| /* |
| * Implementation of Password-Based Cryptography as per PKCS#5 |
| * Copyright (C) 2002,2003 Simon Josefsson |
| * Copyright (C) 2004 Free Software Foundation |
| * |
| * cryptsetup related changes |
| * Copyright (C) 2012-2017, Red Hat, Inc. All rights reserved. |
| * Copyright (C) 2012-2017, Milan Broz |
| * |
| * This file is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This file is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this file; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <alloca.h> |
| #include "crypto_backend.h" |
| |
| static int hash_buf(const char *src, size_t src_len, |
| char *dst, size_t dst_len, |
| const char *hash_name) |
| { |
| struct crypt_hash *hd = NULL; |
| int r; |
| |
| if (crypt_hash_init(&hd, hash_name)) |
| return -EINVAL; |
| |
| r = crypt_hash_write(hd, src, src_len); |
| |
| if (!r) |
| r = crypt_hash_final(hd, dst, dst_len); |
| |
| crypt_hash_destroy(hd); |
| return r; |
| } |
| |
| /* |
| * 5.2 PBKDF2 |
| * |
| * PBKDF2 applies a pseudorandom function (see Appendix B.1 for an |
| * example) to derive keys. The length of the derived key is essentially |
| * unbounded. (However, the maximum effective search space for the |
| * derived key may be limited by the structure of the underlying |
| * pseudorandom function. See Appendix B.1 for further discussion.) |
| * PBKDF2 is recommended for new applications. |
| * |
| * PBKDF2 (P, S, c, dkLen) |
| * |
| * Options: PRF underlying pseudorandom function (hLen |
| * denotes the length in octets of the |
| * pseudorandom function output) |
| * |
| * Input: P password, an octet string (ASCII or UTF-8) |
| * S salt, an octet string |
| * c iteration count, a positive integer |
| * dkLen intended length in octets of the derived |
| * key, a positive integer, at most |
| * (2^32 - 1) * hLen |
| * |
| * Output: DK derived key, a dkLen-octet string |
| */ |
| |
| /* |
| * if hash_block_size is not zero, the HMAC key is pre-hashed |
| * inside this function. |
| * This prevents situation when crypto backend doesn't support |
| * long HMAC keys or it tries hash long key in every iteration |
| * (because of crypt_final() cannot do simple key reset. |
| */ |
| |
| #define MAX_PRF_BLOCK_LEN 80 |
| |
| int pkcs5_pbkdf2(const char *hash, |
| const char *P, size_t Plen, |
| const char *S, size_t Slen, |
| unsigned int c, unsigned int dkLen, |
| char *DK, unsigned int hash_block_size) |
| { |
| struct crypt_hmac *hmac; |
| char U[MAX_PRF_BLOCK_LEN]; |
| char T[MAX_PRF_BLOCK_LEN]; |
| char P_hash[MAX_PRF_BLOCK_LEN]; |
| int i, k, rc = -EINVAL; |
| unsigned int u, hLen, l, r; |
| size_t tmplen = Slen + 4; |
| char *tmp; |
| |
| tmp = alloca(tmplen); |
| if (tmp == NULL) |
| return -ENOMEM; |
| |
| hLen = crypt_hmac_size(hash); |
| if (hLen == 0 || hLen > MAX_PRF_BLOCK_LEN) |
| return -EINVAL; |
| |
| if (c == 0) |
| return -EINVAL; |
| |
| if (dkLen == 0) |
| return -EINVAL; |
| |
| /* |
| * |
| * Steps: |
| * |
| * 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and |
| * stop. |
| */ |
| |
| if (dkLen > 4294967295U) |
| return -EINVAL; |
| |
| /* |
| * 2. Let l be the number of hLen-octet blocks in the derived key, |
| * rounding up, and let r be the number of octets in the last |
| * block: |
| * |
| * l = CEIL (dkLen / hLen) , |
| * r = dkLen - (l - 1) * hLen . |
| * |
| * Here, CEIL (x) is the "ceiling" function, i.e. the smallest |
| * integer greater than, or equal to, x. |
| */ |
| |
| l = dkLen / hLen; |
| if (dkLen % hLen) |
| l++; |
| r = dkLen - (l - 1) * hLen; |
| |
| /* |
| * 3. For each block of the derived key apply the function F defined |
| * below to the password P, the salt S, the iteration count c, and |
| * the block index to compute the block: |
| * |
| * T_1 = F (P, S, c, 1) , |
| * T_2 = F (P, S, c, 2) , |
| * ... |
| * T_l = F (P, S, c, l) , |
| * |
| * where the function F is defined as the exclusive-or sum of the |
| * first c iterates of the underlying pseudorandom function PRF |
| * applied to the password P and the concatenation of the salt S |
| * and the block index i: |
| * |
| * F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c |
| * |
| * where |
| * |
| * U_1 = PRF (P, S || INT (i)) , |
| * U_2 = PRF (P, U_1) , |
| * ... |
| * U_c = PRF (P, U_{c-1}) . |
| * |
| * Here, INT (i) is a four-octet encoding of the integer i, most |
| * significant octet first. |
| * |
| * 4. Concatenate the blocks and extract the first dkLen octets to |
| * produce a derived key DK: |
| * |
| * DK = T_1 || T_2 || ... || T_l<0..r-1> |
| * |
| * 5. Output the derived key DK. |
| * |
| * Note. The construction of the function F follows a "belt-and- |
| * suspenders" approach. The iterates U_i are computed recursively to |
| * remove a degree of parallelism from an opponent; they are exclusive- |
| * ored together to reduce concerns about the recursion degenerating |
| * into a small set of values. |
| * |
| */ |
| |
| /* If hash_block_size is provided, hash password in advance. */ |
| if (hash_block_size > 0 && Plen > hash_block_size) { |
| if (hash_buf(P, Plen, P_hash, hLen, hash)) |
| return -EINVAL; |
| |
| if (crypt_hmac_init(&hmac, hash, P_hash, hLen)) |
| return -EINVAL; |
| crypt_backend_memzero(P_hash, sizeof(P_hash)); |
| } else { |
| if (crypt_hmac_init(&hmac, hash, P, Plen)) |
| return -EINVAL; |
| } |
| |
| for (i = 1; (unsigned int) i <= l; i++) { |
| memset(T, 0, hLen); |
| |
| for (u = 1; u <= c ; u++) { |
| if (u == 1) { |
| memcpy(tmp, S, Slen); |
| tmp[Slen + 0] = (i & 0xff000000) >> 24; |
| tmp[Slen + 1] = (i & 0x00ff0000) >> 16; |
| tmp[Slen + 2] = (i & 0x0000ff00) >> 8; |
| tmp[Slen + 3] = (i & 0x000000ff) >> 0; |
| |
| if (crypt_hmac_write(hmac, tmp, tmplen)) |
| goto out; |
| } else { |
| if (crypt_hmac_write(hmac, U, hLen)) |
| goto out; |
| } |
| |
| if (crypt_hmac_final(hmac, U, hLen)) |
| goto out; |
| |
| for (k = 0; (unsigned int) k < hLen; k++) |
| T[k] ^= U[k]; |
| } |
| |
| memcpy(DK + (i - 1) * hLen, T, (unsigned int) i == l ? r : hLen); |
| } |
| rc = 0; |
| out: |
| crypt_hmac_destroy(hmac); |
| crypt_backend_memzero(U, sizeof(U)); |
| crypt_backend_memzero(T, sizeof(T)); |
| crypt_backend_memzero(tmp, tmplen); |
| |
| return rc; |
| } |
| |
| #if 0 |
| #include <stdio.h> |
| |
| struct test_vector { |
| const char *hash; |
| unsigned int hash_block_length; |
| unsigned int iterations; |
| const char *password; |
| unsigned int password_length; |
| const char *salt; |
| unsigned int salt_length; |
| const char *output; |
| unsigned int output_length; |
| }; |
| |
| struct test_vector test_vectors[] = { |
| /* RFC 3962 */ |
| { |
| "sha1", 64, 1, |
| "password", 8, |
| "ATHENA.MIT.EDUraeburn", 21, |
| "\xcd\xed\xb5\x28\x1b\xb2\xf8\x01" |
| "\x56\x5a\x11\x22\xb2\x56\x35\x15" |
| "\x0a\xd1\xf7\xa0\x4b\xb9\xf3\xa3" |
| "\x33\xec\xc0\xe2\xe1\xf7\x08\x37", 32 |
| }, { |
| "sha1", 64, 2, |
| "password", 8, |
| "ATHENA.MIT.EDUraeburn", 21, |
| "\x01\xdb\xee\x7f\x4a\x9e\x24\x3e" |
| "\x98\x8b\x62\xc7\x3c\xda\x93\x5d" |
| "\xa0\x53\x78\xb9\x32\x44\xec\x8f" |
| "\x48\xa9\x9e\x61\xad\x79\x9d\x86", 32 |
| }, { |
| "sha1", 64, 1200, |
| "password", 8, |
| "ATHENA.MIT.EDUraeburn", 21, |
| "\x5c\x08\xeb\x61\xfd\xf7\x1e\x4e" |
| "\x4e\xc3\xcf\x6b\xa1\xf5\x51\x2b" |
| "\xa7\xe5\x2d\xdb\xc5\xe5\x14\x2f" |
| "\x70\x8a\x31\xe2\xe6\x2b\x1e\x13", 32 |
| }, { |
| "sha1", 64, 5, |
| "password", 8, |
| "\0224VxxV4\022", 8, // "\x1234567878563412 |
| "\xd1\xda\xa7\x86\x15\xf2\x87\xe6" |
| "\xa1\xc8\xb1\x20\xd7\x06\x2a\x49" |
| "\x3f\x98\xd2\x03\xe6\xbe\x49\xa6" |
| "\xad\xf4\xfa\x57\x4b\x6e\x64\xee", 32 |
| }, { |
| "sha1", 64, 1200, |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 64, |
| "pass phrase equals block size", 29, |
| "\x13\x9c\x30\xc0\x96\x6b\xc3\x2b" |
| "\xa5\x5f\xdb\xf2\x12\x53\x0a\xc9" |
| "\xc5\xec\x59\xf1\xa4\x52\xf5\xcc" |
| "\x9a\xd9\x40\xfe\xa0\x59\x8e\xd1", 32 |
| }, { |
| "sha1", 64, 1200, |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 65, |
| "pass phrase exceeds block size", 30, |
| "\x9c\xca\xd6\xd4\x68\x77\x0c\xd5" |
| "\x1b\x10\xe6\xa6\x87\x21\xbe\x61" |
| "\x1a\x8b\x4d\x28\x26\x01\xdb\x3b" |
| "\x36\xbe\x92\x46\x91\x5e\xc8\x2a", 32 |
| }, { |
| "sha1", 64, 50, |
| "\360\235\204\236", 4, // g-clef ("\xf09d849e) |
| "EXAMPLE.COMpianist", 18, |
| "\x6b\x9c\xf2\x6d\x45\x45\x5a\x43" |
| "\xa5\xb8\xbb\x27\x6a\x40\x3b\x39" |
| "\xe7\xfe\x37\xa0\xc4\x1e\x02\xc2" |
| "\x81\xff\x30\x69\xe1\xe9\x4f\x52", 32 |
| }, { |
| /* RFC-6070 */ |
| "sha1", 64, 1, |
| "password", 8, |
| "salt", 4, |
| "\x0c\x60\xc8\x0f\x96\x1f\x0e\x71\xf3\xa9" |
| "\xb5\x24\xaf\x60\x12\x06\x2f\xe0\x37\xa6", 20 |
| }, { |
| "sha1", 64, 2, |
| "password", 8, |
| "salt", 4, |
| "\xea\x6c\x01\x4d\xc7\x2d\x6f\x8c\xcd\x1e" |
| "\xd9\x2a\xce\x1d\x41\xf0\xd8\xde\x89\x57", 20 |
| }, { |
| "sha1", 64, 4096, |
| "password", 8, |
| "salt", 4, |
| "\x4b\x00\x79\x01\xb7\x65\x48\x9a\xbe\xad" |
| "\x49\xd9\x26\xf7\x21\xd0\x65\xa4\x29\xc1", 20 |
| }, { |
| "sha1", 64, 16777216, |
| "password", 8, |
| "salt", 4, |
| "\xee\xfe\x3d\x61\xcd\x4d\xa4\xe4\xe9\x94" |
| "\x5b\x3d\x6b\xa2\x15\x8c\x26\x34\xe9\x84", 20 |
| }, { |
| "sha1", 64, 4096, |
| "passwordPASSWORDpassword", 24, |
| "saltSALTsaltSALTsaltSALTsaltSALTsalt", 36, |
| "\x3d\x2e\xec\x4f\xe4\x1c\x84\x9b\x80\xc8" |
| "\xd8\x36\x62\xc0\xe4\x4a\x8b\x29\x1a\x96" |
| "\x4c\xf2\xf0\x70\x38", 25 |
| }, { |
| "sha1", 64, 4096, |
| "pass\0word", 9, |
| "sa\0lt", 5, |
| "\x56\xfa\x6a\xa7\x55\x48\x09\x9d\xcc\x37" |
| "\xd7\xf0\x34\x25\xe0\xc3", 16 |
| }, { |
| /* empty password test */ |
| "sha1", 64, 2, |
| "", 0, |
| "salt", 4, |
| "\x13\x3a\x4c\xe8\x37\xb4\xd2\x52\x1e\xe2" |
| "\xbf\x03\xe1\x1c\x71\xca\x79\x4e\x07\x97", 20 |
| }, { |
| /* Password exceeds block size test */ |
| "sha256", 64, 1200, |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 65, |
| "pass phrase exceeds block size", 30, |
| "\x22\x34\x4b\xc4\xb6\xe3\x26\x75" |
| "\xa8\x09\x0f\x3e\xa8\x0b\xe0\x1d" |
| "\x5f\x95\x12\x6a\x2c\xdd\xc3\xfa" |
| "\xcc\x4a\x5e\x6d\xca\x04\xec\x58", 32 |
| }, { |
| "sha512", 128, 1200, |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 129, |
| "pass phrase exceeds block size", 30, |
| "\x0f\xb2\xed\x2c\x0e\x6e\xfb\x7d" |
| "\x7d\x8e\xdd\x58\x01\xb4\x59\x72" |
| "\x99\x92\x16\x30\x5e\xa4\x36\x8d" |
| "\x76\x14\x80\xf3\xe3\x7a\x22\xb9", 32 |
| }, { |
| "whirlpool", 64, 1200, |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" |
| "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 65, |
| "pass phrase exceeds block size", 30, |
| "\x9c\x1c\x74\xf5\x88\x26\xe7\x6a" |
| "\x53\x58\xf4\x0c\x39\xe7\x80\x89" |
| "\x07\xc0\x31\x19\x9a\x50\xa2\x48" |
| "\xf1\xd9\xfe\x78\x64\xe5\x84\x50", 32 |
| } |
| }; |
| |
| static void printhex(const char *s, const char *buf, size_t len) |
| { |
| size_t i; |
| |
| printf("%s: ", s); |
| for (i = 0; i < len; i++) |
| printf("\\x%02x", (unsigned char)buf[i]); |
| printf("\n"); |
| fflush(stdout); |
| } |
| |
| static int pkcs5_pbkdf2_test_vectors(void) |
| { |
| char result[64]; |
| unsigned int i, j; |
| struct test_vector *vec; |
| |
| for (i = 0; i < (sizeof(test_vectors) / sizeof(*test_vectors)); i++) { |
| vec = &test_vectors[i]; |
| for (j = 1; j <= vec->output_length; j++) { |
| if (pkcs5_pbkdf2(vec->hash, |
| vec->password, vec->password_length, |
| vec->salt, vec->salt_length, |
| vec->iterations, |
| j, result, vec->hash_block_length)) { |
| printf("pbkdf2 failed, vector %d\n", i); |
| return -EINVAL; |
| } |
| if (memcmp(result, vec->output, j) != 0) { |
| printf("vector %u\n", i); |
| printhex(" got", result, j); |
| printhex("want", vec->output, j); |
| return -EINVAL; |
| } |
| memset(result, 0, sizeof(result)); |
| } |
| } |
| return 0; |
| } |
| #endif |