex::init_mutex () |
| { |
| if (!mutex_initialization_lock.init ()) |
| api_fatal ("Could not create win32 Mutex for pthread mutex static initializer support."); |
| } |
| |
| pthread_mutex::pthread_mutex (pthread_mutexattr *attr) : |
| verifyable_object (0), /* set magic to zero initially */ |
| lock_counter (0), |
| win32_obj_id (NULL), owner (_new_mutex), |
| #ifdef DEBUGGING |
| tid (0), |
| #endif |
| recursion_counter (0), condwaits (0), |
| type (PTHREAD_MUTEX_NORMAL), |
| pshared (PTHREAD_PROCESS_PRIVATE) |
| { |
| win32_obj_id = ::CreateEvent (&sec_none_nih, false, false, NULL); |
| if (!win32_obj_id) |
| return; |
| /*attr checked in the C call */ |
| if (!attr) |
| /* handled in the caller */; |
| else if (attr->pshared != PTHREAD_PROCESS_SHARED) |
| type = attr->mutextype; |
| else |
| return; /* Not implemented */ |
| |
| magic = PTHREAD_MUTEX_MAGIC; |
| mutexes.insert (this); |
| } |
| |
| pthread_mutex::~pthread_mutex () |
| { |
| if (win32_obj_id) |
| { |
| CloseHandle (win32_obj_id); |
| win32_obj_id = NULL; |
| } |
| |
| mutexes.remove (this); |
| owner = _destroyed_mutex; |
| magic = 0; |
| } |
| |
| int |
| pthread_mutex::lock (PLARGE_INTEGER timeout) |
| { |
| pthread_t self = ::pthread_self (); |
| int result = 0; |
| |
| if (InterlockedIncrement (&lock_counter) == 1) |
| set_owner (self); |
| else if (type == PTHREAD_MUTEX_NORMAL /* potentially causes deadlock */ |
| || !pthread::equal (owner, self)) |
| { |
| if (cygwait (win32_obj_id, timeout, cw_sig | cw_sig_restart) |
| != WAIT_TIMEOUT) |
| set_owner (self); |
| else |
| { |
| InterlockedDecrement (&lock_counter); |
| result = ETIMEDOUT; |
| } |
| } |
| else |
| { |
| InterlockedDecrement (&lock_counter); |
| if (type == PTHREAD_MUTEX_RECURSIVE) |
| result = lock_recursive (); |
| else |
| result = EDEADLK; |
| } |
| |
| pthread_printf ("mutex %p, self %p, owner %p, lock_counter %d, recursion_counter %u", |
| this, self, owner, lock_counter, recursion_counter); |
| return result; |
| } |
| |
| int |
| pthread_mutex::unlock () |
| { |
| int res = 0; |
| pthread_t self = ::pthread_self (); |
| if (type == PTHREAD_MUTEX_NORMAL) |
| /* no error checking */; |
| else if (no_owner ()) |
| res = type == PTHREAD_MUTEX_ERRORCHECK ? EPERM : 0; |
| else if (!pthread::equal (owner, self)) |
| res = EPERM; |
| if (!res && recursion_counter > 0 && --recursion_counter == 0) |
| /* Don't try to unlock anything if recursion_counter == 0. |
| This means the mutex was never locked or that we've forked. */ |
| { |
| owner = (pthread_t) _unlocked_mutex; |
| #ifdef DEBUGGING |
| tid = 0; // thread-id |
| #endif |
| if (InterlockedDecrement (&lock_counter)) |
| ::SetEvent (win32_obj_id); // Another thread is waiting |
| res = 0; |
| } |
| |
| pthread_printf ("mutex %p, owner %p, self %p, lock_counter %d, recursion_counter %u, type %d, res %d", |
| this, owner, self, lock_counter, recursion_counter, type, res); |
| return res; |
| } |
| |
| int |
| pthread_mutex::trylock () |
| { |
| pthread_t self = ::pthread_self (); |
| int result = 0; |
| |
| if (InterlockedCompareExchange (&lock_counter, 1, 0) == 0) |
| set_owner (self); |
| else if (type == PTHREAD_MUTEX_RECURSIVE && pthread::equal (owner, self)) |
| result = lock_recursive (); |
| else |
| result = EBUSY; |
| |
| return result; |
| } |
| |
| int |
| pthread_mutex::destroy () |
| { |
| if (condwaits || trylock ()) |
| // Do not destroy a condwaited or locked mutex |
| return EBUSY; |
| else if (recursion_counter > 1) |
| { |
| // Do not destroy a recursive locked mutex |
| recursion_counter--; |
| return EBUSY; |
| } |
| |
| delete this; |
| return 0; |
| } |
| |
| void |
| pthread_mutex::_fixup_after_fork () |
| { |
| pthread_printf ("mutex %p", this); |
| if (pshared != PTHREAD_PROCESS_PRIVATE) |
| api_fatal ("pthread_mutex::_fixup_after_fork () doesn't understand PROCESS_SHARED mutex's"); |
| |
| /* All waiting threads are gone after a fork */ |
| recursion_counter = 0; |
| lock_counter = 0; |
| condwaits = 0; |
| #ifdef DEBUGGING |
| tid = 0xffffffff; /* Don't know the tid after a fork */ |
| #endif |
| win32_obj_id = ::CreateEvent (&sec_none_nih, false, false, NULL); |
| if (!win32_obj_id) |
| api_fatal ("pthread_mutex::_fixup_after_fork () failed to recreate win32 event for mutex"); |
| } |
| |
| pthread_mutexattr::pthread_mutexattr ():verifyable_object (PTHREAD_MUTEXATTR_MAGIC), |
| pshared (PTHREAD_PROCESS_PRIVATE), mutextype (PTHREAD_MUTEX_NORMAL) |
| { |
| } |
| |
| pthread_mutexattr::~pthread_mutexattr () |
| { |
| } |
| |
| /* pshared spinlocks |
| |
| The infrastructure is provided by the underlying pthread_mutex class. |
| The rest is a simplification implementing spin locking. */ |
| |
| pthread_spinlock::pthread_spinlock (int pshared) : |
| pthread_mutex (NULL) |
| { |
| magic = PTHREAD_SPINLOCK_MAGIC; |
| set_type (PTHREAD_MUTEX_NORMAL); |
| set_shared (pshared); |
| } |
| |
| int |
| pthread_spinlock::lock () |
| { |
| pthread_t self = ::pthread_self (); |
| int result = -1; |
| unsigned spins = 0; |
| |
| /* |
| We want to spin using 'pause' instruction on multi-core system but we |
| want to avoid this on single-core systems. |
| |
| The limit of 1000 spins is semi-arbitrary. Microsoft suggests (in their |
| InitializeCriticalSectionAndSpinCount documentation on MSDN) they are |
| using spin count limit 4000 for their heap manager critical |
| sections. Other source suggest spin count as small as 200 for fast path |
| of mutex locking. |
| */ |
| unsigned const FAST_SPINS_LIMIT = wincap.cpu_count () != 1 ? 1000 : 0; |
| |
| do |
| { |
| if (InterlockedExchange (&lock_counter, 1) == 0) |
| { |
| set_owner (self); |
| result = 0; |
| } |
| else if (unlikely(pthread::equal (owner, self))) |
| result = EDEADLK; |
| else if (spins < FAST_SPINS_LIMIT) |
| { |
| ++spins; |
| __asm__ volatile ("pause":::); |
| } |
| else |
| { |
| /* Minimal timeout to minimize CPU usage while still spinning. */ |
| LARGE_INTEGER timeout; |
| timeout.QuadPart = -10000LL; |
| /* FIXME: no cancel? */ |
| cygwait (win32_obj_id, &timeout, cw_sig); |
| } |
| } |
| while (result == -1); |
| pthread_printf ("spinlock %p, self %p, owner %p", this, self, owner); |
| return result; |
| } |
| |
| int |
| pthread_spinlock::unlock () |
| { |
| pthread_t self = ::pthread_self (); |
| int result = 0; |
| |
| if (!pthread::equal (owner, self)) |
| result = EPERM; |
| else |
| { |
| owner = (pthread_t) _unlocked_mutex; |
| #ifdef DEBUGGING |
| tid = 0; // thread-id |
| #endif |
| InterlockedExchange (&lock_counter, 0); |
| ::SetEvent (win32_obj_id); |
| result = 0; |
| } |
| pthread_printf ("spinlock %p, owner %p, self %p, res %d", |
| this, owner, self, result); |
| return result; |
| } |
| |
| DWORD WINAPI |
| pthread::thread_init_wrapper (void *arg) |
| { |
| pthread *thread = (pthread *) arg; |
| /* This *must* be set prior to calling set_tls_self_pointer or there is |
| a race with the signal processing code which may miss the signal mask |
| settings. */ |
| _my_tls.sigmask = thread->parent_sigmask; |
| thread->set_tls_self_pointer (); |
| |
| // Give thread default name |
| SetThreadName (GetCurrentThreadId (), program_invocation_short_name); |
| |
| thread->mutex.lock (); |
| |
| // if thread is detached force cleanup on exit |
| if (thread->attr.joinable == PTHREAD_CREATE_DETACHED && thread->joiner == NULL) |
| thread->joiner = thread; |
| thread->mutex.unlock (); |
| |
| debug_printf ("tid %p", &_my_tls); |
| thread_printf ("started thread %p %p %p %p %p %p", arg, &_my_tls.local_clib, |
| _impure_ptr, thread, thread->function, thread->arg); |
| |
| // call the user's thread |
| void *ret = thread->function (thread->arg); |
| |
| thread->exit (ret); |
| |
| return 0; // just for show. Never returns. |
| } |
| |
| unsigned long |
| pthread::getsequence_np () |
| { |
| return get_thread_id (); |
| } |
| |
| int |
| pthread::create (pthread_t *thread, const pthread_attr_t *attr, |
| void *(*start_routine) (void *), void *arg) |
| { |
| if (attr && !pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| |
| *thread = new pthread (); |
| if (!(*thread)->create (start_routine, attr ? *attr : NULL, arg)) |
| { |
| delete (*thread); |
| *thread = NULL; |
| return EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| int |
| pthread::once (pthread_once_t *once_control, void (*init_routine) (void)) |
| { |
| // already done ? |
| if (once_control->state) |
| return 0; |
| |
| pthread_mutex_lock (&once_control->mutex); |
| /* Here we must set a cancellation handler to unlock the mutex if needed */ |
| /* but a cancellation handler is not the right thing. We need this in the thread |
| *cleanup routine. Assumption: a thread can only be in one pthread_once routine |
| *at a time. Stote a mutex_t *in the pthread_structure. if that's non null unlock |
| *on pthread_exit (); |
| */ |
| if (!once_control->state) |
| { |
| init_routine (); |
| once_control->state = 1; |
| } |
| /* Here we must remove our cancellation handler */ |
| pthread_mutex_unlock (&once_control->mutex); |
| return 0; |
| } |
| |
| int |
| pthread::cancel (pthread_t thread) |
| { |
| if (!is_good_object (&thread)) |
| return ESRCH; |
| |
| return thread->cancel (); |
| } |
| |
| void |
| pthread::atforkprepare () |
| { |
| callback *cb = MT_INTERFACE->pthread_prepare; |
| while (cb) |
| { |
| cb->cb (); |
| cb = cb->next; |
| } |
| |
| __fp_lock_all (); |
| |
| MT_INTERFACE->fixup_before_fork (); |
| } |
| |
| void |
| pthread::atforkparent () |
| { |
| __fp_unlock_all (); |
| |
| callback *cb = MT_INTERFACE->pthread_parent; |
| while (cb) |
| { |
| cb->cb (); |
| cb = cb->next; |
| } |
| } |
| |
| void |
| pthread::atforkchild () |
| { |
| MT_INTERFACE->fixup_after_fork (); |
| |
| __fp_unlock_all (); |
| |
| callback *cb = MT_INTERFACE->pthread_child; |
| while (cb) |
| { |
| cb->cb (); |
| cb = cb->next; |
| } |
| } |
| |
| /* Register a set of functions to run before and after fork. |
| prepare calls are called in LI-FC order. |
| parent and child calls are called in FI-FC order. */ |
| int |
| pthread::atfork (void (*prepare)(void), void (*parent)(void), void (*child)(void)) |
| { |
| callback *prepcb = NULL, *parentcb = NULL, *childcb = NULL; |
| if (prepare) |
| { |
| prepcb = new callback; |
| if (!prepcb) |
| return ENOMEM; |
| } |
| if (parent) |
| { |
| parentcb = new callback; |
| if (!parentcb) |
| { |
| if (prepcb) |
| delete prepcb; |
| return ENOMEM; |
| } |
| } |
| if (child) |
| { |
| childcb = new callback; |
| if (!childcb) |
| { |
| if (prepcb) |
| delete prepcb; |
| if (parentcb) |
| delete parentcb; |
| return ENOMEM; |
| } |
| } |
| |
| if (prepcb) |
| { |
| prepcb->cb = prepare; |
| List_insert (MT_INTERFACE->pthread_prepare, prepcb); |
| } |
| if (parentcb) |
| { |
| parentcb->cb = parent; |
| callback **t = &MT_INTERFACE->pthread_parent; |
| while (*t) |
| t = &(*t)->next; |
| /* t = pointer to last next in the list */ |
| List_insert (*t, parentcb); |
| } |
| if (childcb) |
| { |
| childcb->cb = child; |
| callback **t = &MT_INTERFACE->pthread_child; |
| while (*t) |
| t = &(*t)->next; |
| /* t = pointer to last next in the list */ |
| List_insert (*t, childcb); |
| } |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_init (pthread_attr_t *attr) |
| { |
| *attr = new pthread_attr; |
| if (!pthread_attr::is_good_object (attr)) |
| { |
| delete (*attr); |
| *attr = NULL; |
| return ENOMEM; |
| } |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_getinheritsched (const pthread_attr_t *attr, |
| int *inheritsched) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| *inheritsched = (*attr)->inheritsched; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_getschedparam (const pthread_attr_t *attr, |
| struct sched_param *param) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| *param = (*attr)->schedparam; |
| return 0; |
| } |
| |
| /* From a pure code point of view, this should call a helper in sched.cc, |
| to allow for someone adding scheduler policy changes to win32 in the future. |
| However that's extremely unlikely, so short and sweet will do us */ |
| extern "C" int |
| pthread_attr_getschedpolicy (const pthread_attr_t *attr, int *policy) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| *policy = SCHED_FIFO; |
| return 0; |
| } |
| |
| |
| extern "C" int |
| pthread_attr_getscope (const pthread_attr_t *attr, int *contentionscope) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| *contentionscope = (*attr)->contentionscope; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setdetachstate (pthread_attr_t *attr, int detachstate) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (detachstate < 0 || detachstate > 1) |
| return EINVAL; |
| (*attr)->joinable = detachstate; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_getdetachstate (const pthread_attr_t *attr, int *detachstate) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| *detachstate = (*attr)->joinable; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setinheritsched (pthread_attr_t *attr, int inheritsched) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (inheritsched != PTHREAD_INHERIT_SCHED |
| && inheritsched != PTHREAD_EXPLICIT_SCHED) |
| return ENOTSUP; |
| (*attr)->inheritsched = inheritsched; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setschedparam (pthread_attr_t *attr, |
| const struct sched_param *param) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (!valid_sched_parameters (param)) |
| return ENOTSUP; |
| (*attr)->schedparam = *param; |
| return 0; |
| } |
| |
| /* See __pthread_attr_getschedpolicy for some notes */ |
| extern "C" int |
| pthread_attr_setschedpolicy (pthread_attr_t *attr, int policy) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (policy != SCHED_FIFO) |
| return ENOTSUP; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setscope (pthread_attr_t *attr, int contentionscope) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (contentionscope != PTHREAD_SCOPE_SYSTEM |
| && contentionscope != PTHREAD_SCOPE_PROCESS) |
| return EINVAL; |
| /* In future, we may be able to support system scope by escalating the thread |
| priority to exceed the priority class. For now we only support PROCESS scope. */ |
| if (contentionscope != PTHREAD_SCOPE_PROCESS) |
| return ENOTSUP; |
| (*attr)->contentionscope = contentionscope; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setstack (pthread_attr_t *attr, void *addr, size_t size) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (addr == NULL) |
| return EINVAL; |
| if (size < PTHREAD_STACK_MIN) |
| return EINVAL; |
| /* The incoming address addr points to the lowest addressable byte of a |
| buffer of size bytes. Due to the way pthread_attr_setstackaddr is defined |
| on Linux, the lowest address ot the stack can't be reliably computed when |
| using pthread_attr_setstackaddr/pthread_attr_setstacksize. Therefore we |
| store the uppermost address of the stack in stackaddr. See also the |
| comment in pthread_attr_setstackaddr. */ |
| (*attr)->stackaddr = (caddr_t) addr + size; |
| (*attr)->stacksize = size; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_getstack (const pthread_attr_t *attr, void **addr, size_t *size) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| /* stackaddr holds the uppermost stack address. See the comment in |
| pthread_attr_setstack. */ |
| *addr = (caddr_t) (*attr)->stackaddr - (*attr)->stacksize; |
| *size = (*attr)->stacksize; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setstackaddr (pthread_attr_t *attr, void *addr) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (addr == NULL) |
| return EINVAL; |
| /* This function is deprecated in SUSv4, but SUSv3 didn't define |
| if the incoming stack address is the lowest address of the memory |
| area defined as stack, or if it's the start address of the stack |
| at which it begins its growth. On Linux it's the latter which |
| means the uppermost stack address on x86 based systems. See comment |
| in pthread_attr_setstack as well. */ |
| (*attr)->stackaddr = addr; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_getstackaddr (const pthread_attr_t *attr, void **addr) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| /* See comment in pthread_attr_setstackaddr. */ |
| *addr = (*attr)->stackaddr; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setstacksize (pthread_attr_t *attr, size_t size) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| if (size < PTHREAD_STACK_MIN) |
| return EINVAL; |
| (*attr)->stacksize = size; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_getstacksize (const pthread_attr_t *attr, size_t *size) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| /* If the stacksize has not been set by the application, return the |
| default stacksize. Note that this is different from what |
| pthread_attr_getstack returns. */ |
| *size = (*attr)->stacksize ?: get_rlimit_stack (); |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_setguardsize (pthread_attr_t *attr, size_t size) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| /* We don't support a guardsize of more than 1 Meg. */ |
| if (size > 1024 * 1024) |
| return EINVAL; |
| (*attr)->guardsize = size; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_getguardsize (const pthread_attr_t *attr, size_t *size) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| *size = (*attr)->guardsize; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_attr_destroy (pthread_attr_t *attr) |
| { |
| if (!pthread_attr::is_good_object (attr)) |
| return EINVAL; |
| delete (*attr); |
| *attr = NULL; |
| return 0; |
| } |
| |
| int |
| pthread::join (pthread_t *thread, void **return_val) |
| { |
| pthread_t joiner = self (); |
| |
| joiner->testcancel (); |
| |
| // Initialize return val with NULL |
| if (return_val) |
| *return_val = NULL; |
| |
| if (!is_good_object (&joiner)) |
| return EINVAL; |
| |
| if (!is_good_object (thread)) |
| return ESRCH; |
| |
| if (equal (*thread,joiner)) |
| return EDEADLK; |
| |
| (*thread)->mutex.lock (); |
| |
| if ((*thread)->attr.joinable == PTHREAD_CREATE_DETACHED) |
| { |
| (*thread)->mutex.unlock (); |
| return EINVAL; |
| } |
| else |
| { |
| (*thread)->joiner = joiner; |
| (*thread)->attr.joinable = PTHREAD_CREATE_DETACHED; |
| (*thread)->mutex.unlock (); |
| |
| switch (cygwait ((*thread)->win32_obj_id, cw_infinite, |
| cw_sig | cw_sig_restart | cw_cancel)) |
| { |
| case WAIT_OBJECT_0: |
| if (return_val) |
| *return_val = (*thread)->return_ptr; |
| delete (*thread); |
| break; |
| case WAIT_CANCELED: |
| // set joined thread back to joinable since we got canceled |
| (*thread)->joiner = NULL; |
| (*thread)->attr.joinable = PTHREAD_CREATE_JOINABLE; |
| joiner->cancel_self (); |
| // never reached |
| break; |
| default: |
| // should never happen |
| return EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int |
| pthread::detach (pthread_t *thread) |
| { |
| if (!is_good_object (thread)) |
| return ESRCH; |
| |
| (*thread)->mutex.lock (); |
| if ((*thread)->attr.joinable == PTHREAD_CREATE_DETACHED) |
| { |
| (*thread)->mutex.unlock (); |
| return EINVAL; |
| } |
| |
| // check if thread is still alive |
| if ((*thread)->valid && WaitForSingleObject ((*thread)->win32_obj_id, 0) == WAIT_TIMEOUT) |
| { |
| // force cleanup on exit |
| (*thread)->joiner = *thread; |
| (*thread)->attr.joinable = PTHREAD_CREATE_DETACHED; |
| (*thread)->mutex.unlock (); |
| } |
| else |
| { |
| // thread has already terminated. |
| (*thread)->mutex.unlock (); |
| delete (*thread); |
| } |
| |
| return 0; |
| } |
| |
| int |
| pthread::suspend (pthread_t *thread) |
| { |
| if (!is_good_object (thread)) |
| return ESRCH; |
| |
| if ((*thread)->suspended == false) |
| { |
| (*thread)->suspended = true; |
| SuspendThread ((*thread)->win32_obj_id); |
| } |
| |
| return 0; |
| } |
| |
| |
| int |
| pthread::resume (pthread_t *thread) |
| { |
| if (!is_good_object (thread)) |
| return ESRCH; |
| |
| if ((*thread)->suspended == true) |
| ResumeThread ((*thread)->win32_obj_id); |
| (*thread)->suspended = false; |
| |
| return 0; |
| } |
| |
| static inline int |
| pthread_convert_abstime (clockid_t clock_id, const struct timespec *abstime, |
| PLARGE_INTEGER timeout) |
| { |
| struct timespec tp; |
| |
| /* According to SUSv3, the abstime value must be checked for validity. */ |
| if (abstime->tv_sec < 0 |
| || abstime->tv_nsec < 0 |
| || abstime->tv_nsec > 999999999) |
| return EINVAL; |
| |
| /* Check for immediate timeout before converting */ |
| clock_gettime (clock_id, &tp); |
| if (tp.tv_sec > abstime->tv_sec |
| || (tp.tv_sec == abstime->tv_sec |
| && tp.tv_nsec > abstime->tv_nsec)) |
| return ETIMEDOUT; |
| |
| timeout->QuadPart = abstime->tv_sec * NSPERSEC |
| + (abstime->tv_nsec + 99LL) / 100LL; |
| switch (clock_id) |
| { |
| case CLOCK_REALTIME: |
| timeout->QuadPart += FACTOR; |
| break; |
| default: |
| /* other clocks must be handled as relative timeout */ |
| timeout->QuadPart -= tp.tv_sec * NSPERSEC + tp.tv_nsec / 100LL; |
| timeout->QuadPart *= -1LL; |
| break; |
| } |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_getattr_np (pthread_t thread, pthread_attr_t *attr) |
| { |
| THREAD_BASIC_INFORMATION tbi; |
| NTSTATUS status; |
| |
| if (!pthread::is_good_object (&thread)) |
| return ESRCH; |
| |
| /* attr may not be pre-initialized */ |
| if (!pthread_attr::is_good_object (attr)) |
| { |
| int rv = pthread_attr_init (attr); |
| if (rv != 0) |
| return rv; |
| } |
| |
| (*attr)->joinable = thread->attr.joinable; |
| (*attr)->contentionscope = thread->attr.contentionscope; |
| (*attr)->inheritsched = thread->attr.inheritsched; |
| (*attr)->schedparam = thread->attr.schedparam; |
| (*attr)->guardsize = thread->attr.guardsize; |
| |
| status = NtQueryInformationThread (thread->win32_obj_id, |
| ThreadBasicInformation, |
| &tbi, sizeof (tbi), NULL); |
| if (NT_SUCCESS (status)) |
| { |
| PTEB teb = (PTEB) tbi.TebBaseAddress; |
| /* stackaddr holds the uppermost stack address. See the comments |
| in pthread_attr_setstack and pthread_attr_setstackaddr for a |
| description. */ |
| (*attr)->stackaddr = teb->Tib.StackBase; |
| (*attr)->stacksize = (uintptr_t) teb->Tib.StackBase |
| - (uintptr_t) (teb->DeallocationStack ?: teb->Tib.StackLimit); |
| } |
| else |
| { |
| debug_printf ("NtQueryInformationThread(ThreadBasicInformation), " |
| "status %y", status); |
| (*attr)->stackaddr = thread->attr.stackaddr; |
| (*attr)->stacksize = thread->attr.stacksize; |
| } |
| |
| return 0; |
| } |
| |
| /* For Linux compatibility, the length of a thread name is 16 characters. */ |
| #define THRNAMELEN 16 |
| |
| extern "C" int |
| pthread_getname_np (pthread_t thread, char *buf, size_t buflen) |
| { |
| char *name; |
| |
| if (!pthread::is_good_object (&thread)) |
| return ESRCH; |
| |
| if (!thread->attr.name) |
| name = program_invocation_short_name; |
| else |
| name = thread->attr.name; |
| |
| /* Return ERANGE if the provided buffer is less than THRNAMELEN. Truncate |
| and zero-terminate the name to fit in buf. This means we always return |
| something if the buffer is THRNAMELEN or larger, but there is no way to |
| tell if we have the whole name. */ |
| if (buflen < THRNAMELEN) |
| return ERANGE; |
| |
| int ret = 0; |
| __try |
| { |
| strlcpy (buf, name, buflen); |
| } |
| __except (NO_ERROR) |
| { |
| ret = EFAULT; |
| } |
| __endtry |
| |
| return ret; |
| } |
| |
| extern "C" int |
| pthread_setname_np (pthread_t thread, const char *name) |
| { |
| char *oldname, *cp; |
| |
| if (!pthread::is_good_object (&thread)) |
| return ESRCH; |
| |
| if (strlen (name) > THRNAMELEN) |
| return ERANGE; |
| |
| cp = strdup (name); |
| if (!cp) |
| return ENOMEM; |
| |
| oldname = thread->attr.name; |
| thread->attr.name = cp; |
| |
| SetThreadName (GetThreadId (thread->win32_obj_id), thread->attr.name); |
| |
| if (oldname) |
| free (oldname); |
| |
| return 0; |
| } |
| |
| #undef THRNAMELEN |
| |
| /* provided for source level compatability. |
| See http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_getconcurrency.html |
| */ |
| extern "C" int |
| pthread_getconcurrency () |
| { |
| return MT_INTERFACE->concurrency; |
| } |
| |
| extern "C" int |
| pthread_getcpuclockid (pthread_t thread, clockid_t *clk_id) |
| { |
| if (!pthread::is_good_object (&thread)) |
| return (ESRCH); |
| *clk_id = (clockid_t) THREADID_TO_CLOCKID (thread->getsequence_np ()); |
| return 0; |
| } |
| |
| /* keep this in sync with sched.cc */ |
| extern "C" int |
| pthread_getschedparam (pthread_t thread, int *policy, |
| struct sched_param *param) |
| { |
| if (!pthread::is_good_object (&thread)) |
| return ESRCH; |
| *policy = SCHED_FIFO; |
| param->sched_priority = sched_get_thread_priority (thread->win32_obj_id); |
| return 0; |
| } |
| |
| /* Thread Specific Data */ |
| extern "C" int |
| pthread_key_create (pthread_key_t *key, void (*destructor) (void *)) |
| { |
| *key = new pthread_key (destructor); |
| |
| if (!pthread_key::is_good_object (key)) |
| { |
| delete (*key); |
| *key = NULL; |
| return EAGAIN; |
| } |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_key_delete (pthread_key_t key) |
| { |
| if (!pthread_key::is_good_object (&key)) |
| return EINVAL; |
| |
| delete (key); |
| return 0; |
| } |
| |
| /* provided for source level compatability. See |
| http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_getconcurrency.html |
| */ |
| extern "C" int |
| pthread_setconcurrency (int new_level) |
| { |
| if (new_level < 0) |
| return EINVAL; |
| MT_INTERFACE->concurrency = new_level; |
| return 0; |
| } |
| |
| /* keep syncronised with sched.cc */ |
| extern "C" int |
| pthread_setschedparam (pthread_t thread, int policy, |
| const struct sched_param *param) |
| { |
| if (!pthread::is_good_object (&thread)) |
| return ESRCH; |
| if (policy != SCHED_FIFO) |
| return ENOTSUP; |
| if (!param) |
| return EINVAL; |
| int rv = |
| sched_set_thread_priority (thread->win32_obj_id, param->sched_priority); |
| if (!rv) |
| thread->attr.schedparam.sched_priority = param->sched_priority; |
| return rv; |
| } |
| |
| extern "C" int |
| pthread_setschedprio (pthread_t thread, int priority) |
| { |
| if (!pthread::is_good_object (&thread)) |
| return ESRCH; |
| int rv = |
| sched_set_thread_priority (thread->win32_obj_id, priority); |
| if (!rv) |
| thread->attr.schedparam.sched_priority = priority; |
| return rv; |
| } |
| |
| extern "C" int |
| pthread_setspecific (pthread_key_t key, const void *value) |
| { |
| if (!pthread_key::is_good_object (&key)) |
| return EINVAL; |
| (key)->set (value); |
| return 0; |
| } |
| |
| extern "C" void * |
| pthread_getspecific (pthread_key_t key) |
| { |
| if (!pthread_key::is_good_object (&key)) |
| return NULL; |
| |
| return (key)->get (); |
| |
| } |
| |
| extern "C" int |
| pthread_cond_destroy (pthread_cond_t *cond) |
| { |
| if (pthread_cond::is_initializer (cond)) |
| return 0; |
| if (!pthread_cond::is_good_object (cond)) |
| return EINVAL; |
| |
| /* reads are atomic */ |
| if ((*cond)->waiting) |
| return EBUSY; |
| |
| delete (*cond); |
| *cond = NULL; |
| |
| return 0; |
| } |
| |
| int |
| pthread_cond::init (pthread_cond_t *cond, const pthread_condattr_t *attr) |
| { |
| pthread_cond_t new_cond; |
| |
| if (attr && !pthread_condattr::is_good_object (attr)) |
| return EINVAL; |
| |
| cond_initialization_lock.lock (); |
| |
| new_cond = new pthread_cond (attr ? (*attr) : NULL); |
| if (!is_good_object (&new_cond)) |
| { |
| delete new_cond; |
| cond_initialization_lock.unlock (); |
| return EAGAIN; |
| } |
| |
| int ret = 0; |
| |
| __try |
| { |
| *cond = new_cond; |
| } |
| __except (NO_ERROR) |
| { |
| delete new_cond; |
| ret = EINVAL; |
| } |
| __endtry |
| cond_initialization_lock.unlock (); |
| return ret; |
| } |
| |
| extern "C" int |
| pthread_cond_broadcast (pthread_cond_t *cond) |
| { |
| if (pthread_cond::is_initializer (cond)) |
| return 0; |
| if (!pthread_cond::is_good_object (cond)) |
| return EINVAL; |
| |
| (*cond)->unblock (true); |
| |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_cond_signal (pthread_cond_t *cond) |
| { |
| if (pthread_cond::is_initializer (cond)) |
| return 0; |
| if (!pthread_cond::is_good_object (cond)) |
| return EINVAL; |
| |
| (*cond)->unblock (false); |
| |
| return 0; |
| } |
| |
| static int |
| __pthread_cond_wait_init (pthread_cond_t *cond, pthread_mutex_t *mutex) |
| { |
| if (!pthread_mutex::is_good_object (mutex)) |
| return EINVAL; |
| if (!(*mutex)->can_be_unlocked ()) |
| return EPERM; |
| |
| if (pthread_cond::is_initializer (cond)) |
| pthread_cond::init (cond, NULL); |
| if (!pthread_cond::is_good_object (cond)) |
| return EINVAL; |
| |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t *mutex, |
| const struct timespec *abstime) |
| { |
| LARGE_INTEGER timeout; |
| |
| pthread_testcancel (); |
| |
| __try |
| { |
| int err = __pthread_cond_wait_init (cond, mutex); |
| if (err) |
| return err; |
| |
| err = pthread_convert_abstime ((*cond)->clock_id, abstime, &timeout); |
| if (err) |
| return err; |
| |
| return (*cond)->wait (*mutex, &timeout); |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| return EINVAL; |
| } |
| |
| extern "C" int |
| pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex) |
| { |
| pthread_testcancel (); |
| |
| int err = __pthread_cond_wait_init (cond, mutex); |
| if (err) |
| return err; |
| return (*cond)->wait (*mutex, NULL); |
| } |
| |
| extern "C" int |
| pthread_condattr_init (pthread_condattr_t *condattr) |
| { |
| *condattr = new pthread_condattr; |
| if (!pthread_condattr::is_good_object (condattr)) |
| { |
| delete (*condattr); |
| *condattr = NULL; |
| return ENOMEM; |
| } |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_condattr_getpshared (const pthread_condattr_t *attr, int *pshared) |
| { |
| if (!pthread_condattr::is_good_object (attr)) |
| return EINVAL; |
| *pshared = (*attr)->shared; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_condattr_setpshared (pthread_condattr_t *attr, int pshared) |
| { |
| if (!pthread_condattr::is_good_object (attr)) |
| return EINVAL; |
| if ((pshared < 0) || (pshared > 1)) |
| return EINVAL; |
| /* shared cond vars not currently supported */ |
| if (pshared != PTHREAD_PROCESS_PRIVATE) |
| return EINVAL; |
| (*attr)->shared = pshared; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_condattr_getclock (const pthread_condattr_t *attr, clockid_t *clock_id) |
| { |
| if (!pthread_condattr::is_good_object (attr)) |
| return EINVAL; |
| *clock_id = (*attr)->clock_id; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_condattr_setclock (pthread_condattr_t *attr, clockid_t clock_id) |
| { |
| if (!pthread_condattr::is_good_object (attr)) |
| return EINVAL; |
| switch (clock_id) |
| { |
| case CLOCK_REALTIME: |
| case CLOCK_MONOTONIC: |
| break; |
| default: |
| return EINVAL; |
| } |
| (*attr)->clock_id = clock_id; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_condattr_destroy (pthread_condattr_t *condattr) |
| { |
| if (!pthread_condattr::is_good_object (condattr)) |
| return EINVAL; |
| delete (*condattr); |
| *condattr = NULL; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_rwlock_destroy (pthread_rwlock_t *rwlock) |
| { |
| if (pthread_rwlock::is_initializer (rwlock)) |
| return 0; |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| if ((*rwlock)->writer || (*rwlock)->readers || |
| (*rwlock)->waiting_readers || (*rwlock)->waiting_writers) |
| return EBUSY; |
| |
| delete (*rwlock); |
| *rwlock = NULL; |
| |
| return 0; |
| } |
| |
| int |
| pthread_rwlock::init (pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr) |
| { |
| pthread_rwlock_t new_rwlock; |
| |
| if (attr && !pthread_rwlockattr::is_good_object (attr)) |
| return EINVAL; |
| |
| rwlock_initialization_lock.lock (); |
| |
| new_rwlock = new pthread_rwlock (attr ? (*attr) : NULL); |
| if (!is_good_object (&new_rwlock)) |
| { |
| delete new_rwlock; |
| rwlock_initialization_lock.unlock (); |
| return EAGAIN; |
| } |
| |
| int ret = 0; |
| |
| __try |
| { |
| *rwlock = new_rwlock; |
| } |
| __except (NO_ERROR) |
| { |
| delete new_rwlock; |
| ret = EINVAL; |
| } |
| __endtry |
| rwlock_initialization_lock.unlock (); |
| return ret; |
| } |
| |
| extern "C" int |
| pthread_rwlock_rdlock (pthread_rwlock_t *rwlock) |
| { |
| pthread_testcancel (); |
| |
| if (pthread_rwlock::is_initializer (rwlock)) |
| pthread_rwlock::init (rwlock, NULL); |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| return (*rwlock)->rdlock (); |
| } |
| |
| extern "C" int |
| pthread_rwlock_timedrdlock (pthread_rwlock_t *rwlock, |
| const struct timespec *abstime) |
| { |
| LARGE_INTEGER timeout; |
| |
| pthread_testcancel (); |
| |
| if (pthread_rwlock::is_initializer (rwlock)) |
| pthread_rwlock::init (rwlock, NULL); |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| /* According to SUSv3, abstime need not be checked for validity, |
| if the rwlock can be locked immediately. */ |
| if (!(*rwlock)->tryrdlock ()) |
| return 0; |
| |
| __try |
| { |
| int err = pthread_convert_abstime (CLOCK_REALTIME, abstime, &timeout); |
| if (err) |
| return err; |
| |
| return (*rwlock)->rdlock (&timeout); |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| return EINVAL; |
| } |
| |
| extern "C" int |
| pthread_rwlock_tryrdlock (pthread_rwlock_t *rwlock) |
| { |
| if (pthread_rwlock::is_initializer (rwlock)) |
| pthread_rwlock::init (rwlock, NULL); |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| return (*rwlock)->tryrdlock (); |
| } |
| |
| extern "C" int |
| pthread_rwlock_wrlock (pthread_rwlock_t *rwlock) |
| { |
| pthread_testcancel (); |
| |
| if (pthread_rwlock::is_initializer (rwlock)) |
| pthread_rwlock::init (rwlock, NULL); |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| return (*rwlock)->wrlock (); |
| } |
| |
| extern "C" int |
| pthread_rwlock_timedwrlock (pthread_rwlock_t *rwlock, |
| const struct timespec *abstime) |
| { |
| LARGE_INTEGER timeout; |
| |
| pthread_testcancel (); |
| |
| if (pthread_rwlock::is_initializer (rwlock)) |
| pthread_rwlock::init (rwlock, NULL); |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| /* According to SUSv3, abstime need not be checked for validity, |
| if the rwlock can be locked immediately. */ |
| if (!(*rwlock)->trywrlock ()) |
| return 0; |
| |
| __try |
| { |
| int err = pthread_convert_abstime (CLOCK_REALTIME, abstime, &timeout); |
| if (err) |
| return err; |
| |
| return (*rwlock)->wrlock (&timeout); |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| return EINVAL; |
| } |
| |
| extern "C" int |
| pthread_rwlock_trywrlock (pthread_rwlock_t *rwlock) |
| { |
| if (pthread_rwlock::is_initializer (rwlock)) |
| pthread_rwlock::init (rwlock, NULL); |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| return (*rwlock)->trywrlock (); |
| } |
| |
| extern "C" int |
| pthread_rwlock_unlock (pthread_rwlock_t *rwlock) |
| { |
| if (pthread_rwlock::is_initializer (rwlock)) |
| return 0; |
| if (!pthread_rwlock::is_good_object (rwlock)) |
| return EINVAL; |
| |
| return (*rwlock)->unlock (); |
| } |
| |
| extern "C" int |
| pthread_rwlockattr_init (pthread_rwlockattr_t *rwlockattr) |
| { |
| *rwlockattr = new pthread_rwlockattr; |
| if (!pthread_rwlockattr::is_good_object (rwlockattr)) |
| { |
| delete (*rwlockattr); |
| *rwlockattr = NULL; |
| return ENOMEM; |
| } |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_rwlockattr_getpshared (const pthread_rwlockattr_t *attr, int *pshared) |
| { |
| if (!pthread_rwlockattr::is_good_object (attr)) |
| return EINVAL; |
| *pshared = (*attr)->shared; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_rwlockattr_setpshared (pthread_rwlockattr_t *attr, int pshared) |
| { |
| if (!pthread_rwlockattr::is_good_object (attr)) |
| return EINVAL; |
| if ((pshared < 0) || (pshared > 1)) |
| return EINVAL; |
| /* shared rwlock vars not currently supported */ |
| if (pshared != PTHREAD_PROCESS_PRIVATE) |
| return EINVAL; |
| (*attr)->shared = pshared; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_rwlockattr_destroy (pthread_rwlockattr_t *rwlockattr) |
| { |
| if (!pthread_rwlockattr::is_good_object (rwlockattr)) |
| return EINVAL; |
| delete (*rwlockattr); |
| *rwlockattr = NULL; |
| return 0; |
| } |
| |
| /* Thread signal */ |
| extern "C" int |
| pthread_kill (pthread_t thread, int sig) |
| { |
| // lock myself, for the use of thread2signal |
| // two different kills might clash: FIXME |
| |
| if (!pthread::is_good_object (&thread)) |
| return EINVAL; |
| |
| siginfo_t si = {0}; |
| si.si_signo = sig; |
| si.si_code = SI_USER; |
| si.si_pid = myself->pid; |
| si.si_uid = myself->uid; |
| int rval; |
| if (!thread->valid) |
| rval = ESRCH; |
| else if (sig) |
| { |
| rval = sig_send (NULL, si, thread->cygtls); |
| if (rval == -1) |
| rval = get_errno (); |
| } |
| else |
| switch (WaitForSingleObject (thread->win32_obj_id, 0)) |
| { |
| case WAIT_TIMEOUT: |
| rval = 0; |
| break; |
| default: |
| rval = ESRCH; |
| break; |
| } |
| |
| // unlock myself |
| return rval; |
| } |
| |
| extern "C" int |
| pthread_sigmask (int operation, const sigset_t *set, sigset_t *old_set) |
| { |
| int res = handle_sigprocmask (operation, set, old_set, _my_tls.sigmask); |
| syscall_printf ("%d = pthread_sigmask(%d, %p, %p)", |
| res, operation, set, old_set); |
| return res; |
| } |
| |
| extern "C" int |
| pthread_sigqueue (pthread_t *thread, int sig, const union sigval value) |
| { |
| siginfo_t si = {0}; |
| |
| if (!pthread::is_good_object (thread)) |
| return EINVAL; |
| if (!(*thread)->valid) |
| return ESRCH; |
| |
| si.si_signo = sig; |
| si.si_code = SI_QUEUE; |
| si.si_value = value; |
| si.si_pid = myself->pid; |
| si.si_uid = myself->uid; |
| return sig_send (NULL, si, (*thread)->cygtls); |
| } |
| |
| /* ID */ |
| |
| extern "C" int |
| pthread_equal (pthread_t t1, pthread_t t2) |
| { |
| return pthread::equal (t1, t2); |
| } |
| |
| /* Mutexes */ |
| |
| int |
| pthread_mutex::init (pthread_mutex_t *mutex, |
| const pthread_mutexattr_t *attr, |
| const pthread_mutex_t initializer) |
| { |
| if (attr && !pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| |
| mutex_initialization_lock.lock (); |
| if (initializer == NULL || pthread_mutex::is_initializer (mutex)) |
| { |
| pthread_mutex_t new_mutex = new pthread_mutex (attr ? (*attr) : NULL); |
| if (!is_good_object (&new_mutex)) |
| { |
| delete new_mutex; |
| mutex_initialization_lock.unlock (); |
| return EAGAIN; |
| } |
| |
| if (!attr && initializer) |
| { |
| if (initializer == PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP) |
| new_mutex->type = PTHREAD_MUTEX_RECURSIVE; |
| else if (initializer == PTHREAD_NORMAL_MUTEX_INITIALIZER_NP) |
| new_mutex->type = PTHREAD_MUTEX_NORMAL; |
| else if (initializer == PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP) |
| new_mutex->type = PTHREAD_MUTEX_ERRORCHECK; |
| } |
| |
| __try |
| { |
| *mutex = new_mutex; |
| } |
| __except (NO_ERROR) |
| { |
| delete new_mutex; |
| mutex_initialization_lock.unlock (); |
| return EINVAL; |
| } |
| __endtry |
| } |
| mutex_initialization_lock.unlock (); |
| pthread_printf ("*mutex %p, attr %p, initializer %p", *mutex, attr, initializer); |
| |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_mutex_getprioceiling (const pthread_mutex_t *mutex, |
| int *prioceiling) |
| { |
| /* We don't define _POSIX_THREAD_PRIO_PROTECT because we do't currently support |
| mutex priorities. |
| |
| We can support mutex priorities in the future though: |
| Store a priority with each mutex. |
| When the mutex is optained, set the thread priority as appropriate |
| When the mutex is released, reset the thread priority. */ |
| return ENOSYS; |
| } |
| |
| extern "C" int |
| pthread_mutex_lock (pthread_mutex_t *mutex) |
| { |
| if (pthread_mutex::is_initializer (mutex)) |
| pthread_mutex::init (mutex, NULL, *mutex); |
| if (!pthread_mutex::is_good_object (mutex)) |
| return EINVAL; |
| return (*mutex)->lock (); |
| } |
| |
| extern "C" int |
| pthread_mutex_timedlock (pthread_mutex_t *mutex, const struct timespec *abstime) |
| { |
| LARGE_INTEGER timeout; |
| |
| if (pthread_mutex::is_initializer (mutex)) |
| pthread_mutex::init (mutex, NULL, *mutex); |
| if (!pthread_mutex::is_good_object (mutex)) |
| return EINVAL; |
| |
| /* According to SUSv3, abstime need not be checked for validity, |
| if the mutex can be locked immediately. */ |
| if (!(*mutex)->trylock ()) |
| return 0; |
| |
| __try |
| { |
| int err = pthread_convert_abstime (CLOCK_REALTIME, abstime, &timeout); |
| if (err) |
| return err; |
| |
| return (*mutex)->lock (&timeout); |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| return EINVAL; |
| } |
| |
| extern "C" int |
| pthread_mutex_trylock (pthread_mutex_t *mutex) |
| { |
| if (pthread_mutex::is_initializer (mutex)) |
| pthread_mutex::init (mutex, NULL, *mutex); |
| if (!pthread_mutex::is_good_object (mutex)) |
| return EINVAL; |
| return (*mutex)->trylock (); |
| } |
| |
| extern "C" int |
| pthread_mutex_unlock (pthread_mutex_t *mutex) |
| { |
| if (pthread_mutex::is_initializer (mutex)) |
| pthread_mutex::init (mutex, NULL, *mutex); |
| if (!pthread_mutex::is_good_object (mutex)) |
| return EINVAL; |
| return (*mutex)->unlock (); |
| } |
| |
| extern "C" int |
| pthread_mutex_destroy (pthread_mutex_t *mutex) |
| { |
| int rv; |
| |
| if (pthread_mutex::is_initializer (mutex)) |
| return 0; |
| if (!pthread_mutex::is_good_object (mutex)) |
| return EINVAL; |
| |
| rv = (*mutex)->destroy (); |
| if (rv) |
| return rv; |
| |
| *mutex = NULL; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_mutex_setprioceiling (pthread_mutex_t *mutex, int prioceiling, |
| int *old_ceiling) |
| { |
| return ENOSYS; |
| } |
| |
| /* Spinlocks */ |
| |
| int |
| pthread_spinlock::init (pthread_spinlock_t *spinlock, int pshared) |
| { |
| pthread_spinlock_t new_spinlock = new pthread_spinlock (pshared); |
| if (!is_good_object (&new_spinlock)) |
| { |
| delete new_spinlock; |
| return EAGAIN; |
| } |
| |
| __try |
| { |
| *spinlock = new_spinlock; |
| } |
| __except (NO_ERROR) |
| { |
| delete new_spinlock; |
| return EINVAL; |
| } |
| __endtry |
| pthread_printf ("*spinlock %p, pshared %d", *spinlock, pshared); |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_spin_lock (pthread_spinlock_t *spinlock) |
| { |
| if (!pthread_spinlock::is_good_object (spinlock)) |
| return EINVAL; |
| return (*spinlock)->lock (); |
| } |
| |
| extern "C" int |
| pthread_spin_trylock (pthread_spinlock_t *spinlock) |
| { |
| if (!pthread_spinlock::is_good_object (spinlock)) |
| return EINVAL; |
| return (*spinlock)->trylock (); |
| } |
| |
| extern "C" int |
| pthread_spin_unlock (pthread_spinlock_t *spinlock) |
| { |
| if (!pthread_spinlock::is_good_object (spinlock)) |
| return EINVAL; |
| return (*spinlock)->unlock (); |
| } |
| |
| extern "C" int |
| pthread_spin_destroy (pthread_spinlock_t *spinlock) |
| { |
| if (!pthread_spinlock::is_good_object (spinlock)) |
| return EINVAL; |
| return (*spinlock)->destroy (); |
| } |
| |
| /* Win32 doesn't support mutex priorities - see __pthread_mutex_getprioceiling |
| for more detail */ |
| extern "C" int |
| pthread_mutexattr_getprotocol (const pthread_mutexattr_t *attr, |
| int *protocol) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| return ENOSYS; |
| } |
| |
| extern "C" int |
| pthread_mutexattr_getpshared (const pthread_mutexattr_t *attr, |
| int *pshared) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| *pshared = (*attr)->pshared; |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_mutexattr_gettype (const pthread_mutexattr_t *attr, int *type) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| *type = (*attr)->mutextype; |
| return 0; |
| } |
| |
| /* FIXME: write and test process shared mutex's. */ |
| extern "C" int |
| pthread_mutexattr_init (pthread_mutexattr_t *attr) |
| { |
| *attr = new pthread_mutexattr (); |
| if (!pthread_mutexattr::is_good_object (attr)) |
| { |
| delete (*attr); |
| *attr = NULL; |
| return ENOMEM; |
| } |
| return 0; |
| } |
| |
| extern "C" int |
| pthread_mutexattr_destroy (pthread_mutexattr_t *attr) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| delete (*attr); |
| *attr = NULL; |
| return 0; |
| } |
| |
| |
| /* Win32 doesn't support mutex priorities */ |
| extern "C" int |
| pthread_mutexattr_setprotocol (pthread_mutexattr_t *attr, int protocol) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| return ENOSYS; |
| } |
| |
| /* Win32 doesn't support mutex priorities */ |
| extern "C" int |
| pthread_mutexattr_setprioceiling (pthread_mutexattr_t *attr, |
| int prioceiling) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| return ENOSYS; |
| } |
| |
| extern "C" int |
| pthread_mutexattr_getprioceiling (const pthread_mutexattr_t *attr, |
| int *prioceiling) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| return ENOSYS; |
| } |
| |
| extern "C" int |
| pthread_mutexattr_setpshared (pthread_mutexattr_t *attr, int pshared) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| /* we don't use pshared for anything as yet. We need to test PROCESS_SHARED |
| *functionality |
| */ |
| if (pshared != PTHREAD_PROCESS_PRIVATE) |
| return EINVAL; |
| (*attr)->pshared = pshared; |
| return 0; |
| } |
| |
| /* see pthread_mutex_gettype */ |
| extern "C" int |
| pthread_mutexattr_settype (pthread_mutexattr_t *attr, int type) |
| { |
| if (!pthread_mutexattr::is_good_object (attr)) |
| return EINVAL; |
| |
| switch (type) |
| { |
| case PTHREAD_MUTEX_ERRORCHECK: |
| case PTHREAD_MUTEX_RECURSIVE: |
| case PTHREAD_MUTEX_NORMAL: |
| (*attr)->mutextype = type; |
| break; |
| default: |
| return EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Semaphores */ |
| |
| List<semaphore> semaphore::semaphores; |
| |
| semaphore::semaphore (int pshared, unsigned int value) |
| : verifyable_object (SEM_MAGIC), |
| shared (pshared), |
| currentvalue (-1), |
| startvalue (value), |
| fd (-1), |
| hash (0ULL), |
| sem (NULL) |
| { |
| SECURITY_ATTRIBUTES sa = (pshared != PTHREAD_PROCESS_PRIVATE) |
| ? sec_all : sec_none_nih; |
| this->win32_obj_id = ::CreateSemaphore (&sa, value, INT32_MAX, NULL); |
| if (!this->win32_obj_id) |
| magic = 0; |
| |
| semaphores.insert (this); |
| } |
| |
| semaphore::semaphore (unsigned long long shash, LUID sluid, int sfd, |
| sem_t *ssem, int oflag, mode_t mode, unsigned int value) |
| : verifyable_object (SEM_MAGIC), |
| shared (PTHREAD_PROCESS_SHARED), |
| currentvalue (-1), /* Unused for named semaphores. */ |
| startvalue (value), |
| fd (sfd), |
| hash (shash), |
| luid (sluid), |
| sem (ssem) |
| { |
| char name[MAX_PATH]; |
| |
| __small_sprintf (name, "semaphore/%016X%08x%08x", |
| hash, luid.HighPart, luid.LowPart); |
| this->win32_obj_id = ::CreateSemaphore (&sec_all, value, INT32_MAX, name); |
| if (!this->win32_obj_id) |
| magic = 0; |
| if (GetLastError () == ERROR_ALREADY_EXISTS && (oflag & O_EXCL)) |
| { |
| __seterrno (); |
| CloseHandle (this->win32_obj_id); |
| magic = 0; |
| } |
| |
| semaphores.insert (this); |
| } |
| |
| semaphore::~semaphore () |
| { |
| if (win32_obj_id) |
| CloseHandle (win32_obj_id); |
| |
| semaphores.remove (this); |
| } |
| |
| void |
| semaphore::_post () |
| { |
| LONG dummy; |
| ReleaseSemaphore (win32_obj_id, 1, &dummy); |
| } |
| |
| int |
| semaphore::_getvalue (int *sval) |
| { |
| NTSTATUS status; |
| SEMAPHORE_BASIC_INFORMATION sbi; |
| |
| status = NtQuerySemaphore (win32_obj_id, SemaphoreBasicInformation, &sbi, |
| sizeof sbi, NULL); |
| int res; |
| if (NT_SUCCESS (status)) |
| { |
| *sval = sbi.CurrentCount; |
| res = 0; |
| } |
| else |
| { |
| *sval = startvalue; |
| __seterrno_from_nt_status (status); |
| res = -1; |
| } |
| return res; |
| } |
| |
| int |
| semaphore::_trywait () |
| { |
| /* FIXME: signals should be able to interrupt semaphores... |
| We probably need WaitForMultipleObjects here. */ |
| if (WaitForSingleObject (win32_obj_id, 0) == WAIT_TIMEOUT) |
| { |
| set_errno (EAGAIN); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| semaphore::_wait (PLARGE_INTEGER timeout) |
| { |
| __try |
| { |
| switch (cygwait (win32_obj_id, timeout, |
| cw_cancel | cw_cancel_self | cw_sig_eintr)) |
| { |
| case WAIT_OBJECT_0: |
| break; |
| case WAIT_SIGNALED: |
| set_errno (EINTR); |
| return -1; |
| case WAIT_TIMEOUT: |
| set_errno (ETIMEDOUT); |
| return -1; |
| default: |
| pthread_printf ("cygwait failed. %E"); |
| __seterrno (); |
| return -1; |
| } |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| return 0; |
| } |
| |
| void |
| semaphore::_fixup_before_fork () |
| { |
| NTSTATUS status; |
| SEMAPHORE_BASIC_INFORMATION sbi; |
| |
| status = NtQuerySemaphore (win32_obj_id, SemaphoreBasicInformation, &sbi, |
| sizeof sbi, NULL); |
| if (NT_SUCCESS (status)) |
| currentvalue = sbi.CurrentCount; |
| else |
| currentvalue = startvalue; |
| } |
| |
| void |
| semaphore::_fixup_after_fork () |
| { |
| if (shared == PTHREAD_PROCESS_PRIVATE) |
| { |
| pthread_printf ("sem %p", this); |
| win32_obj_id = ::CreateSemaphore (&sec_none_nih, currentvalue, |
| INT32_MAX, NULL); |
| if (!win32_obj_id) |
| api_fatal ("failed to create new win32 semaphore, " |
| "currentvalue %ld, %E", currentvalue); |
| } |
| } |
| |
| void |
| semaphore::_terminate () |
| { |
| int _sem_close (sem_t *, bool); |
| |
| if (sem) |
| _sem_close (sem, false); |
| } |
| |
| /* static members */ |
| |
| int |
| semaphore::init (sem_t *sem, int pshared, unsigned int value) |
| { |
| /* |
| We can't tell the difference between reinitialising an |
| existing semaphore and initialising a semaphore who's |
| contents happen to be a valid pointer |
| */ |
| if (is_good_object (sem)) |
| paranoid_printf ("potential attempt to reinitialise a semaphore"); |
| |
| if (value > SEM_VALUE_MAX) |
| { |
| set_errno(EINVAL); |
| return -1; |
| } |
| |
| *sem = new semaphore (pshared, value); |
| |
| if (!is_good_object (sem)) |
| { |
| delete (*sem); |
| *sem = NULL; |
| set_errno(EAGAIN); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| semaphore::destroy (sem_t *sem) |
| { |
| if (!is_good_object (sem)) |
| { |
| set_errno(EINVAL); |
| return -1; |
| } |
| |
| /* It's invalid to destroy a semaphore not opened with sem_init. */ |
| if ((*sem)->fd != -1) |
| { |
| set_errno(EINVAL); |
| return -1; |
| } |
| |
| /* FIXME - new feature - test for busy against threads... */ |
| |
| delete (*sem); |
| *sem = NULL; |
| return 0; |
| } |
| |
| int |
| semaphore::close (sem_t *sem) |
| { |
| if (!is_good_object (sem)) |
| { |
| set_errno(EINVAL); |
| return -1; |
| } |
| |
| /* It's invalid to close a semaphore not opened with sem_open. */ |
| if ((*sem)->fd == -1) |
| { |
| set_errno(EINVAL); |
| return -1; |
| } |
| |
| delete (*sem); |
| delete sem; |
| return 0; |
| } |
| |
| sem_t * |
| semaphore::open (unsigned long long hash, LUID luid, int fd, int oflag, |
| mode_t mode, unsigned int value, bool &wasopen) |
| { |
| if (value > SEM_VALUE_MAX) |
| { |
| set_errno (EINVAL); |
| return NULL; |
| } |
| |
| /* sem_open is supposed to return the same pointer, if the same named |
| semaphore is opened multiple times in the same process, as long as |
| the semaphore hasn't been closed or unlinked in the meantime. */ |
| semaphores.mx.lock (); |
| for (semaphore *sema = semaphores.head; sema; sema = sema->next) |
| if (sema->fd >= 0 && sema->hash == hash |
| && sema->luid.HighPart == luid.HighPart |
| && sema->luid.LowPart == luid.LowPart) |
| { |
| wasopen = true; |
| semaphores.mx.unlock (); |
| return sema->sem; |
| } |
| semaphores.mx.unlock (); |
| |
| wasopen = false; |
| sem_t *sem = new sem_t; |
| if (!sem) |
| { |
| set_errno (ENOMEM); |
| return NULL; |
| } |
| |
| *sem = new semaphore (hash, luid, fd, sem, oflag, mode, value); |
| |
| if (!is_good_object (sem)) |
| { |
| delete *sem; |
| delete sem; |
| return NULL; |
| } |
| return sem; |
| } |
| |
| int |
| semaphore::wait (sem_t *sem) |
| { |
| pthread_testcancel (); |
| |
| if (!is_good_object (sem)) |
| { |
| set_errno (EINVAL); |
| return -1; |
| } |
| |
| return (*sem)->_wait (); |
| } |
| |
| int |
| semaphore::trywait (sem_t *sem) |
| { |
| if (!is_good_object (sem)) |
| { |
| set_errno (EINVAL); |
| return -1; |
| } |
| |
| return (*sem)->_trywait (); |
| } |
| |
| int |
| semaphore::timedwait (sem_t *sem, const struct timespec *abstime) |
| { |
| LARGE_INTEGER timeout; |
| |
| if (!is_good_object (sem)) |
| { |
| set_errno (EINVAL); |
| return -1; |
| } |
| |
| /* According to SUSv3, abstime need not be checked for validity, |
| if the semaphore can be locked immediately. */ |
| if (!(*sem)->_trywait ()) |
| return 0; |
| |
| __try |
| { |
| int err = pthread_convert_abstime (CLOCK_REALTIME, abstime, &timeout); |
| if (err) |
| return err; |
| |
| return (*sem)->_wait (&timeout); |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| return EINVAL; |
| } |
| |
| int |
| semaphore::post (sem_t *sem) |
| { |
| if (!is_good_object (sem)) |
| { |
| set_errno (EINVAL); |
| return -1; |
| } |
| |
| (*sem)->_post (); |
| return 0; |
| } |
| |
| int |
| semaphore::getvalue (sem_t *sem, int *sval) |
| { |
| __try |
| { |
| if (is_good_object (sem)) |
| return (*sem)->_getvalue (sval); |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| set_errno (EINVAL); |
| return -1; |
| } |
| |
| int |
| semaphore::getinternal (sem_t *sem, int *sfd, unsigned long long *shash, |
| LUID *sluid, unsigned int *sval) |
| { |
| __try |
| { |
| if (!is_good_object (sem)) |
| __leave; |
| if ((*sfd = (*sem)->fd) < 0) |
| __leave; |
| *shash = (*sem)->hash; |
| *sluid = (*sem)->luid; |
| /* POSIX defines the value in calls to sem_init/sem_open as unsigned, |
| but the sem_getvalue gets a pointer to int to return the value. |
| Go figure! */ |
| return (*sem)->_getvalue ((int *)sval); |
| } |
| __except (NO_ERROR) {} |
| __endtry |
| set_errno (EINVAL); |
| return -1; |
| } |
| |
| /* pthread_null */ |
| pthread * |
| pthread_null::get_null_pthread () |
| { |
| /* because of weird entry points */ |
| _instance.magic = 0; |
| return &_instance; |
| } |
| |
| pthread_null::pthread_null () |
| { |
| attr.joinable = PTHREAD_CREATE_DETACHED; |
| /* Mark ourselves as invalid */ |
| magic = 0; |
| } |
| |
| pthread_null::~pthread_null () |
| { |
| } |
| |
| bool |
| pthread_null::create (void *(*)(void *), pthread_attr *, void *) |
| { |
| return true; |
| } |
| |
| void |
| pthread_null::exit (void *value_ptr) |
| { |
| _my_tls.remove (INFINITE); |
| ExitThread (0); |
| } |
| |
| int |
| pthread_null::cancel () |
| { |
| return 0; |
| } |
| |
| void |
| pthread_null::testcancel () |
| { |
| } |
| |
| int |
| pthread_null::setcancelstate (int state, int *oldstate) |
| { |
| return EINVAL; |
| } |
| |
| int |
| pthread_null::setcanceltype (int type, int *oldtype) |
| { |
| return EINVAL; |
| } |
| |
| void |
| pthread_null::push_cleanup_handler (__pthread_cleanup_handler *handler) |
| { |
| } |
| |
| void |
| pthread_null::pop_cleanup_handler (int const execute) |
| { |
| } |
| |
| unsigned long |
| pthread_null::getsequence_np () |
| { |
| return 0; |
| } |
| |
| pthread_null pthread_null::_instance; |
| |
| |
| extern "C" |
| int |
| pthread_barrierattr_init (pthread_barrierattr_t * battr) |
| { |
| if (unlikely (battr == NULL)) |
| return EINVAL; |
| |
| *battr = new pthread_barrierattr; |
| (*battr)->shared = PTHREAD_PROCESS_PRIVATE; |
| |
| return 0; |
| } |
| |
| |
| extern "C" |
| int |
| pthread_barrierattr_setpshared (pthread_barrierattr_t * battr, int shared) |
| { |
| if (unlikely (! pthread_barrierattr::is_good_object (battr))) |
| return EINVAL; |
| |
| if (unlikely (shared != PTHREAD_PROCESS_SHARED |
| && shared != PTHREAD_PROCESS_PRIVATE)) |
| return EINVAL; |
| |
| (*battr)->shared = shared; |
| return 0; |
| } |
| |
| |
| extern "C" |
| int |
| pthread_barrierattr_getpshared (const pthread_barrierattr_t * battr, |
| int * shared) |
| { |
| if (unlikely (! pthread_barrierattr::is_good_object (battr) |
| || shared == NULL)) |
| return EINVAL; |
| |
| *shared = (*battr)->shared; |
| return 0; |
| } |
| |
| |
| extern "C" |
| int |
| pthread_barrierattr_destroy (pthread_barrierattr_t * battr) |
| { |
| if (unlikely (! pthread_barrierattr::is_good_object (battr))) |
| return EINVAL; |
| |
| delete_and_clear (battr); |
| return 0; |
| } |
| |
| |
| extern "C" |
| int |
| pthread_barrier_init (pthread_barrier_t * bar, |
| const pthread_barrierattr_t * attr, unsigned count) |
| { |
| if (unlikely (bar == NULL)) |
| return EINVAL; |
| |
| *bar = new pthread_barrier; |
| return (*bar)->init (attr, count); |
| } |
| |
| |
| int |
| pthread_barrier::init (const pthread_barrierattr_t * attr, unsigned count) |
| { |
| pthread_mutex_t * mutex = NULL; |
| |
| if (unlikely ((attr != NULL |
| && (! pthread_barrierattr::is_good_object (attr) |
| || (*attr)->shared == PTHREAD_PROCESS_SHARED)) |
| || count == 0)) |
| return EINVAL; |
| |
| int retval = pthread_mutex_init (&mtx, NULL); |
| if (unlikely (retval != 0)) |
| return retval; |
| |
| retval = pthread_cond_init (&cond, NULL); |
| if (unlikely (retval != 0)) |
| { |
| int ret = pthread_mutex_destroy (mutex); |
| if (ret != 0) |
| api_fatal ("pthread_mutex_destroy (%p) = %d", mutex, ret); |
| |
| mtx = NULL; |
| return retval; |
| } |
| |
| cnt = count; |
| cyc = 0; |
| wt = 0; |
| |
| return 0; |
| } |
| |
| |
| extern "C" |
| int |
| pthread_barrier_destroy (pthread_barrier_t * bar) |
| { |
| if (unlikely (! pthread_barrier::is_good_object (bar))) |
| return EINVAL; |
| |
| int ret; |
| ret = (*bar)->destroy (); |
| if (ret == 0) |
| delete_and_clear (bar); |
| |
| return ret; |
| } |
| |
| |
| int |
| pthread_barrier::destroy () |
| { |
| if (unlikely (wt != 0)) |
| return EBUSY; |
| |
| int retval = pthread_cond_destroy (&cond); |
| if (unlikely (retval != 0)) |
| return retval; |
| else |
| cond = NULL; |
| |
| retval = pthread_mutex_destroy (&mtx); |
| if (unlikely (retval != 0)) |
| return retval; |
| else |
| mtx = NULL; |
| |
| cnt = 0; |
| cyc = 0; |
| wt = 0; |
| |
| return 0; |
| } |
| |
| |
| extern "C" |
| int |
| pthread_barrier_wait (pthread_barrier_t * bar) |
| { |
| if (unlikely (! pthread_barrier::is_good_object (bar))) |
| return EINVAL; |
| |
| return (*bar)->wait (); |
| } |
| |
| |
| int |
| pthread_barrier::wait () |
| { |
| int retval = pthread_mutex_lock (&mtx); |
| if (unlikely (retval != 0)) |
| return retval; |
| |
| if (unlikely (wt >= cnt)) |
| { |
| api_fatal ("wt >= cnt (%u >= %u)", wt, cnt); |
| return EINVAL; |
| } |
| |
| if (unlikely (++wt == cnt)) |
| { |
| ++cyc; |
| /* This is the last thread to reach the barrier. Signal the waiting |
| threads to wake up and continue. */ |
| retval = pthread_cond_broadcast (&cond); |
| if (unlikely (retval != 0)) |
| goto cond_error; |
| |
| wt = 0; |
| retval = pthread_mutex_unlock (&mtx); |
| if (unlikely (retval != 0)) |
| abort (); |
| |
| return PTHREAD_BARRIER_SERIAL_THREAD; |
| } |
| else |
| { |
| uint64_t cycle = cyc; |
| do |
| { |
| retval = pthread_cond_wait (&cond, &mtx); |
| if (unlikely (retval != 0)) |
| goto cond_error; |
| } |
| while (unlikely (cycle == cyc)); |
| |
| retval = pthread_mutex_unlock (&mtx); |
| if (unlikely (retval != 0)) |
| api_fatal ("pthread_mutex_unlock (%p) = %d", &mtx, retval); |
| |
| return 0; |
| } |
| |
| cond_error: |
| { |
| --wt; |
| int ret = pthread_mutex_unlock (&mtx); |
| if (unlikely (ret != 0)) |
| api_fatal ("pthread_mutex_unlock (%p) = %d", &mtx, ret); |
| |
| return retval; |
| } |
| } |