blob: d71daf55a69cdde26da4ea38a9607041201067c6 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<script src="../../../resources/js-test.js"></script>
<script src="../resources/common.js"></script>
</head>
<body>
<p id="description"></p>
<div id="console"></div>
<script>
description("Tests structured de-cloning of empty HMAC keys");
jsTestIsAsync = true;
// It used to be possible to import empty HMAC keys, so it is possible that
// such keys were persisted to storage. This test verifies that such keys can
// still be successfully de-serialized and used.
//
// The version number of the serialized format used is 7.
function deserializeTestKeys()
{
function createKeyFromSerialized(serializedBytesHex)
{
return internals.deserializeBuffer(hexStringToUint8Array(serializedBytesHex).buffer);
}
debug("\nDeserializing empty HMAC SHA-1 key...");
var sha1Key = createKeyFromSerialized("ff073f004b0200051900");
key = sha1Key;
shouldEvaluateAs("key.type", "secret");
shouldEvaluateAs("key.extractable", true);
shouldEvaluateAs("key.algorithm.name", "HMAC");
shouldEvaluateAs("key.algorithm.length", 0);
shouldEvaluateAs("key.algorithm.hash.name", "SHA-1");
shouldBe("key.usages", '["sign", "verify"]');
debug("\nDeserializing empty HMAC SHA-256 key...");
var sha256Key = createKeyFromSerialized("ff073f004b0200061900");
key = sha256Key;
shouldEvaluateAs("key.type", "secret");
shouldEvaluateAs("key.extractable", true);
shouldEvaluateAs("key.algorithm.name", "HMAC");
shouldEvaluateAs("key.algorithm.length", 0);
shouldEvaluateAs("key.algorithm.hash.name", "SHA-256");
shouldBe("key.usages", '["sign", "verify"]');
return {
sha1: sha1Key,
sha256: sha256Key
};
}
Promise.resolve(deserializeTestKeys()).then(function(result) {
keys = result;
debug("\ncalling verify() with a valid signature (SHA-1) ...");
return crypto.subtle.verify("HMAC", keys.sha1, hexStringToUint8Array("fbdb1d1b18aa6c08324b7d64b71fb76370690e1d"), hexStringToUint8Array(""));
}).then(function(result) {
verifyResult = result;
shouldEvaluateAs("verifyResult", true);
debug("\ncalling verify() with an invalid signature (SHA-1) ...");
return crypto.subtle.verify("HMAC", keys.sha1, hexStringToUint8Array("fbdb1d1b18aa6c08324b7d64b71fb76370690e1e"), hexStringToUint8Array(""));
}).then(function(result) {
verifyResult = result;
shouldEvaluateAs("verifyResult", false);
debug("\ncalling sign() (SHA-1) over empty input...");
return crypto.subtle.sign("HMAC", keys.sha1, hexStringToUint8Array(""));
}).then(function(result) {
bytesShouldMatchHexString("signature", "fbdb1d1b18aa6c08324b7d64b71fb76370690e1d", result);
debug("\ncalling verify() with a valid signature (SHA-256) ...");
return crypto.subtle.verify("HMAC", keys.sha256, hexStringToUint8Array("b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad"), hexStringToUint8Array(""));
}).then(function(result) {
verifyResult = result;
shouldEvaluateAs("verifyResult", true);
debug("\ncalling verify() with an invalid signature (SHA-256) ...");
return crypto.subtle.verify("HMAC", keys.sha256, hexStringToUint8Array("0000"), hexStringToUint8Array(""));
}).then(function(result) {
verifyResult = result;
shouldEvaluateAs("verifyResult", false);
debug("\ncalling sign() (SHA-256) over empty input...");
return crypto.subtle.sign("HMAC", keys.sha256, hexStringToUint8Array(""));
}).then(function(result) {
bytesShouldMatchHexString("signature", "b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad", result);
}).then(finishJSTest, failAndFinishJSTest);
</script>
</body>
</html>