blob: 7dcaa58b8af22f66de510bb121271422dd9ce804 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/animation/timing_function.h"
#include "base/notreached.h"
#include "third_party/blink/renderer/platform/wtf/text/string_builder.h"
namespace blink {
String LinearTimingFunction::ToString() const {
return "linear";
}
double LinearTimingFunction::Evaluate(double fraction) const {
return fraction;
}
void LinearTimingFunction::Range(double* min_value, double* max_value) const {}
std::unique_ptr<gfx::TimingFunction> LinearTimingFunction::CloneToCC() const {
return nullptr;
}
CubicBezierTimingFunction* CubicBezierTimingFunction::Preset(
EaseType ease_type) {
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE))));
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease_in,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_IN))));
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease_out,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_OUT))));
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease_in_out,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_IN_OUT))));
switch (ease_type) {
case EaseType::EASE:
return ease;
case EaseType::EASE_IN:
return ease_in;
case EaseType::EASE_OUT:
return ease_out;
case EaseType::EASE_IN_OUT:
return ease_in_out;
default:
NOTREACHED();
return nullptr;
}
}
String CubicBezierTimingFunction::ToString() const {
switch (this->GetEaseType()) {
case CubicBezierTimingFunction::EaseType::EASE:
return "ease";
case CubicBezierTimingFunction::EaseType::EASE_IN:
return "ease-in";
case CubicBezierTimingFunction::EaseType::EASE_OUT:
return "ease-out";
case CubicBezierTimingFunction::EaseType::EASE_IN_OUT:
return "ease-in-out";
case CubicBezierTimingFunction::EaseType::CUSTOM:
return "cubic-bezier(" + String::NumberToStringECMAScript(this->X1()) +
", " + String::NumberToStringECMAScript(this->Y1()) + ", " +
String::NumberToStringECMAScript(this->X2()) + ", " +
String::NumberToStringECMAScript(this->Y2()) + ")";
default:
NOTREACHED();
return "";
}
}
double CubicBezierTimingFunction::Evaluate(double fraction) const {
return bezier_->bezier().Solve(fraction);
}
void CubicBezierTimingFunction::Range(double* min_value,
double* max_value) const {
const double solution1 = bezier_->bezier().range_min();
const double solution2 = bezier_->bezier().range_max();
// Since our input values can be out of the range 0->1 so we must also
// consider the minimum and maximum points.
double solution_min = bezier_->bezier().SolveWithEpsilon(
*min_value, std::numeric_limits<double>::epsilon());
double solution_max = bezier_->bezier().SolveWithEpsilon(
*max_value, std::numeric_limits<double>::epsilon());
*min_value = std::min(std::min(solution_min, solution_max), 0.0);
*max_value = std::max(std::max(solution_min, solution_max), 1.0);
*min_value = std::min(std::min(*min_value, solution1), solution2);
*max_value = std::max(std::max(*max_value, solution1), solution2);
}
std::unique_ptr<gfx::TimingFunction> CubicBezierTimingFunction::CloneToCC()
const {
return bezier_->Clone();
}
String StepsTimingFunction::ToString() const {
const char* position_string = nullptr;
switch (GetStepPosition()) {
case StepPosition::START:
position_string = "start";
break;
case StepPosition::END:
// do not specify step position in output
break;
case StepPosition::JUMP_BOTH:
position_string = "jump-both";
break;
case StepPosition::JUMP_END:
// do not specify step position in output
break;
case StepPosition::JUMP_NONE:
position_string = "jump-none";
break;
case StepPosition::JUMP_START:
position_string = "jump-start";
break;
}
StringBuilder builder;
builder.Append("steps(");
builder.Append(String::NumberToStringECMAScript(this->NumberOfSteps()));
if (position_string) {
builder.Append(", ");
builder.Append(position_string);
}
builder.Append(')');
return builder.ToString();
}
void StepsTimingFunction::Range(double* min_value, double* max_value) const {
*min_value = 0;
*max_value = 1;
}
double StepsTimingFunction::Evaluate(double fraction,
LimitDirection limit_direction) const {
return steps_->GetPreciseValue(fraction, limit_direction);
}
double StepsTimingFunction::Evaluate(double fraction) const {
NOTREACHED() << "Use Evaluate(fraction, limit_direction) instead.";
return steps_->GetPreciseValue(fraction, LimitDirection::RIGHT);
}
std::unique_ptr<gfx::TimingFunction> StepsTimingFunction::CloneToCC() const {
return steps_->Clone();
}
scoped_refptr<TimingFunction> CreateCompositorTimingFunctionFromCC(
const gfx::TimingFunction* timing_function) {
if (!timing_function)
return LinearTimingFunction::Shared();
switch (timing_function->GetType()) {
case gfx::TimingFunction::Type::CUBIC_BEZIER: {
auto* cubic_timing_function =
static_cast<const gfx::CubicBezierTimingFunction*>(timing_function);
if (cubic_timing_function->ease_type() !=
gfx::CubicBezierTimingFunction::EaseType::CUSTOM)
return CubicBezierTimingFunction::Preset(
cubic_timing_function->ease_type());
const auto& bezier = cubic_timing_function->bezier();
return CubicBezierTimingFunction::Create(bezier.GetX1(), bezier.GetY1(),
bezier.GetX2(), bezier.GetY2());
}
case gfx::TimingFunction::Type::STEPS: {
auto* steps_timing_function =
static_cast<const gfx::StepsTimingFunction*>(timing_function);
return StepsTimingFunction::Create(
steps_timing_function->steps(),
steps_timing_function->step_position());
}
default:
NOTREACHED();
return nullptr;
}
}
// Equals operators
bool operator==(const LinearTimingFunction& lhs, const TimingFunction& rhs) {
return rhs.GetType() == TimingFunction::Type::LINEAR;
}
bool operator==(const CubicBezierTimingFunction& lhs,
const TimingFunction& rhs) {
if (rhs.GetType() != TimingFunction::Type::CUBIC_BEZIER)
return false;
const auto& ctf = To<CubicBezierTimingFunction>(rhs);
if ((lhs.GetEaseType() == CubicBezierTimingFunction::EaseType::CUSTOM) &&
(ctf.GetEaseType() == CubicBezierTimingFunction::EaseType::CUSTOM))
return (lhs.X1() == ctf.X1()) && (lhs.Y1() == ctf.Y1()) &&
(lhs.X2() == ctf.X2()) && (lhs.Y2() == ctf.Y2());
return lhs.GetEaseType() == ctf.GetEaseType();
}
bool operator==(const StepsTimingFunction& lhs, const TimingFunction& rhs) {
if (rhs.GetType() != TimingFunction::Type::STEPS)
return false;
const auto& stf = To<StepsTimingFunction>(rhs);
return (lhs.NumberOfSteps() == stf.NumberOfSteps()) &&
(lhs.GetStepPosition() == stf.GetStepPosition());
}
// The generic operator== *must* come after the
// non-generic operator== otherwise it will end up calling itself.
bool operator==(const TimingFunction& lhs, const TimingFunction& rhs) {
switch (lhs.GetType()) {
case TimingFunction::Type::LINEAR: {
const auto& linear = To<LinearTimingFunction>(lhs);
return (linear == rhs);
}
case TimingFunction::Type::CUBIC_BEZIER: {
const auto& cubic = To<CubicBezierTimingFunction>(lhs);
return (cubic == rhs);
}
case TimingFunction::Type::STEPS: {
const auto& step = To<StepsTimingFunction>(lhs);
return (step == rhs);
}
default:
NOTREACHED();
}
return false;
}
// No need to define specific operator!= as they can all come via this function.
bool operator!=(const TimingFunction& lhs, const TimingFunction& rhs) {
return !(lhs == rhs);
}
} // namespace blink