blob: c98555f1610693abaa0bbe858e826bd1f776fb5b [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<title>
Test IIRFilter getFrequencyResponse() functionality
</title>
<script src="/resources/testharness.js"></script>
<script src="/resources/testharnessreport.js"></script>
<script src="../../resources/audit-util.js"></script>
<script src="../../resources/audit.js"></script>
<script src="../../resources/biquad-filters.js"></script>
</head>
<body>
<script id="layout-test-code">
let sampleRate = 48000;
// Some short duration; we're not actually looking at the rendered output.
let testDurationSec = 0.01;
// Number of frequency samples to take.
let numberOfFrequencies = 1000;
let audit = Audit.createTaskRunner();
// Compute a set of linearly spaced frequencies.
function createFrequencies(nFrequencies, sampleRate) {
let frequencies = new Float32Array(nFrequencies);
let nyquist = sampleRate / 2;
let freqDelta = nyquist / nFrequencies;
for (let k = 0; k < nFrequencies; ++k) {
frequencies[k] = k * freqDelta;
}
return frequencies;
}
audit.define('1-pole IIR', (task, should) => {
let context = new OfflineAudioContext(
1, testDurationSec * sampleRate, sampleRate);
let iir = context.createIIRFilter([1], [1, -0.9]);
let frequencies =
createFrequencies(numberOfFrequencies, context.sampleRate);
let iirMag = new Float32Array(numberOfFrequencies);
let iirPhase = new Float32Array(numberOfFrequencies);
let trueMag = new Float32Array(numberOfFrequencies);
let truePhase = new Float32Array(numberOfFrequencies);
// The IIR filter is
// H(z) = 1/(1 - 0.9*z^(-1)).
//
// The frequency response is
// H(exp(j*w)) = 1/(1 - 0.9*exp(-j*w)).
//
// Thus, the magnitude is
// |H(exp(j*w))| = 1/sqrt(1.81-1.8*cos(w)).
//
// The phase is
// arg(H(exp(j*w)) = atan(0.9*sin(w)/(.9*cos(w)-1))
let frequencyScale = Math.PI / (sampleRate / 2);
for (let k = 0; k < frequencies.length; ++k) {
let omega = frequencyScale * frequencies[k];
trueMag[k] = 1 / Math.sqrt(1.81 - 1.8 * Math.cos(omega));
truePhase[k] =
Math.atan(0.9 * Math.sin(omega) / (0.9 * Math.cos(omega) - 1));
}
iir.getFrequencyResponse(frequencies, iirMag, iirPhase);
// Thresholds were experimentally determined.
should(iirMag, '1-pole IIR Magnitude Response')
.beCloseToArray(trueMag, {absoluteThreshold: 2.8611e-6});
should(iirPhase, '1-pole IIR Phase Response')
.beCloseToArray(truePhase, {absoluteThreshold: 1.7882e-7});
task.done();
});
audit.define('compare IIR and biquad', (task, should) => {
// Create an IIR filter equivalent to the biquad filter. Compute the
// frequency response for both and verify that they are the same.
let context = new OfflineAudioContext(
1, testDurationSec * sampleRate, sampleRate);
let biquad = context.createBiquadFilter();
let coef = createFilter(
biquad.type, biquad.frequency.value / (context.sampleRate / 2),
biquad.Q.value, biquad.gain.value);
let iir = context.createIIRFilter(
[coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]);
let frequencies =
createFrequencies(numberOfFrequencies, context.sampleRate);
let biquadMag = new Float32Array(numberOfFrequencies);
let biquadPhase = new Float32Array(numberOfFrequencies);
let iirMag = new Float32Array(numberOfFrequencies);
let iirPhase = new Float32Array(numberOfFrequencies);
biquad.getFrequencyResponse(frequencies, biquadMag, biquadPhase);
iir.getFrequencyResponse(frequencies, iirMag, iirPhase);
// Thresholds were experimentally determined.
should(iirMag, 'IIR Magnitude Response').beCloseToArray(biquadMag, {
absoluteThreshold: 2.7419e-5
});
should(iirPhase, 'IIR Phase Response').beCloseToArray(biquadPhase, {
absoluteThreshold: 2.7657e-5
});
task.done();
});
audit.define(
{
label: 'getFrequencyResponse',
description: 'Test out-of-bounds frequency values'
},
(task, should) => {
let context = new OfflineAudioContext(1, 1, sampleRate);
let filter = new IIRFilterNode(
context, {feedforward: [1], feedback: [1, -.9]});
// Frequencies to test. These are all outside the valid range of
// frequencies of 0 to Nyquist.
let freq = new Float32Array(2);
freq[0] = -1;
freq[1] = context.sampleRate / 2 + 1;
let mag = new Float32Array(freq.length);
let phase = new Float32Array(freq.length);
filter.getFrequencyResponse(freq, mag, phase);
// Verify that the returned magnitude and phase entries are alL NaN
// since the frequencies are outside the valid range
for (let k = 0; k < mag.length; ++k) {
should(mag[k],
'Magnitude response at frequency ' + freq[k])
.beNaN();
}
for (let k = 0; k < phase.length; ++k) {
should(phase[k],
'Phase response at frequency ' + freq[k])
.beNaN();
}
task.done();
});
audit.run();
</script>
</body>
</html>