blob: 3eaa43b09a35398f27e752776284ec6bf33c258c [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/peerconnection/rtc_video_encoder.h"
#include <algorithm>
#include <memory>
#include <vector>
#include "base/callback_helpers.h"
#include "base/command_line.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/memory/unsafe_shared_memory_region.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/sequenced_task_runner.h"
#include "base/stl_util.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/thread_annotations.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/time.h"
#include "media/base/bind_to_current_loop.h"
#include "media/base/bitstream_buffer.h"
#include "media/base/video_bitrate_allocation.h"
#include "media/base/video_frame.h"
#include "media/base/video_util.h"
#include "media/capture/capture_switches.h"
#include "media/video/gpu_video_accelerator_factories.h"
#include "media/video/h264_parser.h"
#include "media/video/video_encode_accelerator.h"
#include "third_party/blink/public/common/features.h"
#include "third_party/blink/renderer/platform/scheduler/public/post_cross_thread_task.h"
#include "third_party/blink/renderer/platform/webrtc/webrtc_video_frame_adapter.h"
#include "third_party/blink/renderer/platform/wtf/cross_thread_functional.h"
#include "third_party/blink/renderer/platform/wtf/deque.h"
#include "third_party/blink/renderer/platform/wtf/functional.h"
#include "third_party/blink/renderer/platform/wtf/text/wtf_string.h"
#include "third_party/blink/renderer/platform/wtf/vector.h"
#include "third_party/libyuv/include/libyuv.h"
#include "third_party/webrtc/modules/video_coding/codecs/h264/include/h264.h"
#include "third_party/webrtc/modules/video_coding/include/video_error_codes.h"
#include "third_party/webrtc/rtc_base/time_utils.h"
namespace {
class SignaledValue {
public:
SignaledValue() : event(nullptr), val(nullptr) {}
SignaledValue(base::WaitableEvent* event, int32_t* val)
: event(event), val(val) {
DCHECK(event);
}
~SignaledValue() {
if (IsValid() && !event->IsSignaled()) {
NOTREACHED() << "never signaled";
event->Signal();
}
}
// Move-only.
SignaledValue(const SignaledValue&) = delete;
SignaledValue& operator=(const SignaledValue&) = delete;
SignaledValue(SignaledValue&& other) : event(other.event), val(other.val) {
other.event = nullptr;
other.val = nullptr;
}
SignaledValue& operator=(SignaledValue&& other) {
event = other.event;
val = other.val;
other.event = nullptr;
other.val = nullptr;
return *this;
}
void Signal() {
if (!IsValid())
return;
event->Signal();
event = nullptr;
}
void Set(int32_t v) {
if (!val)
return;
*val = v;
}
bool IsValid() { return event; }
private:
base::WaitableEvent* event;
int32_t* val;
};
class ScopedSignaledValue {
public:
ScopedSignaledValue() = default;
ScopedSignaledValue(base::WaitableEvent* event, int32_t* val)
: sv(event, val) {}
explicit ScopedSignaledValue(SignaledValue sv) : sv(std::move(sv)) {}
~ScopedSignaledValue() { sv.Signal(); }
ScopedSignaledValue(const ScopedSignaledValue&) = delete;
ScopedSignaledValue& operator=(const ScopedSignaledValue&) = delete;
ScopedSignaledValue(ScopedSignaledValue&& other) : sv(std::move(other.sv)) {
DCHECK(!other.sv.IsValid());
}
ScopedSignaledValue& operator=(ScopedSignaledValue&& other) {
sv.Signal();
sv = std::move(other.sv);
DCHECK(!other.sv.IsValid());
return *this;
}
// Set |v|, signal |sv|, and invalidate |sv|. If |sv| is already invalidated
// at the call, this has no effect.
void SetAndReset(int32_t v) {
sv.Set(v);
reset();
}
// Invalidate |sv|. The invalidated value will be set by move assignment
// operator.
void reset() { *this = ScopedSignaledValue(); }
private:
SignaledValue sv;
};
bool ConvertKbpsToBps(uint32_t bitrate_kbps, uint32_t* bitrate_bps) {
if (!base::IsValueInRangeForNumericType<uint32_t>(bitrate_kbps *
UINT64_C(1000))) {
return false;
}
*bitrate_bps = bitrate_kbps * 1000;
return true;
}
} // namespace
namespace WTF {
template <>
struct CrossThreadCopier<webrtc::VideoEncoder::RateControlParameters>
: public CrossThreadCopierPassThrough<
webrtc::VideoEncoder::RateControlParameters> {
STATIC_ONLY(CrossThreadCopier);
};
template <>
struct CrossThreadCopier<
std::vector<media::VideoEncodeAccelerator::Config::SpatialLayer>>
: public CrossThreadCopierPassThrough<
std::vector<media::VideoEncodeAccelerator::Config::SpatialLayer>> {
STATIC_ONLY(CrossThreadCopier);
};
template <>
struct CrossThreadCopier<SignaledValue> {
static SignaledValue Copy(SignaledValue sv) {
return sv; // this is a move in fact.
}
};
} // namespace WTF
namespace blink {
namespace {
webrtc::VideoEncoder::EncoderInfo CopyToWebrtcEncoderInfo(
const media::VideoEncoderInfo& enc_info) {
webrtc::VideoEncoder::EncoderInfo info;
info.implementation_name = enc_info.implementation_name;
info.supports_native_handle = enc_info.supports_native_handle;
info.has_trusted_rate_controller = enc_info.has_trusted_rate_controller;
info.is_hardware_accelerated = enc_info.is_hardware_accelerated;
info.supports_simulcast = enc_info.supports_simulcast;
info.scaling_settings = enc_info.scaling_settings
? webrtc::VideoEncoder::ScalingSettings(
enc_info.scaling_settings->min_qp,
enc_info.scaling_settings->max_qp)
: webrtc::VideoEncoder::ScalingSettings::kOff;
static_assert(
webrtc::kMaxSpatialLayers >= media::VideoEncoderInfo::kMaxSpatialLayers,
"webrtc::kMaxSpatiallayers is less than "
"media::VideoEncoderInfo::kMaxSpatialLayers");
for (size_t i = 0; i < base::size(enc_info.fps_allocation); ++i) {
if (enc_info.fps_allocation[i].empty())
continue;
info.fps_allocation[i] =
absl::InlinedVector<uint8_t, webrtc::kMaxTemporalStreams>(
enc_info.fps_allocation[i].begin(),
enc_info.fps_allocation[i].end());
}
for (const auto& limit : enc_info.resolution_bitrate_limits) {
info.resolution_bitrate_limits.emplace_back(
limit.frame_size.GetArea(), limit.min_start_bitrate_bps,
limit.min_bitrate_bps, limit.max_bitrate_bps);
}
return info;
}
// Create VEA::Config::SpatialLayer from |codec_settings|. If some config of
// |codec_settings| is not supported, returns false.
bool CreateSpatialLayersConfig(
const webrtc::VideoCodec& codec_settings,
std::vector<media::VideoEncodeAccelerator::Config::SpatialLayer>*
spatial_layers) {
if (codec_settings.codecType == webrtc::kVideoCodecVP8 &&
codec_settings.mode == webrtc::VideoCodecMode::kScreensharing &&
codec_settings.VP8().numberOfTemporalLayers > 1) {
// This is a VP8 stream with screensharing using temporal layers for
// temporal scalability. Since this implementation does not yet implement
// temporal layers, fall back to software codec, if cfm and board is known
// to have a CPU that can handle it.
if (base::FeatureList::IsEnabled(features::kWebRtcScreenshareSwEncoding)) {
// TODO(sprang): Add support for temporal layers so we don't need
// fallback. See eg http://crbug.com/702017
DVLOG(1) << "Falling back to software encoder.";
return false;
}
}
if (codec_settings.codecType == webrtc::kVideoCodecVP9 &&
codec_settings.VP9().numberOfSpatialLayers > 1) {
DVLOG(1)
<< "VP9 SVC not yet supported by HW codecs, falling back to sofware.";
return false;
}
// We fill SpatialLayer only in temporal layer or spatial layer encoding.
switch (codec_settings.codecType) {
case webrtc::kVideoCodecVP8:
if (codec_settings.VP8().numberOfTemporalLayers > 1) {
// Though there is no SVC in VP8 spec. We allocate 1 element in
// spatial_layers for temporal layer encoding.
spatial_layers->resize(1u);
auto& sl = (*spatial_layers)[0];
sl.width = codec_settings.width;
sl.height = codec_settings.height;
if (!ConvertKbpsToBps(codec_settings.startBitrate, &sl.bitrate_bps))
return false;
sl.framerate = codec_settings.maxFramerate;
sl.max_qp = base::saturated_cast<uint8_t>(codec_settings.qpMax);
sl.num_of_temporal_layers = base::saturated_cast<uint8_t>(
codec_settings.VP8().numberOfTemporalLayers);
}
break;
case webrtc::kVideoCodecVP9:
// Since one TL and one SL can be regarded as one simple stream,
// SpatialLayer is not filled.
if (codec_settings.VP9().numberOfTemporalLayers > 1 ||
codec_settings.VP9().numberOfSpatialLayers > 1) {
spatial_layers->resize(codec_settings.VP9().numberOfSpatialLayers);
for (size_t i = 0; i < spatial_layers->size(); ++i) {
const webrtc::SpatialLayer& rtc_sl = codec_settings.spatialLayers[i];
// We ignore non active spatial layer and don't proceed further. There
// must NOT be an active higher spatial layer than non active spatial
// layer.
if (!rtc_sl.active)
break;
auto& sl = (*spatial_layers)[i];
sl.width = base::checked_cast<int32_t>(rtc_sl.width);
sl.height = base::checked_cast<int32_t>(rtc_sl.height);
if (!ConvertKbpsToBps(rtc_sl.targetBitrate, &sl.bitrate_bps))
return false;
sl.framerate = base::saturated_cast<int32_t>(rtc_sl.maxFramerate);
sl.max_qp = base::saturated_cast<uint8_t>(rtc_sl.qpMax);
sl.num_of_temporal_layers =
base::saturated_cast<uint8_t>(rtc_sl.numberOfTemporalLayers);
}
}
break;
default:
break;
}
return true;
}
struct RTCTimestamps {
RTCTimestamps(const base::TimeDelta& media_timestamp,
int32_t rtp_timestamp,
int64_t capture_time_ms)
: media_timestamp_(media_timestamp),
rtp_timestamp(rtp_timestamp),
capture_time_ms(capture_time_ms) {}
const base::TimeDelta media_timestamp_;
const int32_t rtp_timestamp;
const int64_t capture_time_ms;
};
webrtc::VideoCodecType ProfileToWebRtcVideoCodecType(
media::VideoCodecProfile profile) {
if (profile >= media::VP8PROFILE_MIN && profile <= media::VP8PROFILE_MAX) {
return webrtc::kVideoCodecVP8;
} else if (profile == media::VP9PROFILE_MIN) {
return webrtc::kVideoCodecVP9;
} else if (profile >= media::H264PROFILE_MIN &&
profile <= media::H264PROFILE_MAX) {
return webrtc::kVideoCodecH264;
}
NOTREACHED() << "Invalid profile " << GetProfileName(profile);
return webrtc::kVideoCodecGeneric;
}
void RecordInitEncodeUMA(int32_t init_retval,
media::VideoCodecProfile profile) {
UMA_HISTOGRAM_BOOLEAN("Media.RTCVideoEncoderInitEncodeSuccess",
init_retval == WEBRTC_VIDEO_CODEC_OK);
if (init_retval != WEBRTC_VIDEO_CODEC_OK)
return;
UMA_HISTOGRAM_ENUMERATION("Media.RTCVideoEncoderProfile", profile,
media::VIDEO_CODEC_PROFILE_MAX + 1);
}
} // namespace
namespace features {
// Fallback from hardware encoder (if available) to software, for WebRTC
// screensharing that uses temporal scalability.
const base::Feature kWebRtcScreenshareSwEncoding{
"WebRtcScreenshareSwEncoding", base::FEATURE_DISABLED_BY_DEFAULT};
} // namespace features
// This private class of RTCVideoEncoder does the actual work of communicating
// with a media::VideoEncodeAccelerator for handling video encoding. It can
// be created on any thread, but should subsequently be posted to (and Destroy()
// called on) a single thread.
//
// This class separates state related to the thread that RTCVideoEncoder
// operates on from the thread that |gpu_factories_| provides for accelerator
// operations (presently the media thread).
class RTCVideoEncoder::Impl
: public media::VideoEncodeAccelerator::Client,
public base::RefCountedThreadSafe<RTCVideoEncoder::Impl> {
public:
Impl(media::GpuVideoAcceleratorFactories* gpu_factories,
webrtc::VideoCodecType video_codec_type,
webrtc::VideoContentType video_content_type);
// Create the VEA and call Initialize() on it. Called once per instantiation,
// and then the instance is bound forevermore to whichever thread made the
// call.
// RTCVideoEncoder expects to be able to call this function synchronously from
// its own thread, hence the |init_event| argument.
void CreateAndInitializeVEA(
const gfx::Size& input_visible_size,
uint32_t bitrate,
media::VideoCodecProfile profile,
bool is_constrained_h264,
const std::vector<media::VideoEncodeAccelerator::Config::SpatialLayer>&
spatial_layers,
SignaledValue init_event);
webrtc::VideoEncoder::EncoderInfo GetEncoderInfo() const;
// Enqueue a frame from WebRTC for encoding.
// RTCVideoEncoder expects to be able to call this function synchronously from
// its own thread, hence the |encode_event| argument.
void Enqueue(const webrtc::VideoFrame* input_frame,
bool force_keyframe,
SignaledValue encode_event);
// RTCVideoEncoder is given a buffer to be passed to WebRTC through the
// RTCVideoEncoder::ReturnEncodedImage() function. When that is complete,
// the buffer is returned to Impl by its index using this function.
void UseOutputBitstreamBufferId(int32_t bitstream_buffer_id);
// Request encoding parameter change for the underlying encoder.
void RequestEncodingParametersChange(
const webrtc::VideoEncoder::RateControlParameters& parameters);
void RegisterEncodeCompleteCallback(SignaledValue scoped_event,
webrtc::EncodedImageCallback* callback);
// Destroy this Impl's encoder. The destructor is not explicitly called, as
// Impl is a base::RefCountedThreadSafe.
void Destroy(SignaledValue event);
// Return the status of Impl. One of WEBRTC_VIDEO_CODEC_XXX value.
int32_t GetStatus() const;
webrtc::VideoCodecType video_codec_type() const { return video_codec_type_; }
static const char* ImplementationName() { return "ExternalEncoder"; }
// media::VideoEncodeAccelerator::Client implementation.
void RequireBitstreamBuffers(unsigned int input_count,
const gfx::Size& input_coded_size,
size_t output_buffer_size) override;
void BitstreamBufferReady(
int32_t bitstream_buffer_id,
const media::BitstreamBufferMetadata& metadata) override;
void NotifyError(media::VideoEncodeAccelerator::Error error) override;
void NotifyEncoderInfoChange(const media::VideoEncoderInfo& info) override;
private:
friend class base::RefCountedThreadSafe<Impl>;
enum {
kInputBufferExtraCount = 1, // The number of input buffers allocated, more
// than what is requested by
// VEA::RequireBitstreamBuffers().
kOutputBufferCount = 3,
};
~Impl() override;
// Logs the |error| and |str| sent from |location| and NotifyError()s forward.
void LogAndNotifyError(const base::Location& location,
const String& str,
media::VideoEncodeAccelerator::Error error);
// Perform encoding on an input frame from the input queue.
void EncodeOneFrame();
// Perform encoding on an input frame from the input queue using VEA native
// input mode. The input frame must be backed with GpuMemoryBuffer buffers.
void EncodeOneFrameWithNativeInput();
// Creates a GpuMemoryBuffer frame filled with black pixels. Returns true if
// the frame is successfully created; false otherwise.
bool CreateBlackGpuMemoryBufferFrame(const gfx::Size& natural_size);
// Notify that an input frame is finished for encoding. |index| is the index
// of the completed frame in |input_buffers_|.
void EncodeFrameFinished(int index);
// Checks if the bitrate would overflow when passing from kbps to bps.
bool IsBitrateTooHigh(uint32_t bitrate);
// Checks if the frame size is different than hardware accelerator
// requirements.
bool RequiresSizeChange(const media::VideoFrame& frame) const;
// Return an encoded output buffer to WebRTC.
void ReturnEncodedImage(const webrtc::EncodedImage& image,
const webrtc::CodecSpecificInfo& info,
int32_t bitstream_buffer_id);
void SetStatus(int32_t status);
// Records |failed_timestamp_match_| value after a session.
void RecordTimestampMatchUMA() const;
// This is attached to |gpu_task_runner_|, not the thread class is constructed
// on.
SEQUENCE_CHECKER(sequence_checker_);
// Factory for creating VEAs, shared memory buffers, etc.
media::GpuVideoAcceleratorFactories* gpu_factories_;
// webrtc::VideoEncoder expects InitEncode() and Encode() to be synchronous.
// Do this by waiting on the |async_init_event_| when initialization
// completes, on |async_encode_event_| when encoding completes and on both
// when an error occurs.
ScopedSignaledValue async_init_event_;
ScopedSignaledValue async_encode_event_;
// The underlying VEA to perform encoding on.
std::unique_ptr<media::VideoEncodeAccelerator> video_encoder_;
// Used to match the encoded frame timestamp with WebRTC's given RTP
// timestamp.
WTF::Deque<RTCTimestamps> pending_timestamps_;
// Indicates that timestamp match failed and we should no longer attempt
// matching.
bool failed_timestamp_match_;
// Next input frame. Since there is at most one next frame, a single-element
// queue is sufficient.
const webrtc::VideoFrame* input_next_frame_;
// Whether to encode a keyframe next.
bool input_next_frame_keyframe_;
// Frame sizes.
gfx::Size input_frame_coded_size_;
gfx::Size input_visible_size_;
// Shared memory buffers for input/output with the VEA. The input buffers may
// be referred to by a VideoFrame, so they are wrapped in a unique_ptr to have
// a stable memory location. That is not necessary for the output buffers.
Vector<std::unique_ptr<std::pair<base::UnsafeSharedMemoryRegion,
base::WritableSharedMemoryMapping>>>
input_buffers_;
Vector<std::pair<base::UnsafeSharedMemoryRegion,
base::WritableSharedMemoryMapping>>
output_buffers_;
// Input buffers ready to be filled with input from Encode(). As a LIFO since
// we don't care about ordering.
Vector<int> input_buffers_free_;
// The number of output buffers ready to be filled with output from the
// encoder.
int output_buffers_free_count_;
// Whether to send the frames to VEA as native buffer. Native buffer allows
// VEA to pass the buffer to the encoder directly without further processing.
bool use_native_input_;
// A black GpuMemoryBuffer frame used when the video track is disabled.
scoped_refptr<media::VideoFrame> black_gmb_frame_;
// webrtc::VideoEncoder encode complete callback.
webrtc::EncodedImageCallback* encoded_image_callback_;
// The video codec type, as reported to WebRTC.
const webrtc::VideoCodecType video_codec_type_;
// The content type, as reported to WebRTC (screenshare vs realtime video).
const webrtc::VideoContentType video_content_type_;
webrtc::VideoEncoder::EncoderInfo encoder_info_ GUARDED_BY(lock_);
// Protect |status_| and |encoder_info_|. |status_| is read or written on
// |gpu_task_runner_| in Impl. It can be read in RTCVideoEncoder on other
// threads.
mutable base::Lock lock_;
// We cannot immediately return error conditions to the WebRTC user of this
// class, as there is no error callback in the webrtc::VideoEncoder interface.
// Instead, we cache an error status here and return it the next time an
// interface entry point is called. This is protected by |lock_|.
int32_t status_ GUARDED_BY(lock_);
DISALLOW_COPY_AND_ASSIGN(Impl);
};
RTCVideoEncoder::Impl::Impl(media::GpuVideoAcceleratorFactories* gpu_factories,
webrtc::VideoCodecType video_codec_type,
webrtc::VideoContentType video_content_type)
: gpu_factories_(gpu_factories),
failed_timestamp_match_(false),
input_next_frame_(nullptr),
input_next_frame_keyframe_(false),
output_buffers_free_count_(0),
use_native_input_(false),
encoded_image_callback_(nullptr),
video_codec_type_(video_codec_type),
video_content_type_(video_content_type),
status_(WEBRTC_VIDEO_CODEC_UNINITIALIZED) {
DETACH_FROM_SEQUENCE(sequence_checker_);
// The default values of EncoderInfo.
encoder_info_.implementation_name =
RTCVideoEncoder::Impl::ImplementationName();
encoder_info_.supports_native_handle = true;
encoder_info_.is_hardware_accelerated = true;
encoder_info_.has_internal_source = false;
}
void RTCVideoEncoder::Impl::CreateAndInitializeVEA(
const gfx::Size& input_visible_size,
uint32_t bitrate,
media::VideoCodecProfile profile,
bool is_constrained_h264,
const std::vector<media::VideoEncodeAccelerator::Config::SpatialLayer>&
spatial_layers,
SignaledValue init_event) {
DVLOG(3) << __func__;
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
SetStatus(WEBRTC_VIDEO_CODEC_UNINITIALIZED);
async_init_event_ = ScopedSignaledValue(std::move(init_event));
async_encode_event_.reset();
// Check for overflow converting bitrate (kilobits/sec) to bits/sec.
if (IsBitrateTooHigh(bitrate)) {
async_init_event_.SetAndReset(WEBRTC_VIDEO_CODEC_ERR_PARAMETER);
return;
}
// Check that |profile| supports |input_visible_size|.
if (base::FeatureList::IsEnabled(features::kWebRtcUseMinMaxVEADimensions)) {
const auto vea_supported_profiles =
gpu_factories_->GetVideoEncodeAcceleratorSupportedProfiles().value_or(
media::VideoEncodeAccelerator::SupportedProfiles());
for (const auto& vea_profile : vea_supported_profiles) {
if (vea_profile.profile == profile &&
(input_visible_size.width() > vea_profile.max_resolution.width() ||
input_visible_size.height() > vea_profile.max_resolution.height() ||
input_visible_size.width() < vea_profile.min_resolution.width() ||
input_visible_size.height() < vea_profile.min_resolution.height())) {
LogAndNotifyError(
FROM_HERE,
base::StringPrintf(
"Requested dimensions (%s) beyond accelerator limits (%s - %s)",
input_visible_size.ToString().c_str(),
vea_profile.min_resolution.ToString().c_str(),
vea_profile.max_resolution.ToString().c_str())
.c_str(),
media::VideoEncodeAccelerator::kInvalidArgumentError);
return;
}
}
}
video_encoder_ = gpu_factories_->CreateVideoEncodeAccelerator();
if (!video_encoder_) {
LogAndNotifyError(FROM_HERE, "Error creating VideoEncodeAccelerator",
media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
input_visible_size_ = input_visible_size;
media::VideoPixelFormat pixel_format = media::PIXEL_FORMAT_I420;
auto storage_type =
media::VideoEncodeAccelerator::Config::StorageType::kShmem;
if (!base::CommandLine::ForCurrentProcess()->HasSwitch(
switches::kDisableVideoCaptureUseGpuMemoryBuffer) &&
base::CommandLine::ForCurrentProcess()->HasSwitch(
switches::kVideoCaptureUseGpuMemoryBuffer) &&
video_content_type_ != webrtc::VideoContentType::SCREENSHARE) {
// Use import mode for camera when GpuMemoryBuffer-based video capture is
// enabled.
pixel_format = media::PIXEL_FORMAT_NV12;
storage_type =
media::VideoEncodeAccelerator::Config::StorageType::kGpuMemoryBuffer;
use_native_input_ = true;
}
const media::VideoEncodeAccelerator::Config config(
pixel_format, input_visible_size_, profile, bitrate * 1000, base::nullopt,
base::nullopt, base::nullopt, is_constrained_h264, storage_type,
video_content_type_ == webrtc::VideoContentType::SCREENSHARE
? media::VideoEncodeAccelerator::Config::ContentType::kDisplay
: media::VideoEncodeAccelerator::Config::ContentType::kCamera,
spatial_layers);
if (!video_encoder_->Initialize(config, this)) {
LogAndNotifyError(FROM_HERE, "Error initializing video_encoder",
media::VideoEncodeAccelerator::kInvalidArgumentError);
return;
}
// RequireBitstreamBuffers or NotifyError will be called and the waiter will
// be signaled.
}
webrtc::VideoEncoder::EncoderInfo RTCVideoEncoder::Impl::GetEncoderInfo()
const {
base::AutoLock lock(lock_);
return encoder_info_;
}
void RTCVideoEncoder::Impl::NotifyEncoderInfoChange(
const media::VideoEncoderInfo& info) {
base::AutoLock lock(lock_);
encoder_info_ = CopyToWebrtcEncoderInfo(info);
}
void RTCVideoEncoder::Impl::Enqueue(const webrtc::VideoFrame* input_frame,
bool force_keyframe,
SignaledValue encode_event) {
DVLOG(3) << __func__;
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!input_next_frame_);
int32_t retval = GetStatus();
if (retval != WEBRTC_VIDEO_CODEC_OK) {
encode_event.Set(retval);
encode_event.Signal();
return;
}
// If there are no free input and output buffers, drop the frame to avoid a
// deadlock. If there is a free input buffer and |use_native_input_| is false,
// EncodeOneFrame will run and unblock Encode(). If there are no free input
// buffers but there is a free output buffer, EncodeFrameFinished will be
// called later to unblock Encode().
//
// The caller of Encode() holds a webrtc lock. The deadlock happens when:
// (1) Encode() is waiting for the frame to be encoded in EncodeOneFrame().
// (2) There are no free input buffers and they cannot be freed because
// the encoder has no output buffers.
// (3) Output buffers cannot be freed because ReturnEncodedImage is queued
// on libjingle worker thread to be run. But the worker thread is waiting
// for the same webrtc lock held by the caller of Encode().
//
// Dropping a frame is fine. The encoder has been filled with all input
// buffers. Returning an error in Encode() is not fatal and WebRTC will just
// continue. If this is a key frame, WebRTC will request a key frame again.
// Besides, webrtc will drop a frame if Encode() blocks too long.
if (!use_native_input_ && input_buffers_free_.IsEmpty() &&
output_buffers_free_count_ == 0) {
DVLOG(2) << "Run out of input and output buffers. Drop the frame.";
encode_event.Set(WEBRTC_VIDEO_CODEC_ERROR);
encode_event.Signal();
return;
}
input_next_frame_ = input_frame;
input_next_frame_keyframe_ = force_keyframe;
async_encode_event_ = ScopedSignaledValue(std::move(encode_event));
// If |use_native_input_| is true, then we always queue the frame to the
// encoder since no intermediate buffer is needed in RTCVideoEncoder.
if (use_native_input_) {
EncodeOneFrameWithNativeInput();
return;
}
if (!input_buffers_free_.IsEmpty())
EncodeOneFrame();
}
void RTCVideoEncoder::Impl::UseOutputBitstreamBufferId(
int32_t bitstream_buffer_id) {
DVLOG(3) << __func__ << " bitstream_buffer_id=" << bitstream_buffer_id;
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (video_encoder_) {
video_encoder_->UseOutputBitstreamBuffer(media::BitstreamBuffer(
bitstream_buffer_id,
output_buffers_[bitstream_buffer_id].first.Duplicate(),
output_buffers_[bitstream_buffer_id].first.GetSize()));
output_buffers_free_count_++;
}
}
void RTCVideoEncoder::Impl::RequestEncodingParametersChange(
const webrtc::VideoEncoder::RateControlParameters& parameters) {
DVLOG(3) << __func__ << " bitrate=" << parameters.bitrate.ToString()
<< ", framerate=" << parameters.framerate_fps;
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Destroy() against this has been called. Don't proceed the change request.
if (!video_encoder_)
return;
// This is a workaround to zero being temporarily provided, as part of the
// initial setup, by WebRTC.
media::VideoBitrateAllocation allocation;
if (parameters.bitrate.get_sum_bps() == 0) {
allocation.SetBitrate(0, 0, 1);
}
uint32_t framerate =
std::max(1u, static_cast<uint32_t>(parameters.framerate_fps + 0.5));
for (size_t spatial_id = 0;
spatial_id < media::VideoBitrateAllocation::kMaxSpatialLayers;
++spatial_id) {
for (size_t temporal_id = 0;
temporal_id < media::VideoBitrateAllocation::kMaxTemporalLayers;
++temporal_id) {
// TODO(sprang): Clean this up if/when webrtc struct moves to int.
uint32_t layer_bitrate =
parameters.bitrate.GetBitrate(spatial_id, temporal_id);
CHECK_LE(layer_bitrate,
static_cast<uint32_t>(std::numeric_limits<int>::max()));
if (!allocation.SetBitrate(spatial_id, temporal_id, layer_bitrate)) {
LOG(WARNING) << "Overflow in bitrate allocation: "
<< parameters.bitrate.ToString();
break;
}
}
}
DCHECK_EQ(allocation.GetSumBps(),
static_cast<int>(parameters.bitrate.get_sum_bps()));
video_encoder_->RequestEncodingParametersChange(allocation, framerate);
}
void RTCVideoEncoder::Impl::Destroy(SignaledValue event) {
DVLOG(3) << __func__;
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
RecordTimestampMatchUMA();
if (video_encoder_) {
video_encoder_.reset();
SetStatus(WEBRTC_VIDEO_CODEC_UNINITIALIZED);
}
async_init_event_.reset();
async_encode_event_.reset();
event.Signal();
}
int32_t RTCVideoEncoder::Impl::GetStatus() const {
base::AutoLock lock(lock_);
return status_;
}
void RTCVideoEncoder::Impl::SetStatus(int32_t status) {
base::AutoLock lock(lock_);
status_ = status;
}
void RTCVideoEncoder::Impl::RecordTimestampMatchUMA() const {
UMA_HISTOGRAM_BOOLEAN("Media.RTCVideoEncoderTimestampMatchSuccess",
!failed_timestamp_match_);
}
void RTCVideoEncoder::Impl::RequireBitstreamBuffers(
unsigned int input_count,
const gfx::Size& input_coded_size,
size_t output_buffer_size) {
DVLOG(3) << __func__ << " input_count=" << input_count
<< ", input_coded_size=" << input_coded_size.ToString()
<< ", output_buffer_size=" << output_buffer_size;
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto scoped_event = std::move(async_init_event_);
if (!video_encoder_)
return;
input_frame_coded_size_ = input_coded_size;
// |input_buffers_| is only needed in non import mode.
if (!use_native_input_) {
for (unsigned int i = 0; i < input_count + kInputBufferExtraCount; ++i) {
base::UnsafeSharedMemoryRegion shm =
base::UnsafeSharedMemoryRegion::Create(
media::VideoFrame::AllocationSize(media::PIXEL_FORMAT_I420,
input_coded_size));
if (!shm.IsValid()) {
LogAndNotifyError(FROM_HERE, "failed to create input buffer ",
media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
base::WritableSharedMemoryMapping mapping = shm.Map();
if (!mapping.IsValid()) {
LogAndNotifyError(FROM_HERE, "failed to create input buffer ",
media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
input_buffers_.push_back(
std::make_unique<std::pair<base::UnsafeSharedMemoryRegion,
base::WritableSharedMemoryMapping>>(
std::move(shm), std::move(mapping)));
input_buffers_free_.push_back(i);
}
}
for (int i = 0; i < kOutputBufferCount; ++i) {
base::UnsafeSharedMemoryRegion region =
gpu_factories_->CreateSharedMemoryRegion(output_buffer_size);
base::WritableSharedMemoryMapping mapping = region.Map();
if (!mapping.IsValid()) {
LogAndNotifyError(FROM_HERE, "failed to create output buffer",
media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
output_buffers_.push_back(
std::make_pair(std::move(region), std::move(mapping)));
}
// Immediately provide all output buffers to the VEA.
for (size_t i = 0; i < output_buffers_.size(); ++i) {
video_encoder_->UseOutputBitstreamBuffer(
media::BitstreamBuffer(i, output_buffers_[i].first.Duplicate(),
output_buffers_[i].first.GetSize()));
output_buffers_free_count_++;
}
DCHECK_EQ(GetStatus(), WEBRTC_VIDEO_CODEC_UNINITIALIZED);
SetStatus(WEBRTC_VIDEO_CODEC_OK);
scoped_event.SetAndReset(WEBRTC_VIDEO_CODEC_OK);
}
void RTCVideoEncoder::Impl::BitstreamBufferReady(
int32_t bitstream_buffer_id,
const media::BitstreamBufferMetadata& metadata) {
DVLOG(3) << __func__ << " bitstream_buffer_id=" << bitstream_buffer_id
<< ", payload_size=" << metadata.payload_size_bytes
<< ", key_frame=" << metadata.key_frame
<< ", timestamp ms=" << metadata.timestamp.InMilliseconds();
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (bitstream_buffer_id < 0 ||
bitstream_buffer_id >= static_cast<int>(output_buffers_.size())) {
LogAndNotifyError(FROM_HERE, "invalid bitstream_buffer_id",
media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
void* output_mapping_memory =
output_buffers_[bitstream_buffer_id].second.memory();
if (metadata.payload_size_bytes >
output_buffers_[bitstream_buffer_id].second.size()) {
LogAndNotifyError(FROM_HERE, "invalid payload_size",
media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
output_buffers_free_count_--;
// Find RTP and capture timestamps by going through |pending_timestamps_|.
// Derive it from current time otherwise.
base::Optional<uint32_t> rtp_timestamp;
base::Optional<int64_t> capture_timestamp_ms;
if (!failed_timestamp_match_) {
// Pop timestamps until we have a match.
while (!pending_timestamps_.IsEmpty()) {
const auto& front_timestamps = pending_timestamps_.front();
if (front_timestamps.media_timestamp_ == metadata.timestamp) {
rtp_timestamp = front_timestamps.rtp_timestamp;
capture_timestamp_ms = front_timestamps.capture_time_ms;
pending_timestamps_.pop_front();
break;
}
pending_timestamps_.pop_front();
}
DCHECK(rtp_timestamp.has_value());
}
if (!rtp_timestamp.has_value() || !capture_timestamp_ms.has_value()) {
failed_timestamp_match_ = true;
pending_timestamps_.clear();
const int64_t current_time_ms =
rtc::TimeMicros() / base::Time::kMicrosecondsPerMillisecond;
// RTP timestamp can wrap around. Get the lower 32 bits.
rtp_timestamp = static_cast<uint32_t>(current_time_ms * 90);
capture_timestamp_ms = current_time_ms;
}
webrtc::EncodedImage image;
image.SetEncodedData(webrtc::EncodedImageBuffer::Create(
static_cast<const uint8_t*>(output_mapping_memory),
metadata.payload_size_bytes));
image._encodedWidth = input_visible_size_.width();
image._encodedHeight = input_visible_size_.height();
image.SetTimestamp(rtp_timestamp.value());
image.capture_time_ms_ = capture_timestamp_ms.value();
image._frameType =
(metadata.key_frame ? webrtc::VideoFrameType::kVideoFrameKey
: webrtc::VideoFrameType::kVideoFrameDelta);
image.content_type_ = video_content_type_;
webrtc::CodecSpecificInfo info;
info.codecType = video_codec_type_;
switch (video_codec_type_) {
case webrtc::kVideoCodecVP8:
info.codecSpecific.VP8.keyIdx = -1;
break;
case webrtc::kVideoCodecVP9: {
bool key_frame =
image._frameType == webrtc::VideoFrameType::kVideoFrameKey;
webrtc::CodecSpecificInfoVP9& vp9 = info.codecSpecific.VP9;
info.end_of_picture = true;
if (metadata.vp9) {
// Temporal layer stream.
vp9.first_frame_in_picture = true;
vp9.inter_pic_predicted = metadata.vp9->has_reference;
vp9.flexible_mode = true;
vp9.non_ref_for_inter_layer_pred = false;
vp9.temporal_idx = metadata.vp9->temporal_idx;
vp9.temporal_up_switch = metadata.vp9->temporal_up_switch;
vp9.inter_layer_predicted = false;
vp9.gof_idx = 0;
vp9.num_ref_pics = metadata.vp9->p_diffs.size();
for (size_t i = 0; i < metadata.vp9->p_diffs.size(); ++i)
vp9.p_diff[i] = metadata.vp9->p_diffs[i];
vp9.ss_data_available = key_frame;
vp9.first_active_layer = 0u;
vp9.spatial_layer_resolution_present = true;
vp9.num_spatial_layers = 1u;
vp9.width[0] = image._encodedWidth;
vp9.height[0] = image._encodedHeight;
} else {
// Simple stream, neither temporal nor spatial layer stream.
vp9.flexible_mode = false;
vp9.temporal_idx = webrtc::kNoTemporalIdx;
vp9.temporal_up_switch = true;
vp9.inter_layer_predicted = false;
vp9.gof_idx = 0;
vp9.num_spatial_layers = 1;
vp9.first_frame_in_picture = true;
vp9.spatial_layer_resolution_present = false;
vp9.inter_pic_predicted = !key_frame;
vp9.ss_data_available = key_frame;
if (key_frame) {
vp9.spatial_layer_resolution_present = true;
vp9.width[0] = image._encodedWidth;
vp9.height[0] = image._encodedHeight;
vp9.gof.num_frames_in_gof = 1;
vp9.gof.temporal_idx[0] = 0;
vp9.gof.temporal_up_switch[0] = false;
vp9.gof.num_ref_pics[0] = 1;
vp9.gof.pid_diff[0][0] = 1;
}
}
} break;
default:
break;
}
ReturnEncodedImage(image, info, bitstream_buffer_id);
}
void RTCVideoEncoder::Impl::NotifyError(
media::VideoEncodeAccelerator::Error error) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
int32_t retval = WEBRTC_VIDEO_CODEC_ERROR;
switch (error) {
case media::VideoEncodeAccelerator::kInvalidArgumentError:
retval = WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
break;
case media::VideoEncodeAccelerator::kIllegalStateError:
retval = WEBRTC_VIDEO_CODEC_ERROR;
break;
case media::VideoEncodeAccelerator::kPlatformFailureError:
// Some platforms(i.e. Android) do not have SW H264 implementation so
// check if it is available before asking for fallback.
retval = video_codec_type_ != webrtc::kVideoCodecH264 ||
webrtc::H264Encoder::IsSupported()
? WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE
: WEBRTC_VIDEO_CODEC_ERROR;
}
video_encoder_.reset();
SetStatus(retval);
async_init_event_.SetAndReset(retval);
async_encode_event_.SetAndReset(retval);
}
RTCVideoEncoder::Impl::~Impl() {
DCHECK(!video_encoder_);
}
void RTCVideoEncoder::Impl::LogAndNotifyError(
const base::Location& location,
const String& str,
media::VideoEncodeAccelerator::Error error) {
static const char* const kErrorNames[] = {
"kIllegalStateError", "kInvalidArgumentError", "kPlatformFailureError"};
static_assert(
base::size(kErrorNames) == media::VideoEncodeAccelerator::kErrorMax + 1,
"Different number of errors and textual descriptions");
DLOG(ERROR) << location.ToString() << kErrorNames[error] << " - " << str;
NotifyError(error);
}
void RTCVideoEncoder::Impl::EncodeOneFrame() {
DVLOG(3) << "Impl::EncodeOneFrame()";
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(input_next_frame_);
DCHECK(!input_buffers_free_.IsEmpty());
// EncodeOneFrame() may re-enter EncodeFrameFinished() if VEA::Encode() fails,
// we receive a VEA::NotifyError(), and the media::VideoFrame we pass to
// Encode() gets destroyed early. Handle this by resetting our
// input_next_frame_* state before we hand off the VideoFrame to the VEA.
const webrtc::VideoFrame* next_frame = input_next_frame_;
const bool next_frame_keyframe = input_next_frame_keyframe_;
input_next_frame_ = nullptr;
input_next_frame_keyframe_ = false;
if (!video_encoder_) {
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_ERROR);
return;
}
const int index = input_buffers_free_.back();
scoped_refptr<media::VideoFrame> frame;
const bool is_native_frame = next_frame->video_frame_buffer()->type() ==
webrtc::VideoFrameBuffer::Type::kNative;
// All non-native frames require a copy because we can't tell if non-copy
// conditions are met.
bool requires_copy = !is_native_frame;
if (!requires_copy) {
frame = static_cast<blink::WebRtcVideoFrameAdapter*>(
next_frame->video_frame_buffer().get())
->getMediaVideoFrame();
const media::VideoFrame::StorageType storage = frame->storage_type();
const bool is_shmem_frame = storage == media::VideoFrame::STORAGE_SHMEM;
const bool is_gmb_frame =
storage == media::VideoFrame::STORAGE_GPU_MEMORY_BUFFER;
requires_copy =
RequiresSizeChange(*frame) || !(is_shmem_frame || is_gmb_frame);
}
if (requires_copy) {
const base::TimeDelta timestamp =
frame ? frame->timestamp()
: base::TimeDelta::FromMilliseconds(next_frame->ntp_time_ms());
std::pair<base::UnsafeSharedMemoryRegion,
base::WritableSharedMemoryMapping>* input_buffer =
input_buffers_[index].get();
frame = media::VideoFrame::WrapExternalData(
media::PIXEL_FORMAT_I420, input_frame_coded_size_,
gfx::Rect(input_visible_size_), input_visible_size_,
input_buffer->second.GetMemoryAsSpan<uint8_t>().data(),
input_buffer->second.size(), timestamp);
if (!frame.get()) {
LogAndNotifyError(FROM_HERE, "failed to create frame",
media::VideoEncodeAccelerator::kPlatformFailureError);
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_ERROR);
return;
}
frame->BackWithSharedMemory(&input_buffer->first);
// Do a strided copy and scale (if necessary) the input frame to match
// the input requirements for the encoder.
// TODO(sheu): Support zero-copy from WebRTC. http://crbug.com/269312
// TODO(magjed): Downscale with kFilterBox in an image pyramid instead.
rtc::scoped_refptr<webrtc::I420BufferInterface> i420_buffer =
next_frame->video_frame_buffer()->ToI420();
if (libyuv::I420Scale(i420_buffer->DataY(), i420_buffer->StrideY(),
i420_buffer->DataU(), i420_buffer->StrideU(),
i420_buffer->DataV(), i420_buffer->StrideV(),
next_frame->width(), next_frame->height(),
frame->visible_data(media::VideoFrame::kYPlane),
frame->stride(media::VideoFrame::kYPlane),
frame->visible_data(media::VideoFrame::kUPlane),
frame->stride(media::VideoFrame::kUPlane),
frame->visible_data(media::VideoFrame::kVPlane),
frame->stride(media::VideoFrame::kVPlane),
frame->visible_rect().width(),
frame->visible_rect().height(), libyuv::kFilterBox)) {
LogAndNotifyError(FROM_HERE, "Failed to copy buffer",
media::VideoEncodeAccelerator::kPlatformFailureError);
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_ERROR);
return;
}
}
frame->AddDestructionObserver(media::BindToCurrentLoop(
WTF::Bind(&RTCVideoEncoder::Impl::EncodeFrameFinished,
scoped_refptr<RTCVideoEncoder::Impl>(this), index)));
if (!failed_timestamp_match_) {
DCHECK(std::find_if(pending_timestamps_.begin(), pending_timestamps_.end(),
[&frame](const RTCTimestamps& entry) {
return entry.media_timestamp_ == frame->timestamp();
}) == pending_timestamps_.end());
pending_timestamps_.emplace_back(frame->timestamp(),
next_frame->timestamp(),
next_frame->render_time_ms());
}
video_encoder_->Encode(frame, next_frame_keyframe);
input_buffers_free_.pop_back();
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_OK);
}
void RTCVideoEncoder::Impl::EncodeOneFrameWithNativeInput() {
DVLOG(3) << "Impl::EncodeOneFrameWithNativeInput()";
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(input_buffers_.IsEmpty() && input_buffers_free_.IsEmpty());
DCHECK(input_next_frame_);
// EncodeOneFrameWithNativeInput() may re-enter EncodeFrameFinished() if
// VEA::Encode() fails, we receive a VEA::NotifyError(), and the
// media::VideoFrame we pass to Encode() gets destroyed early. Handle this by
// resetting our input_next_frame_* state before we hand off the VideoFrame to
// the VEA.
const webrtc::VideoFrame* next_frame = input_next_frame_;
const bool next_frame_keyframe = input_next_frame_keyframe_;
input_next_frame_ = nullptr;
input_next_frame_keyframe_ = false;
if (!video_encoder_) {
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_ERROR);
return;
}
scoped_refptr<media::VideoFrame> frame;
if (next_frame->video_frame_buffer()->type() !=
webrtc::VideoFrameBuffer::Type::kNative) {
// If we get a non-native frame it's because the video track is disabled and
// WebRTC VideoBroadcaster replaces the camera frame with a black YUV frame.
if (!black_gmb_frame_) {
gfx::Size natural_size(next_frame->width(), next_frame->height());
if (!CreateBlackGpuMemoryBufferFrame(natural_size)) {
DVLOG(2) << "Failed to allocate native buffer for black frame";
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_ERROR);
return;
}
}
frame = media::VideoFrame::WrapVideoFrame(
black_gmb_frame_, black_gmb_frame_->format(),
black_gmb_frame_->visible_rect(), black_gmb_frame_->natural_size());
frame->set_timestamp(
base::TimeDelta::FromMilliseconds(next_frame->ntp_time_ms()));
} else {
frame = static_cast<blink::WebRtcVideoFrameAdapter*>(
next_frame->video_frame_buffer().get())
->getMediaVideoFrame();
}
if (frame->storage_type() != media::VideoFrame::STORAGE_GPU_MEMORY_BUFFER) {
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_ERROR);
LogAndNotifyError(FROM_HERE, "frame isn't GpuMemoryBuffer based VideoFrame",
media::VideoEncodeAccelerator::kPlatformFailureError);
return;
}
constexpr int kDummyIndex = -1;
frame->AddDestructionObserver(media::BindToCurrentLoop(
WTF::Bind(&RTCVideoEncoder::Impl::EncodeFrameFinished,
scoped_refptr<RTCVideoEncoder::Impl>(this), kDummyIndex)));
if (!failed_timestamp_match_) {
DCHECK(std::find_if(pending_timestamps_.begin(), pending_timestamps_.end(),
[&frame](const RTCTimestamps& entry) {
return entry.media_timestamp_ == frame->timestamp();
}) == pending_timestamps_.end());
pending_timestamps_.emplace_back(frame->timestamp(),
next_frame->timestamp(),
next_frame->render_time_ms());
}
video_encoder_->Encode(frame, next_frame_keyframe);
async_encode_event_.SetAndReset(WEBRTC_VIDEO_CODEC_OK);
}
bool RTCVideoEncoder::Impl::CreateBlackGpuMemoryBufferFrame(
const gfx::Size& natural_size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto gmb = gpu_factories_->CreateGpuMemoryBuffer(
natural_size, gfx::BufferFormat::YUV_420_BIPLANAR,
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
if (!gmb || !gmb->Map()) {
black_gmb_frame_ = nullptr;
return false;
}
// Fills the NV12 frame with YUV black (0x00, 0x80, 0x80).
const auto gmb_size = gmb->GetSize();
memset(static_cast<uint8_t*>(gmb->memory(0)), 0x0,
gmb->stride(0) * gmb_size.height());
memset(static_cast<uint8_t*>(gmb->memory(1)), 0x80,
gmb->stride(1) * gmb_size.height() / 2);
gmb->Unmap();
gpu::MailboxHolder empty_mailboxes[media::VideoFrame::kMaxPlanes];
black_gmb_frame_ = media::VideoFrame::WrapExternalGpuMemoryBuffer(
gfx::Rect(gmb_size), natural_size, std::move(gmb), empty_mailboxes,
base::NullCallback(), base::TimeDelta());
return true;
}
void RTCVideoEncoder::Impl::EncodeFrameFinished(int index) {
DVLOG(3) << "Impl::EncodeFrameFinished(): index=" << index;
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Destroy() against this has been called. Don't proceed the frame completion.
if (!video_encoder_)
return;
if (use_native_input_) {
if (input_next_frame_)
EncodeOneFrameWithNativeInput();
return;
}
DCHECK_GE(index, 0);
DCHECK_LT(index, static_cast<int>(input_buffers_.size()));
input_buffers_free_.push_back(index);
if (input_next_frame_)
EncodeOneFrame();
}
bool RTCVideoEncoder::Impl::IsBitrateTooHigh(uint32_t bitrate) {
uint32_t bitrate_bps = 0;
if (ConvertKbpsToBps(bitrate, &bitrate_bps))
return false;
LogAndNotifyError(FROM_HERE, "Overflow converting bitrate from kbps to bps",
media::VideoEncodeAccelerator::kInvalidArgumentError);
return true;
}
bool RTCVideoEncoder::Impl::RequiresSizeChange(
const media::VideoFrame& frame) const {
return (frame.coded_size() != input_frame_coded_size_ ||
frame.visible_rect() != gfx::Rect(input_visible_size_));
}
void RTCVideoEncoder::Impl::RegisterEncodeCompleteCallback(
SignaledValue event,
webrtc::EncodedImageCallback* callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOG(3) << __func__;
int32_t retval = GetStatus();
if (retval == WEBRTC_VIDEO_CODEC_OK)
encoded_image_callback_ = callback;
event.Set(retval);
event.Signal();
}
void RTCVideoEncoder::Impl::ReturnEncodedImage(
const webrtc::EncodedImage& image,
const webrtc::CodecSpecificInfo& info,
int32_t bitstream_buffer_id) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOG(3) << __func__ << " bitstream_buffer_id=" << bitstream_buffer_id;
if (!encoded_image_callback_)
return;
const auto result = encoded_image_callback_->OnEncodedImage(image, &info);
if (result.error != webrtc::EncodedImageCallback::Result::OK) {
DVLOG(2)
<< "ReturnEncodedImage(): webrtc::EncodedImageCallback::Result.error = "
<< result.error;
}
UseOutputBitstreamBufferId(bitstream_buffer_id);
}
RTCVideoEncoder::RTCVideoEncoder(
media::VideoCodecProfile profile,
bool is_constrained_h264,
media::GpuVideoAcceleratorFactories* gpu_factories)
: profile_(profile),
is_constrained_h264_(is_constrained_h264),
gpu_factories_(gpu_factories),
gpu_task_runner_(gpu_factories->GetTaskRunner()) {
DVLOG(1) << "RTCVideoEncoder(): profile=" << GetProfileName(profile);
}
RTCVideoEncoder::~RTCVideoEncoder() {
DVLOG(3) << __func__;
Release();
DCHECK(!impl_.get());
}
int32_t RTCVideoEncoder::InitEncode(
const webrtc::VideoCodec* codec_settings,
const webrtc::VideoEncoder::Settings& settings) {
DVLOG(1) << __func__ << " codecType=" << codec_settings->codecType
<< ", width=" << codec_settings->width
<< ", height=" << codec_settings->height
<< ", startBitrate=" << codec_settings->startBitrate;
if (impl_)
Release();
impl_ =
new Impl(gpu_factories_, ProfileToWebRtcVideoCodecType(profile_),
(codec_settings->mode == webrtc::VideoCodecMode::kScreensharing)
? webrtc::VideoContentType::SCREENSHARE
: webrtc::VideoContentType::UNSPECIFIED);
std::vector<media::VideoEncodeAccelerator::Config::SpatialLayer>
spatial_layers;
if (!CreateSpatialLayersConfig(*codec_settings, &spatial_layers))
return WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE;
// This wait is necessary because this task is completed in GPU process
// asynchronously but WebRTC API is synchronous.
base::ScopedAllowBaseSyncPrimitivesOutsideBlockingScope allow_wait;
base::WaitableEvent initialization_waiter(
base::WaitableEvent::ResetPolicy::MANUAL,
base::WaitableEvent::InitialState::NOT_SIGNALED);
int32_t initialization_retval = WEBRTC_VIDEO_CODEC_UNINITIALIZED;
PostCrossThreadTask(
*gpu_task_runner_.get(), FROM_HERE,
CrossThreadBindOnce(
&RTCVideoEncoder::Impl::CreateAndInitializeVEA,
scoped_refptr<Impl>(impl_),
gfx::Size(codec_settings->width, codec_settings->height),
codec_settings->startBitrate, profile_, is_constrained_h264_,
spatial_layers,
SignaledValue(&initialization_waiter, &initialization_retval)));
// webrtc::VideoEncoder expects this call to be synchronous.
initialization_waiter.Wait();
RecordInitEncodeUMA(initialization_retval, profile_);
return initialization_retval;
}
int32_t RTCVideoEncoder::Encode(
const webrtc::VideoFrame& input_image,
const std::vector<webrtc::VideoFrameType>* frame_types) {
DVLOG(3) << __func__;
if (!impl_.get()) {
DVLOG(3) << "Encoder is not initialized";
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
const bool want_key_frame =
frame_types && frame_types->size() &&
frame_types->front() == webrtc::VideoFrameType::kVideoFrameKey;
base::ScopedAllowBaseSyncPrimitivesOutsideBlockingScope allow_wait;
base::WaitableEvent encode_waiter(
base::WaitableEvent::ResetPolicy::MANUAL,
base::WaitableEvent::InitialState::NOT_SIGNALED);
int32_t encode_retval = WEBRTC_VIDEO_CODEC_UNINITIALIZED;
PostCrossThreadTask(
*gpu_task_runner_.get(), FROM_HERE,
CrossThreadBindOnce(&RTCVideoEncoder::Impl::Enqueue,
scoped_refptr<Impl>(impl_),
CrossThreadUnretained(&input_image), want_key_frame,
SignaledValue(&encode_waiter, &encode_retval)));
// webrtc::VideoEncoder expects this call to be synchronous.
encode_waiter.Wait();
DVLOG(3) << "Encode(): returning encode_retval=" << encode_retval;
return encode_retval;
}
int32_t RTCVideoEncoder::RegisterEncodeCompleteCallback(
webrtc::EncodedImageCallback* callback) {
DVLOG(3) << __func__;
if (!impl_.get()) {
DVLOG(3) << "Encoder is not initialized";
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
base::ScopedAllowBaseSyncPrimitivesOutsideBlockingScope allow_wait;
base::WaitableEvent register_waiter(
base::WaitableEvent::ResetPolicy::MANUAL,
base::WaitableEvent::InitialState::NOT_SIGNALED);
int32_t register_retval = WEBRTC_VIDEO_CODEC_UNINITIALIZED;
PostCrossThreadTask(
*gpu_task_runner_.get(), FROM_HERE,
CrossThreadBindOnce(
&RTCVideoEncoder::Impl::RegisterEncodeCompleteCallback,
scoped_refptr<Impl>(impl_),
SignaledValue(&register_waiter, &register_retval),
CrossThreadUnretained(callback)));
register_waiter.Wait();
return register_retval;
}
int32_t RTCVideoEncoder::Release() {
DVLOG(3) << __func__;
if (!impl_.get())
return WEBRTC_VIDEO_CODEC_OK;
base::ScopedAllowBaseSyncPrimitivesOutsideBlockingScope allow_wait;
base::WaitableEvent release_waiter(
base::WaitableEvent::ResetPolicy::MANUAL,
base::WaitableEvent::InitialState::NOT_SIGNALED);
PostCrossThreadTask(
*gpu_task_runner_.get(), FROM_HERE,
CrossThreadBindOnce(&RTCVideoEncoder::Impl::Destroy,
scoped_refptr<Impl>(impl_),
SignaledValue(&release_waiter, nullptr /* val */)));
release_waiter.Wait();
impl_ = nullptr;
return WEBRTC_VIDEO_CODEC_OK;
}
void RTCVideoEncoder::SetRates(
const webrtc::VideoEncoder::RateControlParameters& parameters) {
DVLOG(3) << __func__ << " new_bit_rate=" << parameters.bitrate.ToString()
<< ", frame_rate=" << parameters.framerate_fps;
if (!impl_.get()) {
DVLOG(3) << "Encoder is not initialized";
return;
}
const int32_t retval = impl_->GetStatus();
if (retval != WEBRTC_VIDEO_CODEC_OK) {
DVLOG(3) << __func__ << " returning " << retval;
return;
}
PostCrossThreadTask(
*gpu_task_runner_.get(), FROM_HERE,
CrossThreadBindOnce(
&RTCVideoEncoder::Impl::RequestEncodingParametersChange,
scoped_refptr<Impl>(impl_), parameters));
return;
}
webrtc::VideoEncoder::EncoderInfo RTCVideoEncoder::GetEncoderInfo() const {
webrtc::VideoEncoder::EncoderInfo info;
if (impl_)
info = impl_->GetEncoderInfo();
return info;
}
} // namespace blink