blob: 4515a76583e3b39590dec9a5465952913701abd3 [file] [log] [blame]
/*
* Copyright (C) 2007 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/platform/wtf/text/utf8.h"
#include "third_party/blink/renderer/platform/wtf/text/ascii_ctype.h"
#include "third_party/blink/renderer/platform/wtf/text/character_names.h"
#include "third_party/blink/renderer/platform/wtf/text/string_hasher.h"
namespace WTF {
namespace unicode {
inline int InlineUTF8SequenceLengthNonASCII(char b0) {
if ((b0 & 0xC0) != 0xC0)
return 0;
if ((b0 & 0xE0) == 0xC0)
return 2;
if ((b0 & 0xF0) == 0xE0)
return 3;
if ((b0 & 0xF8) == 0xF0)
return 4;
return 0;
}
inline int InlineUTF8SequenceLength(char b0) {
return IsASCII(b0) ? 1 : InlineUTF8SequenceLengthNonASCII(b0);
}
// Once the bits are split out into bytes of UTF-8, this is a mask OR-ed
// into the first byte, depending on how many bytes follow. There are
// as many entries in this table as there are UTF-8 sequence types.
// (I.e., one byte sequence, two byte... etc.). Remember that sequences
// for *legal* UTF-8 will be 4 or fewer bytes total.
static const unsigned char kFirstByteMark[7] = {0x00, 0x00, 0xC0, 0xE0,
0xF0, 0xF8, 0xFC};
ConversionResult ConvertLatin1ToUTF8(const LChar** source_start,
const LChar* source_end,
char** target_start,
char* target_end) {
ConversionResult result = kConversionOK;
const LChar* source = *source_start;
char* target = *target_start;
while (source < source_end) {
UChar32 ch;
uint8_t bytes_to_write = 0;
const UChar32 kByteMask = 0xBF;
const UChar32 kByteMark = 0x80;
const LChar* old_source =
source; // In case we have to back up because of target overflow.
ch = static_cast<UChar32>(*source++);
// Figure out how many bytes the result will require
if (ch < (UChar32)0x80)
bytes_to_write = 1;
else
bytes_to_write = 2;
target += bytes_to_write;
if (target > target_end) {
source = old_source; // Back up source pointer!
target -= bytes_to_write;
result = kTargetExhausted;
break;
}
switch (bytes_to_write) {
case 2:
*--target = (char)((ch | kByteMark) & kByteMask);
ch >>= 6;
FALLTHROUGH;
case 1:
*--target = (char)(ch | kFirstByteMark[bytes_to_write]);
}
target += bytes_to_write;
}
*source_start = source;
*target_start = target;
return result;
}
ConversionResult ConvertUTF16ToUTF8(const UChar** source_start,
const UChar* source_end,
char** target_start,
char* target_end,
bool strict) {
ConversionResult result = kConversionOK;
const UChar* source = *source_start;
char* target = *target_start;
while (source < source_end) {
UChar32 ch;
uint8_t bytes_to_write = 0;
const UChar32 kByteMask = 0xBF;
const UChar32 kByteMark = 0x80;
const UChar* old_source =
source; // In case we have to back up because of target overflow.
ch = static_cast<UChar32>(*source++);
// If we have a surrogate pair, convert to UChar32 first.
if (ch >= 0xD800 && ch <= 0xDBFF) {
// If the 16 bits following the high surrogate are in the source buffer...
if (source < source_end) {
UChar32 ch2 = static_cast<UChar32>(*source);
// If it's a low surrogate, convert to UChar32.
if (ch2 >= 0xDC00 && ch2 <= 0xDFFF) {
ch = ((ch - 0xD800) << 10) + (ch2 - 0xDC00) + 0x0010000;
++source;
} else if (strict) { // it's an unpaired high surrogate
--source; // return to the illegal value itself
result = kSourceIllegal;
break;
}
} else { // We don't have the 16 bits following the high surrogate.
--source; // return to the high surrogate
result = kSourceExhausted;
break;
}
} else if (strict) {
// UTF-16 surrogate values are illegal in UTF-32
if (ch >= 0xDC00 && ch <= 0xDFFF) {
--source; // return to the illegal value itself
result = kSourceIllegal;
break;
}
}
// Figure out how many bytes the result will require
if (ch < (UChar32)0x80) {
bytes_to_write = 1;
} else if (ch < (UChar32)0x800) {
bytes_to_write = 2;
} else if (ch < (UChar32)0x10000) {
bytes_to_write = 3;
} else if (ch < (UChar32)0x110000) {
bytes_to_write = 4;
} else {
bytes_to_write = 3;
ch = kReplacementCharacter;
}
target += bytes_to_write;
if (target > target_end) {
source = old_source; // Back up source pointer!
target -= bytes_to_write;
result = kTargetExhausted;
break;
}
switch (bytes_to_write) {
case 4:
*--target = (char)((ch | kByteMark) & kByteMask);
ch >>= 6;
FALLTHROUGH;
case 3:
*--target = (char)((ch | kByteMark) & kByteMask);
ch >>= 6;
FALLTHROUGH;
case 2:
*--target = (char)((ch | kByteMark) & kByteMask);
ch >>= 6;
FALLTHROUGH;
case 1:
*--target = (char)(ch | kFirstByteMark[bytes_to_write]);
}
target += bytes_to_write;
}
*source_start = source;
*target_start = target;
return result;
}
// This must be called with the length pre-determined by the first byte.
// If presented with a length > 4, this returns false. The Unicode
// definition of UTF-8 goes up to 4-byte sequences.
static bool IsLegalUTF8(const unsigned char* source, int length) {
unsigned char a;
const unsigned char* srcptr = source + length;
switch (length) {
default:
return false;
case 4:
if ((a = (*--srcptr)) < 0x80 || a > 0xBF)
return false;
FALLTHROUGH;
case 3:
if ((a = (*--srcptr)) < 0x80 || a > 0xBF)
return false;
FALLTHROUGH;
case 2:
if ((a = (*--srcptr)) > 0xBF)
return false;
// no fall-through in this inner switch
switch (*source) {
case 0xE0:
if (a < 0xA0)
return false;
break;
case 0xED:
if (a > 0x9F)
return false;
break;
case 0xF0:
if (a < 0x90)
return false;
break;
case 0xF4:
if (a > 0x8F)
return false;
break;
default:
if (a < 0x80)
return false;
}
FALLTHROUGH;
case 1:
if (*source >= 0x80 && *source < 0xC2)
return false;
}
if (*source > 0xF4)
return false;
return true;
}
// Magic values subtracted from a buffer value during UTF8 conversion.
// This table contains as many values as there might be trailing bytes
// in a UTF-8 sequence.
static const UChar32 kOffsetsFromUTF8[6] = {0x00000000UL,
0x00003080UL,
0x000E2080UL,
0x03C82080UL,
static_cast<UChar32>(0xFA082080UL),
static_cast<UChar32>(0x82082080UL)};
static inline UChar32 ReadUTF8Sequence(const char*& sequence, unsigned length) {
UChar32 character = 0;
switch (length) {
case 6:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
FALLTHROUGH;
case 5:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
FALLTHROUGH;
case 4:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
FALLTHROUGH;
case 3:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
FALLTHROUGH;
case 2:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
FALLTHROUGH;
case 1:
character += static_cast<unsigned char>(*sequence++);
}
return character - kOffsetsFromUTF8[length - 1];
}
ConversionResult ConvertUTF8ToUTF16(const char** source_start,
const char* source_end,
UChar** target_start,
UChar* target_end,
bool* source_all_ascii,
bool strict) {
ConversionResult result = kConversionOK;
const char* source = *source_start;
UChar* target = *target_start;
UChar or_all_data = 0;
while (source < source_end) {
int utf8_sequence_length = InlineUTF8SequenceLength(*source);
if (source_end - source < utf8_sequence_length) {
result = kSourceExhausted;
break;
}
// Do this check whether lenient or strict
if (!IsLegalUTF8(reinterpret_cast<const unsigned char*>(source),
utf8_sequence_length)) {
result = kSourceIllegal;
break;
}
UChar32 character = ReadUTF8Sequence(source, utf8_sequence_length);
if (target >= target_end) {
source -= utf8_sequence_length; // Back up source pointer!
result = kTargetExhausted;
break;
}
if (U_IS_BMP(character)) {
// UTF-16 surrogate values are illegal in UTF-32
if (U_IS_SURROGATE(character)) {
if (strict) {
source -= utf8_sequence_length; // return to the illegal value itself
result = kSourceIllegal;
break;
}
*target++ = kReplacementCharacter;
or_all_data |= kReplacementCharacter;
} else {
*target++ = static_cast<UChar>(character); // normal case
or_all_data |= character;
}
} else if (U_IS_SUPPLEMENTARY(character)) {
// target is a character in range 0xFFFF - 0x10FFFF
if (target + 1 >= target_end) {
source -= utf8_sequence_length; // Back up source pointer!
result = kTargetExhausted;
break;
}
*target++ = U16_LEAD(character);
*target++ = U16_TRAIL(character);
or_all_data = 0xffff;
} else {
if (strict) {
source -= utf8_sequence_length; // return to the start
result = kSourceIllegal;
break; // Bail out; shouldn't continue
} else {
*target++ = kReplacementCharacter;
or_all_data |= kReplacementCharacter;
}
}
}
*source_start = source;
*target_start = target;
if (source_all_ascii)
*source_all_ascii = !(or_all_data & ~0x7f);
return result;
}
unsigned CalculateStringHashAndLengthFromUTF8MaskingTop8Bits(
const char* data,
const char* data_end,
unsigned& data_length,
unsigned& utf16_length) {
if (!data)
return 0;
StringHasher string_hasher;
data_length = 0;
utf16_length = 0;
while (data < data_end || (!data_end && *data)) {
if (IsASCII(*data)) {
string_hasher.AddCharacter(*data++);
data_length++;
utf16_length++;
continue;
}
int utf8_sequence_length = InlineUTF8SequenceLengthNonASCII(*data);
data_length += utf8_sequence_length;
if (!data_end) {
for (int i = 1; i < utf8_sequence_length; ++i) {
if (!data[i])
return 0;
}
} else if (data_end - data < utf8_sequence_length) {
return 0;
}
if (!IsLegalUTF8(reinterpret_cast<const unsigned char*>(data),
utf8_sequence_length))
return 0;
UChar32 character = ReadUTF8Sequence(data, utf8_sequence_length);
DCHECK(!IsASCII(character));
if (U_IS_BMP(character)) {
// UTF-16 surrogate values are illegal in UTF-32
if (U_IS_SURROGATE(character))
return 0;
string_hasher.AddCharacter(static_cast<UChar>(character)); // normal case
utf16_length++;
} else if (U_IS_SUPPLEMENTARY(character)) {
string_hasher.AddCharacters(static_cast<UChar>(U16_LEAD(character)),
static_cast<UChar>(U16_TRAIL(character)));
utf16_length += 2;
} else {
return 0;
}
}
return string_hasher.HashWithTop8BitsMasked();
}
template <typename CharType>
ALWAYS_INLINE bool EqualWithUTF8Internal(const CharType* a,
const CharType* a_end,
const char* b,
const char* b_end) {
while (b < b_end) {
if (IsASCII(*b)) {
if (*a++ != *b++)
return false;
continue;
}
int utf8_sequence_length = InlineUTF8SequenceLengthNonASCII(*b);
if (b_end - b < utf8_sequence_length)
return false;
if (!IsLegalUTF8(reinterpret_cast<const unsigned char*>(b),
utf8_sequence_length))
return 0;
UChar32 character = ReadUTF8Sequence(b, utf8_sequence_length);
DCHECK(!IsASCII(character));
if (U_IS_BMP(character)) {
// UTF-16 surrogate values are illegal in UTF-32
if (U_IS_SURROGATE(character))
return false;
if (*a++ != character)
return false;
} else if (U_IS_SUPPLEMENTARY(character)) {
if (*a++ != U16_LEAD(character))
return false;
if (*a++ != U16_TRAIL(character))
return false;
} else {
return false;
}
}
return a == a_end;
}
bool EqualUTF16WithUTF8(const UChar* a,
const UChar* a_end,
const char* b,
const char* b_end) {
return EqualWithUTF8Internal(a, a_end, b, b_end);
}
bool EqualLatin1WithUTF8(const LChar* a,
const LChar* a_end,
const char* b,
const char* b_end) {
return EqualWithUTF8Internal(a, a_end, b, b_end);
}
} // namespace unicode
} // namespace WTF