| /* | 
 |  * This implementation is based on code from uClibc-0.9.30.3 but was | 
 |  * modified and extended for use within U-Boot. | 
 |  * | 
 |  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de> | 
 |  * | 
 |  * Original license header: | 
 |  * | 
 |  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. | 
 |  * This file is part of the GNU C Library. | 
 |  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. | 
 |  * | 
 |  * SPDX-License-Identifier:	LGPL-2.1+ | 
 |  */ | 
 |  | 
 | #include <errno.h> | 
 | #include <malloc.h> | 
 |  | 
 | #ifdef USE_HOSTCC		/* HOST build */ | 
 | # include <string.h> | 
 | # include <assert.h> | 
 | # include <ctype.h> | 
 |  | 
 | # ifndef debug | 
 | #  ifdef DEBUG | 
 | #   define debug(fmt,args...)	printf(fmt ,##args) | 
 | #  else | 
 | #   define debug(fmt,args...) | 
 | #  endif | 
 | # endif | 
 | #else				/* U-Boot build */ | 
 | # include <common.h> | 
 | # include <linux/string.h> | 
 | # include <linux/ctype.h> | 
 | #endif | 
 |  | 
 | #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */ | 
 | #define	CONFIG_ENV_MIN_ENTRIES 64 | 
 | #endif | 
 | #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */ | 
 | #define	CONFIG_ENV_MAX_ENTRIES 512 | 
 | #endif | 
 |  | 
 | #include <env_callback.h> | 
 | #include <env_flags.h> | 
 | #include <search.h> | 
 | #include <slre.h> | 
 |  | 
 | /* | 
 |  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 | 
 |  * [Knuth]	      The Art of Computer Programming, part 3 (6.4) | 
 |  */ | 
 |  | 
 | /* | 
 |  * The reentrant version has no static variables to maintain the state. | 
 |  * Instead the interface of all functions is extended to take an argument | 
 |  * which describes the current status. | 
 |  */ | 
 |  | 
 | typedef struct _ENTRY { | 
 | 	int used; | 
 | 	ENTRY entry; | 
 | } _ENTRY; | 
 |  | 
 |  | 
 | static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, | 
 | 	int idx); | 
 |  | 
 | /* | 
 |  * hcreate() | 
 |  */ | 
 |  | 
 | /* | 
 |  * For the used double hash method the table size has to be a prime. To | 
 |  * correct the user given table size we need a prime test.  This trivial | 
 |  * algorithm is adequate because | 
 |  * a)  the code is (most probably) called a few times per program run and | 
 |  * b)  the number is small because the table must fit in the core | 
 |  * */ | 
 | static int isprime(unsigned int number) | 
 | { | 
 | 	/* no even number will be passed */ | 
 | 	unsigned int div = 3; | 
 |  | 
 | 	while (div * div < number && number % div != 0) | 
 | 		div += 2; | 
 |  | 
 | 	return number % div != 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Before using the hash table we must allocate memory for it. | 
 |  * Test for an existing table are done. We allocate one element | 
 |  * more as the found prime number says. This is done for more effective | 
 |  * indexing as explained in the comment for the hsearch function. | 
 |  * The contents of the table is zeroed, especially the field used | 
 |  * becomes zero. | 
 |  */ | 
 |  | 
 | int hcreate_r(size_t nel, struct hsearch_data *htab) | 
 | { | 
 | 	/* Test for correct arguments.  */ | 
 | 	if (htab == NULL) { | 
 | 		__set_errno(EINVAL); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* There is still another table active. Return with error. */ | 
 | 	if (htab->table != NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* Change nel to the first prime number not smaller as nel. */ | 
 | 	nel |= 1;		/* make odd */ | 
 | 	while (!isprime(nel)) | 
 | 		nel += 2; | 
 |  | 
 | 	htab->size = nel; | 
 | 	htab->filled = 0; | 
 |  | 
 | 	/* allocate memory and zero out */ | 
 | 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); | 
 | 	if (htab->table == NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* everything went alright */ | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * hdestroy() | 
 |  */ | 
 |  | 
 | /* | 
 |  * After using the hash table it has to be destroyed. The used memory can | 
 |  * be freed and the local static variable can be marked as not used. | 
 |  */ | 
 |  | 
 | void hdestroy_r(struct hsearch_data *htab) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Test for correct arguments.  */ | 
 | 	if (htab == NULL) { | 
 | 		__set_errno(EINVAL); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* free used memory */ | 
 | 	for (i = 1; i <= htab->size; ++i) { | 
 | 		if (htab->table[i].used > 0) { | 
 | 			ENTRY *ep = &htab->table[i].entry; | 
 |  | 
 | 			free((void *)ep->key); | 
 | 			free(ep->data); | 
 | 		} | 
 | 	} | 
 | 	free(htab->table); | 
 |  | 
 | 	/* the sign for an existing table is an value != NULL in htable */ | 
 | 	htab->table = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * hsearch() | 
 |  */ | 
 |  | 
 | /* | 
 |  * This is the search function. It uses double hashing with open addressing. | 
 |  * The argument item.key has to be a pointer to an zero terminated, most | 
 |  * probably strings of chars. The function for generating a number of the | 
 |  * strings is simple but fast. It can be replaced by a more complex function | 
 |  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. | 
 |  * | 
 |  * We use an trick to speed up the lookup. The table is created by hcreate | 
 |  * with one more element available. This enables us to use the index zero | 
 |  * special. This index will never be used because we store the first hash | 
 |  * index in the field used where zero means not used. Every other value | 
 |  * means used. The used field can be used as a first fast comparison for | 
 |  * equality of the stored and the parameter value. This helps to prevent | 
 |  * unnecessary expensive calls of strcmp. | 
 |  * | 
 |  * This implementation differs from the standard library version of | 
 |  * this function in a number of ways: | 
 |  * | 
 |  * - While the standard version does not make any assumptions about | 
 |  *   the type of the stored data objects at all, this implementation | 
 |  *   works with NUL terminated strings only. | 
 |  * - Instead of storing just pointers to the original objects, we | 
 |  *   create local copies so the caller does not need to care about the | 
 |  *   data any more. | 
 |  * - The standard implementation does not provide a way to update an | 
 |  *   existing entry.  This version will create a new entry or update an | 
 |  *   existing one when both "action == ENTER" and "item.data != NULL". | 
 |  * - Instead of returning 1 on success, we return the index into the | 
 |  *   internal hash table, which is also guaranteed to be positive. | 
 |  *   This allows us direct access to the found hash table slot for | 
 |  *   example for functions like hdelete(). | 
 |  */ | 
 |  | 
 | int hmatch_r(const char *match, int last_idx, ENTRY ** retval, | 
 | 	     struct hsearch_data *htab) | 
 | { | 
 | 	unsigned int idx; | 
 | 	size_t key_len = strlen(match); | 
 |  | 
 | 	for (idx = last_idx + 1; idx < htab->size; ++idx) { | 
 | 		if (htab->table[idx].used <= 0) | 
 | 			continue; | 
 | 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) { | 
 | 			*retval = &htab->table[idx].entry; | 
 | 			return idx; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	__set_errno(ESRCH); | 
 | 	*retval = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Compare an existing entry with the desired key, and overwrite if the action | 
 |  * is ENTER.  This is simply a helper function for hsearch_r(). | 
 |  */ | 
 | static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action, | 
 | 	ENTRY **retval, struct hsearch_data *htab, int flag, | 
 | 	unsigned int hval, unsigned int idx) | 
 | { | 
 | 	if (htab->table[idx].used == hval | 
 | 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) { | 
 | 		/* Overwrite existing value? */ | 
 | 		if ((action == ENTER) && (item.data != NULL)) { | 
 | 			/* check for permission */ | 
 | 			if (htab->change_ok != NULL && htab->change_ok( | 
 | 			    &htab->table[idx].entry, item.data, | 
 | 			    env_op_overwrite, flag)) { | 
 | 				debug("change_ok() rejected setting variable " | 
 | 					"%s, skipping it!\n", item.key); | 
 | 				__set_errno(EPERM); | 
 | 				*retval = NULL; | 
 | 				return 0; | 
 | 			} | 
 |  | 
 | 			/* If there is a callback, call it */ | 
 | 			if (htab->table[idx].entry.callback && | 
 | 			    htab->table[idx].entry.callback(item.key, | 
 | 			    item.data, env_op_overwrite, flag)) { | 
 | 				debug("callback() rejected setting variable " | 
 | 					"%s, skipping it!\n", item.key); | 
 | 				__set_errno(EINVAL); | 
 | 				*retval = NULL; | 
 | 				return 0; | 
 | 			} | 
 |  | 
 | 			free(htab->table[idx].entry.data); | 
 | 			htab->table[idx].entry.data = strdup(item.data); | 
 | 			if (!htab->table[idx].entry.data) { | 
 | 				__set_errno(ENOMEM); | 
 | 				*retval = NULL; | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 		/* return found entry */ | 
 | 		*retval = &htab->table[idx].entry; | 
 | 		return idx; | 
 | 	} | 
 | 	/* keep searching */ | 
 | 	return -1; | 
 | } | 
 |  | 
 | int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, | 
 | 	      struct hsearch_data *htab, int flag) | 
 | { | 
 | 	unsigned int hval; | 
 | 	unsigned int count; | 
 | 	unsigned int len = strlen(item.key); | 
 | 	unsigned int idx; | 
 | 	unsigned int first_deleted = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* Compute an value for the given string. Perhaps use a better method. */ | 
 | 	hval = len; | 
 | 	count = len; | 
 | 	while (count-- > 0) { | 
 | 		hval <<= 4; | 
 | 		hval += item.key[count]; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First hash function: | 
 | 	 * simply take the modul but prevent zero. | 
 | 	 */ | 
 | 	hval %= htab->size; | 
 | 	if (hval == 0) | 
 | 		++hval; | 
 |  | 
 | 	/* The first index tried. */ | 
 | 	idx = hval; | 
 |  | 
 | 	if (htab->table[idx].used) { | 
 | 		/* | 
 | 		 * Further action might be required according to the | 
 | 		 * action value. | 
 | 		 */ | 
 | 		unsigned hval2; | 
 |  | 
 | 		if (htab->table[idx].used == -1 | 
 | 		    && !first_deleted) | 
 | 			first_deleted = idx; | 
 |  | 
 | 		ret = _compare_and_overwrite_entry(item, action, retval, htab, | 
 | 			flag, hval, idx); | 
 | 		if (ret != -1) | 
 | 			return ret; | 
 |  | 
 | 		/* | 
 | 		 * Second hash function: | 
 | 		 * as suggested in [Knuth] | 
 | 		 */ | 
 | 		hval2 = 1 + hval % (htab->size - 2); | 
 |  | 
 | 		do { | 
 | 			/* | 
 | 			 * Because SIZE is prime this guarantees to | 
 | 			 * step through all available indices. | 
 | 			 */ | 
 | 			if (idx <= hval2) | 
 | 				idx = htab->size + idx - hval2; | 
 | 			else | 
 | 				idx -= hval2; | 
 |  | 
 | 			/* | 
 | 			 * If we visited all entries leave the loop | 
 | 			 * unsuccessfully. | 
 | 			 */ | 
 | 			if (idx == hval) | 
 | 				break; | 
 |  | 
 | 			/* If entry is found use it. */ | 
 | 			ret = _compare_and_overwrite_entry(item, action, retval, | 
 | 				htab, flag, hval, idx); | 
 | 			if (ret != -1) | 
 | 				return ret; | 
 | 		} | 
 | 		while (htab->table[idx].used); | 
 | 	} | 
 |  | 
 | 	/* An empty bucket has been found. */ | 
 | 	if (action == ENTER) { | 
 | 		/* | 
 | 		 * If table is full and another entry should be | 
 | 		 * entered return with error. | 
 | 		 */ | 
 | 		if (htab->filled == htab->size) { | 
 | 			__set_errno(ENOMEM); | 
 | 			*retval = NULL; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Create new entry; | 
 | 		 * create copies of item.key and item.data | 
 | 		 */ | 
 | 		if (first_deleted) | 
 | 			idx = first_deleted; | 
 |  | 
 | 		htab->table[idx].used = hval; | 
 | 		htab->table[idx].entry.key = strdup(item.key); | 
 | 		htab->table[idx].entry.data = strdup(item.data); | 
 | 		if (!htab->table[idx].entry.key || | 
 | 		    !htab->table[idx].entry.data) { | 
 | 			__set_errno(ENOMEM); | 
 | 			*retval = NULL; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		++htab->filled; | 
 |  | 
 | 		/* This is a new entry, so look up a possible callback */ | 
 | 		//env_callback_init(&htab->table[idx].entry); | 
 | 		/* Also look for flags */ | 
 | 		//env_flags_init(&htab->table[idx].entry); | 
 |  | 
 | 		/* check for permission */ | 
 | 		if (htab->change_ok != NULL && htab->change_ok( | 
 | 		    &htab->table[idx].entry, item.data, env_op_create, flag)) { | 
 | 			debug("change_ok() rejected setting variable " | 
 | 				"%s, skipping it!\n", item.key); | 
 | 			_hdelete(item.key, htab, &htab->table[idx].entry, idx); | 
 | 			__set_errno(EPERM); | 
 | 			*retval = NULL; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* If there is a callback, call it */ | 
 | 		if (htab->table[idx].entry.callback && | 
 | 		    htab->table[idx].entry.callback(item.key, item.data, | 
 | 		    env_op_create, flag)) { | 
 | 			debug("callback() rejected setting variable " | 
 | 				"%s, skipping it!\n", item.key); | 
 | 			_hdelete(item.key, htab, &htab->table[idx].entry, idx); | 
 | 			__set_errno(EINVAL); | 
 | 			*retval = NULL; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* return new entry */ | 
 | 		*retval = &htab->table[idx].entry; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	__set_errno(ESRCH); | 
 | 	*retval = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * hdelete() | 
 |  */ | 
 |  | 
 | /* | 
 |  * The standard implementation of hsearch(3) does not provide any way | 
 |  * to delete any entries from the hash table.  We extend the code to | 
 |  * do that. | 
 |  */ | 
 |  | 
 | static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, | 
 | 	int idx) | 
 | { | 
 | 	/* free used ENTRY */ | 
 | 	debug("hdelete: DELETING key \"%s\"\n", key); | 
 | 	free((void *)ep->key); | 
 | 	free(ep->data); | 
 | 	ep->callback = NULL; | 
 | 	ep->flags = 0; | 
 | 	htab->table[idx].used = -1; | 
 |  | 
 | 	--htab->filled; | 
 | } | 
 |  | 
 | int hdelete_r(const char *key, struct hsearch_data *htab, int flag) | 
 | { | 
 | 	ENTRY e, *ep; | 
 | 	int idx; | 
 |  | 
 | 	debug("hdelete: DELETE key \"%s\"\n", key); | 
 |  | 
 | 	e.key = (char *)key; | 
 |  | 
 | 	idx = hsearch_r(e, FIND, &ep, htab, 0); | 
 | 	if (idx == 0) { | 
 | 		__set_errno(ESRCH); | 
 | 		return 0;	/* not found */ | 
 | 	} | 
 |  | 
 | 	/* Check for permission */ | 
 | 	if (htab->change_ok != NULL && | 
 | 	    htab->change_ok(ep, NULL, env_op_delete, flag)) { | 
 | 		debug("change_ok() rejected deleting variable " | 
 | 			"%s, skipping it!\n", key); | 
 | 		__set_errno(EPERM); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* If there is a callback, call it */ | 
 | 	if (htab->table[idx].entry.callback && | 
 | 	    htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) { | 
 | 		debug("callback() rejected deleting variable " | 
 | 			"%s, skipping it!\n", key); | 
 | 		__set_errno(EINVAL); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	_hdelete(key, htab, ep, idx); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * hexport() | 
 |  */ | 
 |  | 
 | #ifndef CONFIG_SPL_BUILD | 
 | /* | 
 |  * Export the data stored in the hash table in linearized form. | 
 |  * | 
 |  * Entries are exported as "name=value" strings, separated by an | 
 |  * arbitrary (non-NUL, of course) separator character. This allows to | 
 |  * use this function both when formatting the U-Boot environment for | 
 |  * external storage (using '\0' as separator), but also when using it | 
 |  * for the "printenv" command to print all variables, simply by using | 
 |  * as '\n" as separator. This can also be used for new features like | 
 |  * exporting the environment data as text file, including the option | 
 |  * for later re-import. | 
 |  * | 
 |  * The entries in the result list will be sorted by ascending key | 
 |  * values. | 
 |  * | 
 |  * If the separator character is different from NUL, then any | 
 |  * separator characters and backslash characters in the values will | 
 |  * be escaped by a preceeding backslash in output. This is needed for | 
 |  * example to enable multi-line values, especially when the output | 
 |  * shall later be parsed (for example, for re-import). | 
 |  * | 
 |  * There are several options how the result buffer is handled: | 
 |  * | 
 |  * *resp  size | 
 |  * ----------- | 
 |  *  NULL    0	A string of sufficient length will be allocated. | 
 |  *  NULL   >0	A string of the size given will be | 
 |  *		allocated. An error will be returned if the size is | 
 |  *		not sufficient.  Any unused bytes in the string will | 
 |  *		be '\0'-padded. | 
 |  * !NULL    0	The user-supplied buffer will be used. No length | 
 |  *		checking will be performed, i. e. it is assumed that | 
 |  *		the buffer size will always be big enough. DANGEROUS. | 
 |  * !NULL   >0	The user-supplied buffer will be used. An error will | 
 |  *		be returned if the size is not sufficient.  Any unused | 
 |  *		bytes in the string will be '\0'-padded. | 
 |  */ | 
 |  | 
 | static int cmpkey(const void *p1, const void *p2) | 
 | { | 
 | 	ENTRY *e1 = *(ENTRY **) p1; | 
 | 	ENTRY *e2 = *(ENTRY **) p2; | 
 |  | 
 | 	return (strcmp(e1->key, e2->key)); | 
 | } | 
 |  | 
 | static int match_string(int flag, const char *str, const char *pat, void *priv) | 
 | { | 
 | 	switch (flag & H_MATCH_METHOD) { | 
 | 	case H_MATCH_IDENT: | 
 | 		if (strcmp(str, pat) == 0) | 
 | 			return 1; | 
 | 		break; | 
 | 	case H_MATCH_SUBSTR: | 
 | 		if (strstr(str, pat)) | 
 | 			return 1; | 
 | 		break; | 
 | #ifdef CONFIG_REGEX | 
 | 	case H_MATCH_REGEX: | 
 | 		{ | 
 | 			struct slre *slrep = (struct slre *)priv; | 
 | 			struct cap caps[slrep->num_caps + 2]; | 
 |  | 
 | 			if (slre_match(slrep, str, strlen(str), caps)) | 
 | 				return 1; | 
 | 		} | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		printf("## ERROR: unsupported match method: 0x%02x\n", | 
 | 			flag & H_MATCH_METHOD); | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int match_entry(ENTRY *ep, int flag, | 
 | 		 int argc, char * const argv[]) | 
 | { | 
 | 	int arg; | 
 | 	void *priv = NULL; | 
 |  | 
 | 	for (arg = 0; arg < argc; ++arg) { | 
 | #ifdef CONFIG_REGEX | 
 | 		struct slre slre; | 
 |  | 
 | 		if (slre_compile(&slre, argv[arg]) == 0) { | 
 | 			printf("Error compiling regex: %s\n", slre.err_str); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		priv = (void *)&slre; | 
 | #endif | 
 | 		if (flag & H_MATCH_KEY) { | 
 | 			if (match_string(flag, ep->key, argv[arg], priv)) | 
 | 				return 1; | 
 | 		} | 
 | 		if (flag & H_MATCH_DATA) { | 
 | 			if (match_string(flag, ep->data, argv[arg], priv)) | 
 | 				return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag, | 
 | 		 char **resp, size_t size, | 
 | 		 int argc, char * const argv[]) | 
 | { | 
 | 	ENTRY *list[htab->size]; | 
 | 	char *res, *p; | 
 | 	size_t totlen; | 
 | 	int i, n; | 
 |  | 
 | 	/* Test for correct arguments.  */ | 
 | 	if ((resp == NULL) || (htab == NULL)) { | 
 | 		__set_errno(EINVAL); | 
 | 		return (-1); | 
 | 	} | 
 |  | 
 | 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, " | 
 | 		"size = %zu\n", htab, htab->size, htab->filled, size); | 
 | 	/* | 
 | 	 * Pass 1: | 
 | 	 * search used entries, | 
 | 	 * save addresses and compute total length | 
 | 	 */ | 
 | 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { | 
 |  | 
 | 		if (htab->table[i].used > 0) { | 
 | 			ENTRY *ep = &htab->table[i].entry; | 
 | 			int found = match_entry(ep, flag, argc, argv); | 
 |  | 
 | 			if ((argc > 0) && (found == 0)) | 
 | 				continue; | 
 |  | 
 | 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.') | 
 | 				continue; | 
 |  | 
 | 			list[n++] = ep; | 
 |  | 
 | 			totlen += strlen(ep->key) + 2; | 
 |  | 
 | 			if (sep == '\0') { | 
 | 				totlen += strlen(ep->data); | 
 | 			} else {	/* check if escapes are needed */ | 
 | 				char *s = ep->data; | 
 |  | 
 | 				while (*s) { | 
 | 					++totlen; | 
 | 					/* add room for needed escape chars */ | 
 | 					if ((*s == sep) || (*s == '\\')) | 
 | 						++totlen; | 
 | 					++s; | 
 | 				} | 
 | 			} | 
 | 			totlen += 2;	/* for '=' and 'sep' char */ | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef DEBUG | 
 | 	/* Pass 1a: print unsorted list */ | 
 | 	printf("Unsorted: n=%d\n", n); | 
 | 	for (i = 0; i < n; ++i) { | 
 | 		printf("\t%3d: %p ==> %-10s => %s\n", | 
 | 		       i, list[i], list[i]->key, list[i]->data); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Sort list by keys */ | 
 | 	qsort(list, n, sizeof(ENTRY *), cmpkey); | 
 |  | 
 | 	/* Check if the user supplied buffer size is sufficient */ | 
 | 	if (size) { | 
 | 		if (size < totlen + 1) {	/* provided buffer too small */ | 
 | 			printf("Env export buffer too small: %zu, " | 
 | 				"but need %zu\n", size, totlen + 1); | 
 | 			__set_errno(ENOMEM); | 
 | 			return (-1); | 
 | 		} | 
 | 	} else { | 
 | 		size = totlen + 1; | 
 | 	} | 
 |  | 
 | 	/* Check if the user provided a buffer */ | 
 | 	if (*resp) { | 
 | 		/* yes; clear it */ | 
 | 		res = *resp; | 
 | 		memset(res, '\0', size); | 
 | 	} else { | 
 | 		/* no, allocate and clear one */ | 
 | 		*resp = res = calloc(1, size); | 
 | 		if (res == NULL) { | 
 | 			__set_errno(ENOMEM); | 
 | 			return (-1); | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * Pass 2: | 
 | 	 * export sorted list of result data | 
 | 	 */ | 
 | 	for (i = 0, p = res; i < n; ++i) { | 
 | 		const char *s; | 
 |  | 
 | 		s = list[i]->key; | 
 | 		while (*s) | 
 | 			*p++ = *s++; | 
 | 		*p++ = '='; | 
 |  | 
 | 		s = list[i]->data; | 
 |  | 
 | 		while (*s) { | 
 | 			if ((*s == sep) || (*s == '\\')) | 
 | 				*p++ = '\\';	/* escape */ | 
 | 			*p++ = *s++; | 
 | 		} | 
 | 		*p++ = sep; | 
 | 	} | 
 | 	*p = '\0';		/* terminate result */ | 
 |  | 
 | 	return size; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * himport() | 
 |  */ | 
 |  | 
 | /* | 
 |  * Check whether variable 'name' is amongst vars[], | 
 |  * and remove all instances by setting the pointer to NULL | 
 |  */ | 
 | static int drop_var_from_set(const char *name, int nvars, char * vars[]) | 
 | { | 
 | 	int i = 0; | 
 | 	int res = 0; | 
 |  | 
 | 	/* No variables specified means process all of them */ | 
 | 	if (nvars == 0) | 
 | 		return 1; | 
 |  | 
 | 	for (i = 0; i < nvars; i++) { | 
 | 		if (vars[i] == NULL) | 
 | 			continue; | 
 | 		/* If we found it, delete all of them */ | 
 | 		if (!strcmp(name, vars[i])) { | 
 | 			vars[i] = NULL; | 
 | 			res = 1; | 
 | 		} | 
 | 	} | 
 | 	if (!res) | 
 | 		debug("Skipping non-listed variable %s\n", name); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * Import linearized data into hash table. | 
 |  * | 
 |  * This is the inverse function to hexport(): it takes a linear list | 
 |  * of "name=value" pairs and creates hash table entries from it. | 
 |  * | 
 |  * Entries without "value", i. e. consisting of only "name" or | 
 |  * "name=", will cause this entry to be deleted from the hash table. | 
 |  * | 
 |  * The "flag" argument can be used to control the behaviour: when the | 
 |  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. | 
 |  * new data will be added to an existing hash table; otherwise, old | 
 |  * data will be discarded and a new hash table will be created. | 
 |  * | 
 |  * The separator character for the "name=value" pairs can be selected, | 
 |  * so we both support importing from externally stored environment | 
 |  * data (separated by NUL characters) and from plain text files | 
 |  * (entries separated by newline characters). | 
 |  * | 
 |  * To allow for nicely formatted text input, leading white space | 
 |  * (sequences of SPACE and TAB chars) is ignored, and entries starting | 
 |  * (after removal of any leading white space) with a '#' character are | 
 |  * considered comments and ignored. | 
 |  * | 
 |  * [NOTE: this means that a variable name cannot start with a '#' | 
 |  * character.] | 
 |  * | 
 |  * When using a non-NUL separator character, backslash is used as | 
 |  * escape character in the value part, allowing for example for | 
 |  * multi-line values. | 
 |  * | 
 |  * In theory, arbitrary separator characters can be used, but only | 
 |  * '\0' and '\n' have really been tested. | 
 |  */ | 
 |  | 
 | int himport_r(struct hsearch_data *htab, | 
 | 		const char *env, size_t size, const char sep, int flag, | 
 | 		int crlf_is_lf, int nvars, char * const vars[]) | 
 | { | 
 | 	char *data, *sp, *dp, *name, *value; | 
 | 	char *localvars[nvars]; | 
 | 	int i; | 
 |  | 
 | 	/* Test for correct arguments.  */ | 
 | 	if (htab == NULL) { | 
 | 		__set_errno(EINVAL); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* we allocate new space to make sure we can write to the array */ | 
 | 	if ((data = malloc(size + 1)) == NULL) { | 
 | 		debug("himport_r: can't malloc %zu bytes\n", size + 1); | 
 | 		__set_errno(ENOMEM); | 
 | 		return 0; | 
 | 	} | 
 | 	memcpy(data, env, size); | 
 | 	data[size] = '\0'; | 
 | 	dp = data; | 
 |  | 
 | 	/* make a local copy of the list of variables */ | 
 | 	if (nvars) | 
 | 		memcpy(localvars, vars, sizeof(vars[0]) * nvars); | 
 |  | 
 | 	if ((flag & H_NOCLEAR) == 0) { | 
 | 		/* Destroy old hash table if one exists */ | 
 | 		debug("Destroy Hash Table: %p table = %p\n", htab, | 
 | 		       htab->table); | 
 | 		if (htab->table) | 
 | 			hdestroy_r(htab); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Create new hash table (if needed).  The computation of the hash | 
 | 	 * table size is based on heuristics: in a sample of some 70+ | 
 | 	 * existing systems we found an average size of 39+ bytes per entry | 
 | 	 * in the environment (for the whole key=value pair). Assuming a | 
 | 	 * size of 8 per entry (= safety factor of ~5) should provide enough | 
 | 	 * safety margin for any existing environment definitions and still | 
 | 	 * allow for more than enough dynamic additions. Note that the | 
 | 	 * "size" argument is supposed to give the maximum environment size | 
 | 	 * (CONFIG_ENV_SIZE).  This heuristics will result in | 
 | 	 * unreasonably large numbers (and thus memory footprint) for | 
 | 	 * big flash environments (>8,000 entries for 64 KB | 
 | 	 * envrionment size), so we clip it to a reasonable value. | 
 | 	 * On the other hand we need to add some more entries for free | 
 | 	 * space when importing very small buffers. Both boundaries can | 
 | 	 * be overwritten in the board config file if needed. | 
 | 	 */ | 
 |  | 
 | 	if (!htab->table) { | 
 | 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; | 
 |  | 
 | 		if (nent > CONFIG_ENV_MAX_ENTRIES) | 
 | 			nent = CONFIG_ENV_MAX_ENTRIES; | 
 |  | 
 | 		debug("Create Hash Table: N=%d\n", nent); | 
 |  | 
 | 		if (hcreate_r(nent, htab) == 0) { | 
 | 			free(data); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!size) { | 
 | 		free(data); | 
 | 		return 1;		/* everything OK */ | 
 | 	} | 
 | 	if(crlf_is_lf) { | 
 | 		/* Remove Carriage Returns in front of Line Feeds */ | 
 | 		unsigned ignored_crs = 0; | 
 | 		for(;dp < data + size && *dp; ++dp) { | 
 | 			if(*dp == '\r' && | 
 | 			   dp < data + size - 1 && *(dp+1) == '\n') | 
 | 				++ignored_crs; | 
 | 			else | 
 | 				*(dp-ignored_crs) = *dp; | 
 | 		} | 
 | 		size -= ignored_crs; | 
 | 		dp = data; | 
 | 	} | 
 | 	/* Parse environment; allow for '\0' and 'sep' as separators */ | 
 | 	do { | 
 | 		ENTRY e, *rv; | 
 |  | 
 | 		/* skip leading white space */ | 
 | 		while (isblank(*dp)) | 
 | 			++dp; | 
 |  | 
 | 		/* skip comment lines */ | 
 | 		if (*dp == '#') { | 
 | 			while (*dp && (*dp != sep)) | 
 | 				++dp; | 
 | 			++dp; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* parse name */ | 
 | 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) | 
 | 			; | 
 |  | 
 | 		/* deal with "name" and "name=" entries (delete var) */ | 
 | 		if (*dp == '\0' || *(dp + 1) == '\0' || | 
 | 		    *dp == sep || *(dp + 1) == sep) { | 
 | 			if (*dp == '=') | 
 | 				*dp++ = '\0'; | 
 | 			*dp++ = '\0';	/* terminate name */ | 
 |  | 
 | 			debug("DELETE CANDIDATE: \"%s\"\n", name); | 
 | 			if (!drop_var_from_set(name, nvars, localvars)) | 
 | 				continue; | 
 |  | 
 | 			if (hdelete_r(name, htab, flag) == 0) | 
 | 				debug("DELETE ERROR ##############################\n"); | 
 |  | 
 | 			continue; | 
 | 		} | 
 | 		*dp++ = '\0';	/* terminate name */ | 
 |  | 
 | 		/* parse value; deal with escapes */ | 
 | 		for (value = sp = dp; *dp && (*dp != sep); ++dp) { | 
 | 			if ((*dp == '\\') && *(dp + 1)) | 
 | 				++dp; | 
 | 			*sp++ = *dp; | 
 | 		} | 
 | 		*sp++ = '\0';	/* terminate value */ | 
 | 		++dp; | 
 |  | 
 | 		if (*name == 0) { | 
 | 			debug("INSERT: unable to use an empty key\n"); | 
 | 			__set_errno(EINVAL); | 
 | 			free(data); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* Skip variables which are not supposed to be processed */ | 
 | 		if (!drop_var_from_set(name, nvars, localvars)) | 
 | 			continue; | 
 |  | 
 | 		/* enter into hash table */ | 
 | 		e.key = name; | 
 | 		e.data = value; | 
 |  | 
 | 		hsearch_r(e, ENTER, &rv, htab, flag); | 
 | 		if (rv == NULL) | 
 | 			printf("himport_r: can't insert \"%s=%s\" into hash table\n", | 
 | 				name, value); | 
 |  | 
 | 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", | 
 | 			htab, htab->filled, htab->size, | 
 | 			rv, name, value); | 
 | 	} while ((dp < data + size) && *dp);	/* size check needed for text */ | 
 | 						/* without '\0' termination */ | 
 | 	debug("INSERT: free(data = %p)\n", data); | 
 | 	free(data); | 
 |  | 
 | 	/* process variables which were not considered */ | 
 | 	for (i = 0; i < nvars; i++) { | 
 | 		if (localvars[i] == NULL) | 
 | 			continue; | 
 | 		/* | 
 | 		 * All variables which were not deleted from the variable list | 
 | 		 * were not present in the imported env | 
 | 		 * This could mean two things: | 
 | 		 * a) if the variable was present in current env, we delete it | 
 | 		 * b) if the variable was not present in current env, we notify | 
 | 		 *    it might be a typo | 
 | 		 */ | 
 | 		if (hdelete_r(localvars[i], htab, flag) == 0) | 
 | 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]); | 
 | 		else | 
 | 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]); | 
 | 	} | 
 |  | 
 | 	debug("INSERT: done\n"); | 
 | 	return 1;		/* everything OK */ | 
 | } | 
 |  | 
 | /* | 
 |  * hwalk_r() | 
 |  */ | 
 |  | 
 | /* | 
 |  * Walk all of the entries in the hash, calling the callback for each one. | 
 |  * this allows some generic operation to be performed on each element. | 
 |  */ | 
 | int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *)) | 
 | { | 
 | 	int i; | 
 | 	int retval; | 
 |  | 
 | 	for (i = 1; i <= htab->size; ++i) { | 
 | 		if (htab->table[i].used > 0) { | 
 | 			retval = callback(&htab->table[i].entry); | 
 | 			if (retval) | 
 | 				return retval; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } |