blob: ee14c63789a12a7e64246b0e99a421627ca54a9c [file] [log] [blame]
/*
* libcryptsetup - cryptsetup library
*
* Copyright (C) 2004, Jana Saout <jana@saout.de>
* Copyright (C) 2004-2007, Clemens Fruhwirth <clemens@endorphin.org>
* Copyright (C) 2009-2017, Red Hat, Inc. All rights reserved.
* Copyright (C) 2009-2017, Milan Broz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <sys/utsname.h>
#include <fcntl.h>
#include <errno.h>
#include "libcryptsetup.h"
#include "luks.h"
#include "loopaes.h"
#include "verity.h"
#include "tcrypt.h"
#include "internal.h"
struct crypt_device {
char *type;
struct device *device;
struct device *metadata_device;
struct volume_key *volume_key;
uint64_t iteration_time;
int rng_type;
// FIXME: private binary headers and access it properly
// through sub-library (LUKS1, TCRYPT)
union {
struct { /* used in CRYPT_LUKS1 */
struct luks_phdr hdr;
uint64_t PBKDF2_per_sec;
} luks1;
struct { /* used in CRYPT_PLAIN */
struct crypt_params_plain hdr;
char *cipher;
char *cipher_mode;
unsigned int key_size;
} plain;
struct { /* used in CRYPT_LOOPAES */
struct crypt_params_loopaes hdr;
char *cipher;
char *cipher_mode;
unsigned int key_size;
} loopaes;
struct { /* used in CRYPT_VERITY */
struct crypt_params_verity hdr;
char *root_hash;
unsigned int root_hash_size;
char *uuid;
struct device *fec_device;
} verity;
struct { /* used in CRYPT_TCRYPT */
struct crypt_params_tcrypt params;
struct tcrypt_phdr hdr;
} tcrypt;
struct { /* used if initialized without header by name */
char *active_name;
/* buffers, must refresh from kernel on every query */
char cipher[MAX_CIPHER_LEN];
char cipher_mode[MAX_CIPHER_LEN];
unsigned int key_size;
unsigned int veracrypt_pim;
} none;
} u;
/* callbacks definitions */
void (*log)(int level, const char *msg, void *usrptr);
void *log_usrptr;
int (*confirm)(const char *msg, void *usrptr);
void *confirm_usrptr;
};
/* Just to suppress redundant messages about crypto backend */
static int _crypto_logged = 0;
/* Log helper */
static void (*_default_log)(int level, const char *msg, void *usrptr) = NULL;
static int _debug_level = 0;
void crypt_set_debug_level(int level)
{
_debug_level = level;
}
int crypt_get_debug_level(void)
{
return _debug_level;
}
void crypt_log(struct crypt_device *cd, int level, const char *msg)
{
if (cd && cd->log)
cd->log(level, msg, cd->log_usrptr);
else if (_default_log)
_default_log(level, msg, NULL);
}
__attribute__((format(printf, 5, 6)))
void logger(struct crypt_device *cd, int level, const char *file,
int line, const char *format, ...)
{
va_list argp;
char *target = NULL;
va_start(argp, format);
if (vasprintf(&target, format, argp) > 0 ) {
if (level >= 0) {
crypt_log(cd, level, target);
#ifdef CRYPT_DEBUG
} else if (_debug_level)
printf("# %s:%d %s\n", file ?: "?", line, target);
#else
} else if (_debug_level)
printf("# %s\n", target);
#endif
}
va_end(argp);
free(target);
}
static const char *mdata_device_path(struct crypt_device *cd)
{
return device_path(cd->metadata_device ?: cd->device);
}
/* internal only */
struct device *crypt_metadata_device(struct crypt_device *cd)
{
return cd->metadata_device ?: cd->device;
}
struct device *crypt_data_device(struct crypt_device *cd)
{
return cd->device;
}
int init_crypto(struct crypt_device *ctx)
{
struct utsname uts;
int r;
r = crypt_random_init(ctx);
if (r < 0) {
log_err(ctx, _("Cannot initialize crypto RNG backend.\n"));
return r;
}
r = crypt_backend_init(ctx);
if (r < 0)
log_err(ctx, _("Cannot initialize crypto backend.\n"));
if (!r && !_crypto_logged) {
log_dbg("Crypto backend (%s) initialized in cryptsetup library version %s.",
crypt_backend_version(), PACKAGE_VERSION);
if (!uname(&uts))
log_dbg("Detected kernel %s %s %s.",
uts.sysname, uts.release, uts.machine);
_crypto_logged = 1;
}
return r;
}
static int process_key(struct crypt_device *cd, const char *hash_name,
size_t key_size, const char *pass, size_t passLen,
struct volume_key **vk)
{
int r;
if (!key_size)
return -EINVAL;
*vk = crypt_alloc_volume_key(key_size, NULL);
if (!*vk)
return -ENOMEM;
if (hash_name) {
r = crypt_plain_hash(cd, hash_name, (*vk)->key, key_size, pass, passLen);
if (r < 0) {
if (r == -ENOENT)
log_err(cd, _("Hash algorithm %s not supported.\n"),
hash_name);
else
log_err(cd, _("Key processing error (using hash %s).\n"),
hash_name);
crypt_free_volume_key(*vk);
*vk = NULL;
return -EINVAL;
}
} else if (passLen > key_size) {
memcpy((*vk)->key, pass, key_size);
} else {
memcpy((*vk)->key, pass, passLen);
}
return 0;
}
static int isPLAIN(const char *type)
{
return (type && !strcmp(CRYPT_PLAIN, type));
}
static int isLUKS(const char *type)
{
return (type && !strcmp(CRYPT_LUKS1, type));
}
static int isLOOPAES(const char *type)
{
return (type && !strcmp(CRYPT_LOOPAES, type));
}
static int isVERITY(const char *type)
{
return (type && !strcmp(CRYPT_VERITY, type));
}
static int isTCRYPT(const char *type)
{
return (type && !strcmp(CRYPT_TCRYPT, type));
}
static int onlyLUKS(struct crypt_device *cd)
{
int r = 0;
if (cd && !cd->type) {
log_err(cd, _("Cannot determine device type. Incompatible activation of device?\n"));
r = -EINVAL;
}
if (!cd || !isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
r = -EINVAL;
}
return r;
}
static void crypt_set_null_type(struct crypt_device *cd)
{
if (!cd->type)
return;
free(cd->type);
cd->type = NULL;
cd->u.none.active_name = NULL;
}
static void crypt_reset_null_type(struct crypt_device *cd)
{
if (cd->type)
return;
free(cd->u.none.active_name);
cd->u.none.active_name = NULL;
}
/* keyslot helpers */
static int keyslot_verify_or_find_empty(struct crypt_device *cd, int *keyslot)
{
if (*keyslot == CRYPT_ANY_SLOT) {
*keyslot = LUKS_keyslot_find_empty(&cd->u.luks1.hdr);
if (*keyslot < 0) {
log_err(cd, _("All key slots full.\n"));
return -EINVAL;
}
}
switch (LUKS_keyslot_info(&cd->u.luks1.hdr, *keyslot)) {
case CRYPT_SLOT_INVALID:
log_err(cd, _("Key slot %d is invalid, please select between 0 and %d.\n"),
*keyslot, LUKS_NUMKEYS - 1);
return -EINVAL;
case CRYPT_SLOT_INACTIVE:
break;
default:
log_err(cd, _("Key slot %d is full, please select another one.\n"),
*keyslot);
return -EINVAL;
}
return 0;
}
/*
* compares UUIDs returned by device-mapper (striped by cryptsetup) and uuid in header
*/
static int crypt_uuid_cmp(const char *dm_uuid, const char *hdr_uuid)
{
int i, j;
char *str;
if (!dm_uuid || !hdr_uuid)
return -EINVAL;
str = strchr(dm_uuid, '-');
if (!str)
return -EINVAL;
for (i = 0, j = 1; hdr_uuid[i]; i++) {
if (hdr_uuid[i] == '-')
continue;
if (!str[j] || str[j] == '-')
return -EINVAL;
if (str[j] != hdr_uuid[i])
return -EINVAL;
j++;
}
return 0;
}
/*
* compares type of active device to provided string (only if there is no explicit type)
*/
static int crypt_uuid_type_cmp(struct crypt_device *cd, const char *type)
{
struct crypt_dm_active_device dmd = {};
size_t len;
int r;
/* Must user header-on-disk if we know type here */
if (cd->type || !cd->u.none.active_name)
return -EINVAL;
log_dbg("Checking if active device %s without header has UUID type %s.",
cd->u.none.active_name, type);
r = dm_query_device(cd, cd->u.none.active_name, DM_ACTIVE_UUID, &dmd);
if (r < 0)
return r;
r = -ENODEV;
len = strlen(type);
if (dmd.uuid && strlen(dmd.uuid) > len &&
!strncmp(dmd.uuid, type, len) && dmd.uuid[len] == '-')
r = 0;
free(CONST_CAST(void*)dmd.uuid);
return r;
}
int PLAIN_activate(struct crypt_device *cd,
const char *name,
struct volume_key *vk,
uint64_t size,
uint32_t flags)
{
int r;
char *dm_cipher = NULL;
enum devcheck device_check;
struct crypt_dm_active_device dmd = {
.target = DM_CRYPT,
.size = size,
.flags = flags,
.data_device = crypt_data_device(cd),
.u.crypt = {
.cipher = NULL,
.vk = vk,
.offset = crypt_get_data_offset(cd),
.iv_offset = crypt_get_iv_offset(cd),
}
};
if (dmd.flags & CRYPT_ACTIVATE_SHARED)
device_check = DEV_SHARED;
else
device_check = DEV_EXCL;
r = device_block_adjust(cd, dmd.data_device, device_check,
dmd.u.crypt.offset, &dmd.size, &dmd.flags);
if (r)
return r;
if (crypt_get_cipher_mode(cd))
r = asprintf(&dm_cipher, "%s-%s", crypt_get_cipher(cd), crypt_get_cipher_mode(cd));
else
r = asprintf(&dm_cipher, "%s", crypt_get_cipher(cd));
if (r < 0)
return -ENOMEM;
dmd.u.crypt.cipher = dm_cipher;
log_dbg("Trying to activate PLAIN device %s using cipher %s.",
name, dmd.u.crypt.cipher);
r = dm_create_device(cd, name, CRYPT_PLAIN, &dmd, 0);
free(dm_cipher);
return r;
}
int crypt_confirm(struct crypt_device *cd, const char *msg)
{
if (!cd || !cd->confirm)
return 1;
else
return cd->confirm(msg, cd->confirm_usrptr);
}
void crypt_set_log_callback(struct crypt_device *cd,
void (*log)(int level, const char *msg, void *usrptr),
void *usrptr)
{
if (!cd)
_default_log = log;
else {
cd->log = log;
cd->log_usrptr = usrptr;
}
}
void crypt_set_confirm_callback(struct crypt_device *cd,
int (*confirm)(const char *msg, void *usrptr),
void *usrptr)
{
cd->confirm = confirm;
cd->confirm_usrptr = usrptr;
}
const char *crypt_get_dir(void)
{
return dm_get_dir();
}
int crypt_init(struct crypt_device **cd, const char *device)
{
struct crypt_device *h = NULL;
int r;
if (!cd)
return -EINVAL;
log_dbg("Allocating crypt device %s context.", device);
if (!(h = malloc(sizeof(struct crypt_device))))
return -ENOMEM;
memset(h, 0, sizeof(*h));
r = device_alloc(&h->device, device);
if (r < 0)
goto bad;
dm_backend_init();
h->iteration_time = DEFAULT_LUKS1_ITER_TIME;
h->rng_type = crypt_random_default_key_rng();
*cd = h;
return 0;
bad:
device_free(h->device);
free(h);
return r;
}
static int crypt_check_data_device_size(struct crypt_device *cd)
{
int r;
uint64_t size, size_min;
/* Check data device size, require at least one sector */
size_min = crypt_get_data_offset(cd) << SECTOR_SHIFT ?: SECTOR_SIZE;
r = device_size(cd->device, &size);
if (r < 0)
return r;
if (size < size_min) {
log_err(cd, _("Header detected but device %s is too small.\n"),
device_path(cd->device));
return -EINVAL;
}
return r;
}
int crypt_set_data_device(struct crypt_device *cd, const char *device)
{
struct device *dev = NULL;
int r;
log_dbg("Setting ciphertext data device to %s.", device ?: "(none)");
if (!isLUKS(cd->type) && !isVERITY(cd->type)) {
log_err(cd, _("This operation is not supported for this device type.\n"));
return -EINVAL;
}
/* metadata device must be set */
if (!cd->device || !device)
return -EINVAL;
r = device_alloc(&dev, device);
if (r < 0)
return r;
if (!cd->metadata_device) {
cd->metadata_device = cd->device;
} else
device_free(cd->device);
cd->device = dev;
return crypt_check_data_device_size(cd);
}
static int _crypt_load_luks1(struct crypt_device *cd, int require_header, int repair)
{
struct luks_phdr hdr;
int r;
r = init_crypto(cd);
if (r < 0)
return r;
r = LUKS_read_phdr(&hdr, require_header, repair, cd);
if (r < 0)
return r;
if (!cd->type && !(cd->type = strdup(CRYPT_LUKS1)))
return -ENOMEM;
memcpy(&cd->u.luks1.hdr, &hdr, sizeof(hdr));
return r;
}
static int _crypt_load_tcrypt(struct crypt_device *cd, struct crypt_params_tcrypt *params)
{
int r;
if (!params)
return -EINVAL;
r = init_crypto(cd);
if (r < 0)
return r;
memcpy(&cd->u.tcrypt.params, params, sizeof(*params));
r = TCRYPT_read_phdr(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
cd->u.tcrypt.params.passphrase = NULL;
cd->u.tcrypt.params.passphrase_size = 0;
cd->u.tcrypt.params.keyfiles = NULL;
cd->u.tcrypt.params.keyfiles_count = 0;
cd->u.tcrypt.params.veracrypt_pim = 0;
if (r < 0)
return r;
if (!cd->type && !(cd->type = strdup(CRYPT_TCRYPT)))
return -ENOMEM;
return r;
}
static int _crypt_load_verity(struct crypt_device *cd, struct crypt_params_verity *params)
{
int r;
size_t sb_offset = 0;
r = init_crypto(cd);
if (r < 0)
return r;
if (params && params->flags & CRYPT_VERITY_NO_HEADER)
return -EINVAL;
if (params)
sb_offset = params->hash_area_offset;
r = VERITY_read_sb(cd, sb_offset, &cd->u.verity.uuid, &cd->u.verity.hdr);
if (r < 0)
return r;
//FIXME: use crypt_free
if (!cd->type && !(cd->type = strdup(CRYPT_VERITY))) {
free(CONST_CAST(void*)cd->u.verity.hdr.hash_name);
free(CONST_CAST(void*)cd->u.verity.hdr.salt);
free(cd->u.verity.uuid);
crypt_memzero(&cd->u.verity.hdr, sizeof(cd->u.verity.hdr));
return -ENOMEM;
}
if (params)
cd->u.verity.hdr.flags = params->flags;
/* Hash availability checked in sb load */
cd->u.verity.root_hash_size = crypt_hash_size(cd->u.verity.hdr.hash_name);
if (cd->u.verity.root_hash_size > 4096)
return -EINVAL;
if (params && params->data_device &&
(r = crypt_set_data_device(cd, params->data_device)) < 0)
return r;
if (params && params->fec_device) {
r = device_alloc(&cd->u.verity.fec_device, params->fec_device);
if (r < 0)
return r;
cd->u.verity.hdr.fec_area_offset = params->fec_area_offset;
cd->u.verity.hdr.fec_roots = params->fec_roots;
}
return r;
}
static int _init_by_name_crypt(struct crypt_device *cd, const char *name)
{
struct crypt_dm_active_device dmd = {};
char cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN];
int key_nums, r;
r = dm_query_device(cd, name,
DM_ACTIVE_DEVICE |
DM_ACTIVE_UUID |
DM_ACTIVE_CRYPT_CIPHER |
DM_ACTIVE_CRYPT_KEYSIZE, &dmd);
if (r < 0)
goto out;
if (r > 0)
r = 0;
if (isPLAIN(cd->type)) {
cd->u.plain.hdr.hash = NULL; /* no way to get this */
cd->u.plain.hdr.offset = dmd.u.crypt.offset;
cd->u.plain.hdr.skip = dmd.u.crypt.iv_offset;
cd->u.plain.key_size = dmd.u.crypt.vk->keylength;
r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher, NULL, cipher_mode);
if (!r) {
cd->u.plain.cipher = strdup(cipher);
cd->u.plain.cipher_mode = strdup(cipher_mode);
}
} else if (isLOOPAES(cd->type)) {
cd->u.loopaes.hdr.offset = dmd.u.crypt.offset;
r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher,
&key_nums, cipher_mode);
if (!r) {
cd->u.loopaes.cipher = strdup(cipher);
cd->u.loopaes.cipher_mode = strdup(cipher_mode);
/* version 3 uses last key for IV */
if (dmd.u.crypt.vk->keylength % key_nums)
key_nums++;
cd->u.loopaes.key_size = dmd.u.crypt.vk->keylength / key_nums;
}
} else if (isLUKS(cd->type)) {
if (crypt_metadata_device(cd)) {
r = _crypt_load_luks1(cd, 0, 0);
if (r < 0) {
log_dbg("LUKS device header does not match active device.");
crypt_set_null_type(cd);
r = 0;
goto out;
}
/* check whether UUIDs match each other */
r = crypt_uuid_cmp(dmd.uuid, cd->u.luks1.hdr.uuid);
if (r < 0) {
log_dbg("LUKS device header uuid: %s mismatches DM returned uuid %s",
cd->u.luks1.hdr.uuid, dmd.uuid);
crypt_set_null_type(cd);
r = 0;
}
} else {
log_dbg("LUKS device header not available.");
crypt_set_null_type(cd);
r = 0;
}
} else if (isTCRYPT(cd->type)) {
r = TCRYPT_init_by_name(cd, name, &dmd, &cd->device,
&cd->u.tcrypt.params, &cd->u.tcrypt.hdr);
}
out:
crypt_free_volume_key(dmd.u.crypt.vk);
device_free(dmd.data_device);
free(CONST_CAST(void*)dmd.u.crypt.cipher);
free(CONST_CAST(void*)dmd.uuid);
return r;
}
static int _init_by_name_verity(struct crypt_device *cd, const char *name)
{
struct crypt_params_verity params = {};
struct crypt_dm_active_device dmd = {
.target = DM_VERITY,
.u.verity.vp = &params,
};
int r;
r = dm_query_device(cd, name,
DM_ACTIVE_DEVICE |
DM_ACTIVE_VERITY_HASH_DEVICE |
DM_ACTIVE_VERITY_PARAMS, &dmd);
if (r < 0)
goto out;
if (r > 0)
r = 0;
if (isVERITY(cd->type)) {
cd->u.verity.uuid = NULL; // FIXME
cd->u.verity.hdr.flags = CRYPT_VERITY_NO_HEADER; //FIXME
cd->u.verity.hdr.data_size = params.data_size;
cd->u.verity.root_hash_size = dmd.u.verity.root_hash_size;
cd->u.verity.root_hash = NULL;
cd->u.verity.hdr.hash_name = params.hash_name;
cd->u.verity.hdr.data_device = NULL;
cd->u.verity.hdr.hash_device = NULL;
cd->u.verity.hdr.data_block_size = params.data_block_size;
cd->u.verity.hdr.hash_block_size = params.hash_block_size;
cd->u.verity.hdr.hash_area_offset = dmd.u.verity.hash_offset;
cd->u.verity.hdr.fec_area_offset = dmd.u.verity.fec_offset;
cd->u.verity.hdr.hash_type = params.hash_type;
cd->u.verity.hdr.flags = params.flags;
cd->u.verity.hdr.salt_size = params.salt_size;
cd->u.verity.hdr.salt = params.salt;
cd->u.verity.hdr.fec_device = params.fec_device;
cd->u.verity.hdr.fec_roots = params.fec_roots;
cd->u.verity.fec_device = dmd.u.verity.fec_device;
cd->metadata_device = dmd.u.verity.hash_device;
}
out:
device_free(dmd.data_device);
return r;
}
int crypt_init_by_name_and_header(struct crypt_device **cd,
const char *name,
const char *header_device)
{
crypt_status_info ci;
struct crypt_dm_active_device dmd;
int r;
log_dbg("Allocating crypt device context by device %s.", name);
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -ENODEV;
if (ci < CRYPT_ACTIVE) {
log_err(NULL, _("Device %s is not active.\n"), name);
return -ENODEV;
}
r = dm_query_device(NULL, name, DM_ACTIVE_DEVICE | DM_ACTIVE_UUID, &dmd);
if (r < 0)
goto out;
*cd = NULL;
if (header_device) {
r = crypt_init(cd, header_device);
} else {
r = crypt_init(cd, device_path(dmd.data_device));
/* Underlying device disappeared but mapping still active */
if (!dmd.data_device || r == -ENOTBLK)
log_verbose(NULL, _("Underlying device for crypt device %s disappeared.\n"),
name);
/* Underlying device is not readable but crypt mapping exists */
if (r == -ENOTBLK) {
device_free(dmd.data_device);
dmd.data_device = NULL;
r = crypt_init(cd, NULL);
}
}
if (r < 0)
goto out;
if (dmd.uuid) {
if (!strncmp(CRYPT_PLAIN, dmd.uuid, sizeof(CRYPT_PLAIN)-1))
(*cd)->type = strdup(CRYPT_PLAIN);
else if (!strncmp(CRYPT_LOOPAES, dmd.uuid, sizeof(CRYPT_LOOPAES)-1))
(*cd)->type = strdup(CRYPT_LOOPAES);
else if (!strncmp(CRYPT_LUKS1, dmd.uuid, sizeof(CRYPT_LUKS1)-1))
(*cd)->type = strdup(CRYPT_LUKS1);
else if (!strncmp(CRYPT_VERITY, dmd.uuid, sizeof(CRYPT_VERITY)-1))
(*cd)->type = strdup(CRYPT_VERITY);
else if (!strncmp(CRYPT_TCRYPT, dmd.uuid, sizeof(CRYPT_TCRYPT)-1))
(*cd)->type = strdup(CRYPT_TCRYPT);
else
log_dbg("Unknown UUID set, some parameters are not set.");
} else
log_dbg("Active device has no UUID set, some parameters are not set.");
if (header_device) {
r = crypt_set_data_device(*cd, device_path(dmd.data_device));
if (r < 0)
goto out;
}
/* Try to initialise basic parameters from active device */
if (dmd.target == DM_CRYPT)
r = _init_by_name_crypt(*cd, name);
else if (dmd.target == DM_VERITY)
r = _init_by_name_verity(*cd, name);
out:
if (r < 0) {
crypt_free(*cd);
*cd = NULL;
} else if (!(*cd)->type) {
/* For anonymous device (no header found) remember initialized name */
(*cd)->u.none.active_name = strdup(name);
}
device_free(dmd.data_device);
free(CONST_CAST(void*)dmd.uuid);
return r;
}
int crypt_init_by_name(struct crypt_device **cd, const char *name)
{
return crypt_init_by_name_and_header(cd, name, NULL);
}
static int _crypt_format_plain(struct crypt_device *cd,
const char *cipher,
const char *cipher_mode,
const char *uuid,
size_t volume_key_size,
struct crypt_params_plain *params)
{
if (!cipher || !cipher_mode) {
log_err(cd, _("Invalid plain crypt parameters.\n"));
return -EINVAL;
}
if (volume_key_size > 1024) {
log_err(cd, _("Invalid key size.\n"));
return -EINVAL;
}
if (uuid) {
log_err(cd, _("UUID is not supported for this crypt type.\n"));
return -EINVAL;
}
if (!(cd->type = strdup(CRYPT_PLAIN)))
return -ENOMEM;
cd->u.plain.key_size = volume_key_size;
cd->volume_key = crypt_alloc_volume_key(volume_key_size, NULL);
if (!cd->volume_key)
return -ENOMEM;
cd->u.plain.cipher = strdup(cipher);
cd->u.plain.cipher_mode = strdup(cipher_mode);
if (params && params->hash)
cd->u.plain.hdr.hash = strdup(params->hash);
cd->u.plain.hdr.offset = params ? params->offset : 0;
cd->u.plain.hdr.skip = params ? params->skip : 0;
cd->u.plain.hdr.size = params ? params->size : 0;
if (!cd->u.plain.cipher || !cd->u.plain.cipher_mode)
return -ENOMEM;
return 0;
}
static int _crypt_format_luks1(struct crypt_device *cd,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
struct crypt_params_luks1 *params)
{
int r;
unsigned long required_alignment = DEFAULT_DISK_ALIGNMENT;
unsigned long alignment_offset = 0;
if (!crypt_metadata_device(cd)) {
log_err(cd, _("Can't format LUKS without device.\n"));
return -EINVAL;
}
if (!(cd->type = strdup(CRYPT_LUKS1)))
return -ENOMEM;
if (volume_key)
cd->volume_key = crypt_alloc_volume_key(volume_key_size,
volume_key);
else
cd->volume_key = crypt_generate_volume_key(cd, volume_key_size);
if(!cd->volume_key)
return -ENOMEM;
if (params && params->data_device) {
cd->metadata_device = cd->device;
cd->device = NULL;
if (device_alloc(&cd->device, params->data_device) < 0)
return -ENOMEM;
required_alignment = params->data_alignment * SECTOR_SIZE;
} else if (params && params->data_alignment) {
required_alignment = params->data_alignment * SECTOR_SIZE;
} else
device_topology_alignment(cd->device,
&required_alignment,
&alignment_offset, DEFAULT_DISK_ALIGNMENT);
r = LUKS_generate_phdr(&cd->u.luks1.hdr, cd->volume_key, cipher, cipher_mode,
(params && params->hash) ? params->hash : DEFAULT_LUKS1_HASH,
uuid, LUKS_STRIPES,
required_alignment / SECTOR_SIZE,
alignment_offset / SECTOR_SIZE,
cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec,
cd->metadata_device ? 1 : 0, cd);
if(r < 0)
return r;
/* Wipe first 8 sectors - fs magic numbers etc. */
r = crypt_wipe(crypt_metadata_device(cd), 0, 8 * SECTOR_SIZE, CRYPT_WIPE_ZERO, 1);
if(r < 0) {
if (r == -EBUSY)
log_err(cd, _("Cannot format device %s which is still in use.\n"),
mdata_device_path(cd));
else if (r == -EACCES) {
log_err(cd, _("Cannot format device %s, permission denied.\n"),
mdata_device_path(cd));
r = -EINVAL;
} else
log_err(cd, _("Cannot wipe header on device %s.\n"),
mdata_device_path(cd));
return r;
}
r = LUKS_write_phdr(&cd->u.luks1.hdr, cd);
return r;
}
static int _crypt_format_loopaes(struct crypt_device *cd,
const char *cipher,
const char *uuid,
size_t volume_key_size,
struct crypt_params_loopaes *params)
{
if (!crypt_metadata_device(cd)) {
log_err(cd, _("Can't format LOOPAES without device.\n"));
return -EINVAL;
}
if (volume_key_size > 1024) {
log_err(cd, _("Invalid key size.\n"));
return -EINVAL;
}
if (uuid) {
log_err(cd, _("UUID is not supported for this crypt type.\n"));
return -EINVAL;
}
if (!(cd->type = strdup(CRYPT_LOOPAES)))
return -ENOMEM;
cd->u.loopaes.key_size = volume_key_size;
cd->u.loopaes.cipher = strdup(cipher ?: DEFAULT_LOOPAES_CIPHER);
if (params && params->hash)
cd->u.loopaes.hdr.hash = strdup(params->hash);
cd->u.loopaes.hdr.offset = params ? params->offset : 0;
cd->u.loopaes.hdr.skip = params ? params->skip : 0;
return 0;
}
static int _crypt_format_verity(struct crypt_device *cd,
const char *uuid,
struct crypt_params_verity *params)
{
int r = 0, hash_size;
uint64_t data_device_size;
if (!crypt_metadata_device(cd)) {
log_err(cd, _("Can't format VERITY without device.\n"));
return -EINVAL;
}
if (!params || !params->data_device)
return -EINVAL;
if (params->hash_type > VERITY_MAX_HASH_TYPE) {
log_err(cd, _("Unsupported VERITY hash type %d.\n"), params->hash_type);
return -EINVAL;
}
if (VERITY_BLOCK_SIZE_OK(params->data_block_size) ||
VERITY_BLOCK_SIZE_OK(params->hash_block_size)) {
log_err(cd, _("Unsupported VERITY block size.\n"));
return -EINVAL;
}
if (params->hash_area_offset % 512) {
log_err(cd, _("Unsupported VERITY hash offset.\n"));
return -EINVAL;
}
if (params->fec_area_offset % 512) {
log_err(cd, _("Unsupported VERITY FEC offset.\n"));
return -EINVAL;
}
if (!(cd->type = strdup(CRYPT_VERITY)))
return -ENOMEM;
r = crypt_set_data_device(cd, params->data_device);
if (r)
return r;
if (!params->data_size) {
r = device_size(cd->device, &data_device_size);
if (r < 0)
return r;
cd->u.verity.hdr.data_size = data_device_size / params->data_block_size;
} else
cd->u.verity.hdr.data_size = params->data_size;
if (device_is_identical(crypt_metadata_device(cd), crypt_data_device(cd)) &&
(cd->u.verity.hdr.data_size * params->data_block_size) > params->hash_area_offset) {
log_err(cd, _("Data area overlaps with hash area.\n"));
return -EINVAL;
}
if (params->fec_device &&
(r = device_alloc(&cd->u.verity.fec_device, params->fec_device)) < 0)
return r;
hash_size = crypt_hash_size(params->hash_name);
if (hash_size <= 0) {
log_err(cd, _("Hash algorithm %s not supported.\n"),
params->hash_name);
return -EINVAL;
}
cd->u.verity.root_hash_size = hash_size;
cd->u.verity.root_hash = malloc(cd->u.verity.root_hash_size);
if (!cd->u.verity.root_hash)
return -ENOMEM;
cd->u.verity.hdr.flags = params->flags;
if (!(cd->u.verity.hdr.hash_name = strdup(params->hash_name)))
return -ENOMEM;
cd->u.verity.hdr.data_device = NULL;
cd->u.verity.hdr.fec_device = params->fec_device;
cd->u.verity.hdr.fec_roots = params->fec_roots;
cd->u.verity.hdr.data_block_size = params->data_block_size;
cd->u.verity.hdr.hash_block_size = params->hash_block_size;
cd->u.verity.hdr.hash_area_offset = params->hash_area_offset;
cd->u.verity.hdr.fec_area_offset = params->fec_area_offset;
cd->u.verity.hdr.hash_type = params->hash_type;
cd->u.verity.hdr.flags = params->flags;
cd->u.verity.hdr.salt_size = params->salt_size;
if (!(cd->u.verity.hdr.salt = malloc(params->salt_size)))
return -ENOMEM;
if (params->salt)
memcpy(CONST_CAST(char*)cd->u.verity.hdr.salt, params->salt,
params->salt_size);
else
r = crypt_random_get(cd, CONST_CAST(char*)cd->u.verity.hdr.salt,
params->salt_size, CRYPT_RND_SALT);
if (r)
return r;
if (params->flags & CRYPT_VERITY_CREATE_HASH) {
r = VERITY_create(cd, &cd->u.verity.hdr,
cd->u.verity.root_hash, cd->u.verity.root_hash_size);
if (!r && params->fec_device)
r = VERITY_FEC_create(cd, &cd->u.verity.hdr, cd->u.verity.fec_device);
if (r)
return r;
}
if (!(params->flags & CRYPT_VERITY_NO_HEADER)) {
if (uuid)
cd->u.verity.uuid = strdup(uuid);
else {
r = VERITY_UUID_generate(cd, &cd->u.verity.uuid);
if (r)
return r;
}
r = VERITY_write_sb(cd, cd->u.verity.hdr.hash_area_offset,
cd->u.verity.uuid,
&cd->u.verity.hdr);
}
return r;
}
int crypt_format(struct crypt_device *cd,
const char *type,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
void *params)
{
int r;
if (!type)
return -EINVAL;
if (cd->type) {
log_dbg("Context already formatted as %s.", cd->type);
return -EINVAL;
}
log_dbg("Formatting device %s as type %s.", mdata_device_path(cd) ?: "(none)", type);
crypt_reset_null_type(cd);
r = init_crypto(cd);
if (r < 0)
return r;
if (isPLAIN(type))
r = _crypt_format_plain(cd, cipher, cipher_mode,
uuid, volume_key_size, params);
else if (isLUKS(type))
r = _crypt_format_luks1(cd, cipher, cipher_mode,
uuid, volume_key, volume_key_size, params);
else if (isLOOPAES(type))
r = _crypt_format_loopaes(cd, cipher, uuid, volume_key_size, params);
else if (isVERITY(type))
r = _crypt_format_verity(cd, uuid, params);
else {
log_err(cd, _("Unknown crypt device type %s requested.\n"), type);
r = -EINVAL;
}
if (r < 0) {
crypt_set_null_type(cd);
crypt_free_volume_key(cd->volume_key);
cd->volume_key = NULL;
}
return r;
}
int crypt_load(struct crypt_device *cd,
const char *requested_type,
void *params)
{
int r;
log_dbg("Trying to load %s crypt type from device %s.",
requested_type ?: "any", mdata_device_path(cd) ?: "(none)");
if (!crypt_metadata_device(cd))
return -EINVAL;
crypt_reset_null_type(cd);
if (!requested_type || isLUKS(requested_type)) {
if (cd->type && !isLUKS(cd->type)) {
log_dbg("Context is already initialised to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_luks1(cd, 1, 0);
} else if (isVERITY(requested_type)) {
if (cd->type && !isVERITY(cd->type)) {
log_dbg("Context is already initialised to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_verity(cd, params);
} else if (isTCRYPT(requested_type)) {
if (cd->type && !isTCRYPT(cd->type)) {
log_dbg("Context is already initialised to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_tcrypt(cd, params);
} else
return -EINVAL;
return r;
}
int crypt_repair(struct crypt_device *cd,
const char *requested_type,
void *params __attribute__((unused)))
{
int r;
log_dbg("Trying to repair %s crypt type from device %s.",
requested_type ?: "any", mdata_device_path(cd) ?: "(none)");
if (!crypt_metadata_device(cd))
return -EINVAL;
if (requested_type && !isLUKS(requested_type))
return -EINVAL;
/* Load with repair */
r = _crypt_load_luks1(cd, 1, 1);
if (r < 0)
return r;
/* cd->type and header must be set in context */
r = crypt_check_data_device_size(cd);
if (r < 0)
crypt_set_null_type(cd);
return r;
}
int crypt_resize(struct crypt_device *cd, const char *name, uint64_t new_size)
{
struct crypt_dm_active_device dmd;
int r;
/* Device context type must be initialised */
if (!cd->type)
return -EINVAL;
log_dbg("Resizing device %s to %" PRIu64 " sectors.", name, new_size);
r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_CRYPT_CIPHER |
DM_ACTIVE_UUID | DM_ACTIVE_CRYPT_KEYSIZE |
DM_ACTIVE_CRYPT_KEY, &dmd);
if (r < 0) {
log_err(NULL, _("Device %s is not active.\n"), name);
return -EINVAL;
}
if (!dmd.uuid || dmd.target != DM_CRYPT) {
r = -EINVAL;
goto out;
}
if (crypt_loop_device(crypt_get_device_name(cd))) {
log_dbg("Trying to resize underlying loop device %s.",
crypt_get_device_name(cd));
/* Here we always use default size not new_size */
if (crypt_loop_resize(crypt_get_device_name(cd)))
log_err(NULL, _("Cannot resize loop device.\n"));
}
r = device_block_adjust(cd, dmd.data_device, DEV_OK,
dmd.u.crypt.offset, &new_size, &dmd.flags);
if (r)
goto out;
if (new_size == dmd.size) {
log_dbg("Device has already requested size %" PRIu64
" sectors.", dmd.size);
r = 0;
} else {
dmd.size = new_size;
if (isTCRYPT(cd->type))
r = -ENOTSUP;
else
r = dm_create_device(cd, name, cd->type, &dmd, 1);
}
out:
if (dmd.target == DM_CRYPT) {
crypt_free_volume_key(dmd.u.crypt.vk);
free(CONST_CAST(void*)dmd.u.crypt.cipher);
}
free(CONST_CAST(void*)dmd.data_device);
free(CONST_CAST(void*)dmd.uuid);
return r;
}
int crypt_set_uuid(struct crypt_device *cd, const char *uuid)
{
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is not supported for this device type.\n"));
return -EINVAL;
}
if (uuid && !strncmp(uuid, cd->u.luks1.hdr.uuid, sizeof(cd->u.luks1.hdr.uuid))) {
log_dbg("UUID is the same as requested (%s) for device %s.",
uuid, mdata_device_path(cd));
return 0;
}
if (uuid)
log_dbg("Requested new UUID change to %s for %s.", uuid, mdata_device_path(cd));
else
log_dbg("Requested new UUID refresh for %s.", mdata_device_path(cd));
if (!crypt_confirm(cd, _("Do you really want to change UUID of device?")))
return -EPERM;
return LUKS_hdr_uuid_set(&cd->u.luks1.hdr, uuid, cd);
}
int crypt_header_backup(struct crypt_device *cd,
const char *requested_type,
const char *backup_file)
{
int r;
if ((requested_type && !isLUKS(requested_type)) || !backup_file)
return -EINVAL;
if (cd->type && !isLUKS(cd->type))
return -EINVAL;
r = init_crypto(cd);
if (r < 0)
return r;
log_dbg("Requested header backup of device %s (%s) to "
"file %s.", mdata_device_path(cd), requested_type, backup_file);
r = LUKS_hdr_backup(backup_file, cd);
return r;
}
int crypt_header_restore(struct crypt_device *cd,
const char *requested_type,
const char *backup_file)
{
struct luks_phdr hdr;
int r;
if (requested_type && !isLUKS(requested_type))
return -EINVAL;
if (cd->type && !isLUKS(cd->type))
return -EINVAL;
r = init_crypto(cd);
if (r < 0)
return r;
log_dbg("Requested header restore to device %s (%s) from "
"file %s.", mdata_device_path(cd), requested_type, backup_file);
r = LUKS_hdr_restore(backup_file, isLUKS(cd->type) ? &cd->u.luks1.hdr : &hdr, cd);
crypt_memzero(&hdr, sizeof(hdr));
return r;
}
void crypt_free(struct crypt_device *cd)
{
if (cd) {
log_dbg("Releasing crypt device %s context.", mdata_device_path(cd));
dm_backend_exit();
crypt_free_volume_key(cd->volume_key);
device_free(cd->device);
device_free(cd->metadata_device);
if (isPLAIN(cd->type)) {
free(CONST_CAST(void*)cd->u.plain.hdr.hash);
free(cd->u.plain.cipher);
free(cd->u.plain.cipher_mode);
} else if (isLOOPAES(cd->type)) {
free(CONST_CAST(void*)cd->u.loopaes.hdr.hash);
free(cd->u.loopaes.cipher);
} else if (isVERITY(cd->type)) {
free(CONST_CAST(void*)cd->u.verity.hdr.hash_name);
free(CONST_CAST(void*)cd->u.verity.hdr.salt);
free(cd->u.verity.root_hash);
free(cd->u.verity.uuid);
device_free(cd->u.verity.fec_device);
} else if (!cd->type) {
free(cd->u.none.active_name);
}
free(cd->type);
/* Some structures can contain keys (TCRYPT), wipe it */
crypt_memzero(cd, sizeof(*cd));
free(cd);
}
}
int crypt_suspend(struct crypt_device *cd,
const char *name)
{
crypt_status_info ci;
int r;
log_dbg("Suspending volume %s.", name);
if (cd->type) {
r = onlyLUKS(cd);
} else {
r = crypt_uuid_type_cmp(cd, CRYPT_LUKS1);
if (r < 0)
log_err(cd, _("This operation is supported only for LUKS device.\n"));
}
if (r < 0)
return r;
ci = crypt_status(NULL, name);
if (ci < CRYPT_ACTIVE) {
log_err(cd, _("Volume %s is not active.\n"), name);
return -EINVAL;
}
dm_backend_init();
r = dm_status_suspended(cd, name);
if (r < 0)
goto out;
if (r) {
log_err(cd, _("Volume %s is already suspended.\n"), name);
r = -EINVAL;
goto out;
}
r = dm_suspend_and_wipe_key(cd, name);
if (r == -ENOTSUP)
log_err(cd, _("Suspend is not supported for device %s.\n"), name);
else if (r)
log_err(cd, _("Error during suspending device %s.\n"), name);
out:
dm_backend_exit();
return r;
}
int crypt_resume_by_passphrase(struct crypt_device *cd,
const char *name,
int keyslot,
const char *passphrase,
size_t passphrase_size)
{
struct volume_key *vk = NULL;
int r;
log_dbg("Resuming volume %s.", name);
r = onlyLUKS(cd);
if (r < 0)
return r;
if (!passphrase)
return -EINVAL;
r = dm_status_suspended(cd, name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended.\n"), name);
return -EINVAL;
}
r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size,
&cd->u.luks1.hdr, &vk, cd);
if (r >= 0) {
keyslot = r;
r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key);
if (r == -ENOTSUP)
log_err(cd, _("Resume is not supported for device %s.\n"), name);
else if (r)
log_err(cd, _("Error during resuming device %s.\n"), name);
} else
r = keyslot;
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_resume_by_keyfile_offset(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
size_t keyfile_offset)
{
struct volume_key *vk = NULL;
char *passphrase_read = NULL;
size_t passphrase_size_read;
int r;
log_dbg("Resuming volume %s.", name);
r = onlyLUKS(cd);
if (r < 0)
return r;
r = dm_status_suspended(cd, name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended.\n"), name);
return -EINVAL;
}
if (!keyfile)
return -EINVAL;
r = crypt_keyfile_read(cd, keyfile,
&passphrase_read, &passphrase_size_read,
keyfile_offset, keyfile_size, 0);
if (r < 0)
goto out;
r = LUKS_open_key_with_hdr(keyslot, passphrase_read,
passphrase_size_read, &cd->u.luks1.hdr, &vk, cd);
if (r < 0)
goto out;
keyslot = r;
r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key);
if (r)
log_err(cd, _("Error during resuming device %s.\n"), name);
out:
crypt_safe_free(passphrase_read);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_resume_by_keyfile(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size)
{
return crypt_resume_by_keyfile_offset(cd, name, keyslot,
keyfile, keyfile_size, 0);
}
// slot manipulation
int crypt_keyslot_add_by_passphrase(struct crypt_device *cd,
int keyslot, // -1 any
const char *passphrase,
size_t passphrase_size,
const char *new_passphrase,
size_t new_passphrase_size)
{
struct volume_key *vk = NULL;
int r;
log_dbg("Adding new keyslot, existing passphrase %sprovided,"
"new passphrase %sprovided.",
passphrase ? "" : "not ", new_passphrase ? "" : "not ");
r = onlyLUKS(cd);
if (r < 0)
return r;
if (!passphrase || !new_passphrase)
return -EINVAL;
r = keyslot_verify_or_find_empty(cd, &keyslot);
if (r)
return r;
if (!LUKS_keyslot_active_count(&cd->u.luks1.hdr)) {
/* No slots used, try to use pre-generated key in header */
if (cd->volume_key) {
vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
r = vk ? 0 : -ENOMEM;
} else {
log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n"));
return -EINVAL;
}
} else {
/* Passphrase provided, use it to unlock existing keyslot */
r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, passphrase,
passphrase_size, &cd->u.luks1.hdr, &vk, cd);
}
if(r < 0)
goto out;
r = LUKS_set_key(keyslot, CONST_CAST(char*)new_passphrase, new_passphrase_size,
&cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd);
if(r < 0)
goto out;
r = 0;
out:
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_keyslot_change_by_passphrase(struct crypt_device *cd,
int keyslot_old,
int keyslot_new,
const char *passphrase,
size_t passphrase_size,
const char *new_passphrase,
size_t new_passphrase_size)
{
struct volume_key *vk = NULL;
int r;
log_dbg("Changing passphrase from old keyslot %d to new %d.",
keyslot_old, keyslot_new);
r = onlyLUKS(cd);
if (r < 0)
return r;
r = LUKS_open_key_with_hdr(keyslot_old, passphrase, passphrase_size,
&cd->u.luks1.hdr, &vk, cd);
if (r < 0)
goto out;
if (keyslot_old != CRYPT_ANY_SLOT && keyslot_old != r) {
log_dbg("Keyslot mismatch.");
goto out;
}
keyslot_old = r;
if (keyslot_new == CRYPT_ANY_SLOT) {
keyslot_new = LUKS_keyslot_find_empty(&cd->u.luks1.hdr);
if (keyslot_new < 0)
keyslot_new = keyslot_old;
}
if (keyslot_old == keyslot_new) {
log_dbg("Key slot %d is going to be overwritten.", keyslot_old);
(void)crypt_keyslot_destroy(cd, keyslot_old);
}
r = LUKS_set_key(keyslot_new, new_passphrase, new_passphrase_size,
&cd->u.luks1.hdr, vk, cd->iteration_time,
&cd->u.luks1.PBKDF2_per_sec, cd);
if (keyslot_old == keyslot_new) {
if (r >= 0)
log_verbose(cd, _("Key slot %d changed.\n"), keyslot_new);
} else {
if (r >= 0) {
log_verbose(cd, _("Replaced with key slot %d.\n"), keyslot_new);
r = crypt_keyslot_destroy(cd, keyslot_old);
}
}
if (r < 0)
log_err(cd, _("Failed to swap new key slot.\n"));
out:
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot_new;
}
int crypt_keyslot_add_by_keyfile_offset(struct crypt_device *cd,
int keyslot,
const char *keyfile,
size_t keyfile_size,
size_t keyfile_offset,
const char *new_keyfile,
size_t new_keyfile_size,
size_t new_keyfile_offset)
{
struct volume_key *vk = NULL;
char *password = NULL; size_t passwordLen;
char *new_password = NULL; size_t new_passwordLen;
int r;
log_dbg("Adding new keyslot, existing keyfile %s, new keyfile %s.",
keyfile ?: "[none]", new_keyfile ?: "[none]");
r = onlyLUKS(cd);
if (r < 0)
return r;
if (!keyfile || !new_keyfile)
return -EINVAL;
r = keyslot_verify_or_find_empty(cd, &keyslot);
if (r)
return r;
if (!LUKS_keyslot_active_count(&cd->u.luks1.hdr)) {
/* No slots used, try to use pre-generated key in header */
if (cd->volume_key) {
vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
r = vk ? 0 : -ENOMEM;
} else {
log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n"));
return -EINVAL;
}
} else {
r = crypt_keyfile_read(cd, keyfile,
&password, &passwordLen,
keyfile_offset, keyfile_size, 0);
if (r < 0)
goto out;
r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, password, passwordLen,
&cd->u.luks1.hdr, &vk, cd);
}
if(r < 0)
goto out;
r = crypt_keyfile_read(cd, new_keyfile,
&new_password, &new_passwordLen,
new_keyfile_offset, new_keyfile_size, 0);
if (r < 0)
goto out;
r = LUKS_set_key(keyslot, new_password, new_passwordLen,
&cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd);
out:
crypt_safe_free(password);
crypt_safe_free(new_password);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_keyslot_add_by_keyfile(struct crypt_device *cd,
int keyslot,
const char *keyfile,
size_t keyfile_size,
const char *new_keyfile,
size_t new_keyfile_size)
{
return crypt_keyslot_add_by_keyfile_offset(cd, keyslot,
keyfile, keyfile_size, 0,
new_keyfile, new_keyfile_size, 0);
}
int crypt_keyslot_add_by_volume_key(struct crypt_device *cd,
int keyslot,
const char *volume_key,
size_t volume_key_size,
const char *passphrase,
size_t passphrase_size)
{
struct volume_key *vk = NULL;
int r;
log_dbg("Adding new keyslot %d using volume key.", keyslot);
r = onlyLUKS(cd);
if (r < 0)
return r;
if (!passphrase)
return -EINVAL;
if (volume_key)
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
else if (cd->volume_key)
vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
if (!vk)
return -ENOMEM;
r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk);
if (r < 0) {
log_err(cd, _("Volume key does not match the volume.\n"));
goto out;
}
r = keyslot_verify_or_find_empty(cd, &keyslot);
if (r)
goto out;
r = LUKS_set_key(keyslot, passphrase, passphrase_size,
&cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd);
out:
crypt_free_volume_key(vk);
return (r < 0) ? r : keyslot;
}
int crypt_keyslot_destroy(struct crypt_device *cd, int keyslot)
{
crypt_keyslot_info ki;
int r;
log_dbg("Destroying keyslot %d.", keyslot);
r = onlyLUKS(cd);
if (r < 0)
return r;
ki = crypt_keyslot_status(cd, keyslot);
if (ki == CRYPT_SLOT_INVALID) {
log_err(cd, _("Key slot %d is invalid.\n"), keyslot);
return -EINVAL;
}
if (ki == CRYPT_SLOT_INACTIVE) {
log_err(cd, _("Key slot %d is not used.\n"), keyslot);
return -EINVAL;
}
return LUKS_del_key(keyslot, &cd->u.luks1.hdr, cd);
}
// activation/deactivation of device mapping
int crypt_activate_by_passphrase(struct crypt_device *cd,
const char *name,
int keyslot,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
crypt_status_info ci;
struct volume_key *vk = NULL;
int r;
log_dbg("%s volume %s [keyslot %d] using %spassphrase.",
name ? "Activating" : "Checking", name ?: "",
keyslot, passphrase ? "" : "[none] ");
if (!passphrase)
return -EINVAL;
if (name) {
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -EINVAL;
else if (ci >= CRYPT_ACTIVE) {
log_err(cd, _("Device %s already exists.\n"), name);
return -EEXIST;
}
}
/* plain, use hashed passphrase */
if (isPLAIN(cd->type)) {
if (!name)
return -EINVAL;
r = process_key(cd, cd->u.plain.hdr.hash,
cd->u.plain.key_size,
passphrase, passphrase_size, &vk);
if (r < 0)
goto out;
r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags);
keyslot = 0;
} else if (isLUKS(cd->type)) {
r = LUKS_open_key_with_hdr(keyslot, passphrase,
passphrase_size, &cd->u.luks1.hdr, &vk, cd);
if (r >= 0) {
keyslot = r;
if (name)
r = LUKS1_activate(cd, name, vk, flags);
}
} else
r = -EINVAL;
out:
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_activate_by_keyfile_offset(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
size_t keyfile_offset,
uint32_t flags)
{
crypt_status_info ci;
struct volume_key *vk = NULL;
char *passphrase_read = NULL;
size_t passphrase_size_read;
unsigned int key_count = 0;
int r;
log_dbg("Activating volume %s [keyslot %d] using keyfile %s.",
name ?: "", keyslot, keyfile ?: "[none]");
if (name) {
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -EINVAL;
else if (ci >= CRYPT_ACTIVE) {
log_err(cd, _("Device %s already exists.\n"), name);
return -EEXIST;
}
}
if (!keyfile)
return -EINVAL;
if (isPLAIN(cd->type)) {
if (!name)
return -EINVAL;
r = crypt_keyfile_read(cd, keyfile,
&passphrase_read, &passphrase_size_read,
keyfile_offset, keyfile_size, 0);
if (r < 0)
goto out;
r = process_key(cd, cd->u.plain.hdr.hash,
cd->u.plain.key_size,
passphrase_read, passphrase_size_read, &vk);
if (r < 0)
goto out;
r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags);
} else if (isLUKS(cd->type)) {
r = crypt_keyfile_read(cd, keyfile,
&passphrase_read, &passphrase_size_read,
keyfile_offset, keyfile_size, 0);
if (r < 0)
goto out;
r = LUKS_open_key_with_hdr(keyslot, passphrase_read,
passphrase_size_read, &cd->u.luks1.hdr, &vk, cd);
if (r < 0)
goto out;
keyslot = r;
if (name) {
r = LUKS1_activate(cd, name, vk, flags);
if (r < 0)
goto out;
}
r = keyslot;
} else if (isLOOPAES(cd->type)) {
r = crypt_keyfile_read(cd, keyfile,
&passphrase_read, &passphrase_size_read,
keyfile_offset, keyfile_size, 0);
if (r < 0)
goto out;
r = LOOPAES_parse_keyfile(cd, &vk, cd->u.loopaes.hdr.hash, &key_count,
passphrase_read, passphrase_size_read);
if (r < 0)
goto out;
if (name)
r = LOOPAES_activate(cd, name, cd->u.loopaes.cipher,
key_count, vk, flags);
} else
r = -EINVAL;
out:
crypt_safe_free(passphrase_read);
crypt_free_volume_key(vk);
return r;
}
int crypt_activate_by_keyfile(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
uint32_t flags)
{
return crypt_activate_by_keyfile_offset(cd, name, keyslot, keyfile,
keyfile_size, 0, flags);
}
int crypt_activate_by_volume_key(struct crypt_device *cd,
const char *name,
const char *volume_key,
size_t volume_key_size,
uint32_t flags)
{
crypt_status_info ci;
struct volume_key *vk = NULL;
int r = -EINVAL;
log_dbg("Activating volume %s by volume key.", name ?: "[none]");
if (name) {
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -EINVAL;
else if (ci >= CRYPT_ACTIVE) {
log_err(cd, _("Device %s already exists.\n"), name);
return -EEXIST;
}
}
/* use key directly, no hash */
if (isPLAIN(cd->type)) {
if (!name)
return -EINVAL;
if (!volume_key || !volume_key_size || volume_key_size != cd->u.plain.key_size) {
log_err(cd, _("Incorrect volume key specified for plain device.\n"));
return -EINVAL;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags);
} else if (isLUKS(cd->type)) {
/* If key is not provided, try to use internal key */
if (!volume_key) {
if (!cd->volume_key) {
log_err(cd, _("Volume key does not match the volume.\n"));
return -EINVAL;
}
volume_key_size = cd->volume_key->keylength;
volume_key = cd->volume_key->key;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk);
if (r == -EPERM)
log_err(cd, _("Volume key does not match the volume.\n"));
if (!r && name)
r = LUKS1_activate(cd, name, vk, flags);
} else if (isVERITY(cd->type)) {
/* volume_key == root hash */
if (!volume_key || !volume_key_size) {
log_err(cd, _("Incorrect root hash specified for verity device.\n"));
return -EINVAL;
}
r = VERITY_activate(cd, name, volume_key, volume_key_size, cd->u.verity.fec_device,
&cd->u.verity.hdr, flags|CRYPT_ACTIVATE_READONLY);
if (r == -EPERM) {
free(cd->u.verity.root_hash);
cd->u.verity.root_hash = NULL;
} if (!r) {
cd->u.verity.root_hash_size = volume_key_size;
if (!cd->u.verity.root_hash)
cd->u.verity.root_hash = malloc(volume_key_size);
if (cd->u.verity.root_hash)
memcpy(cd->u.verity.root_hash, volume_key, volume_key_size);
}
} else if (isTCRYPT(cd->type)) {
if (!name)
return 0;
r = TCRYPT_activate(cd, name, &cd->u.tcrypt.hdr,
&cd->u.tcrypt.params, flags);
} else
log_err(cd, _("Device type is not properly initialised.\n"));
crypt_free_volume_key(vk);
return r;
}
int crypt_deactivate(struct crypt_device *cd, const char *name)
{
struct crypt_device *fake_cd = NULL;
int r;
if (!name)
return -EINVAL;
log_dbg("Deactivating volume %s.", name);
if (!cd) {
r = crypt_init_by_name(&fake_cd, name);
if (r < 0)
return r;
cd = fake_cd;
}
switch (crypt_status(cd, name)) {
case CRYPT_ACTIVE:
case CRYPT_BUSY:
if (isTCRYPT(cd->type))
r = TCRYPT_deactivate(cd, name);
else
r = dm_remove_device(cd, name, 0, 0);
if (r < 0 && crypt_status(cd, name) == CRYPT_BUSY) {
log_err(cd, _("Device %s is still in use.\n"), name);
r = -EBUSY;
}
break;
case CRYPT_INACTIVE:
log_err(cd, _("Device %s is not active.\n"), name);
r = -ENODEV;
break;
default:
log_err(cd, _("Invalid device %s.\n"), name);
r = -EINVAL;
}
crypt_free(fake_cd);
return r;
}
int crypt_volume_key_get(struct crypt_device *cd,
int keyslot,
char *volume_key,
size_t *volume_key_size,
const char *passphrase,
size_t passphrase_size)
{
struct volume_key *vk = NULL;
unsigned key_len;
int r = -EINVAL;
if (crypt_fips_mode()) {
log_err(cd, _("Function not available in FIPS mode.\n"));
return -EACCES;
}
key_len = crypt_get_volume_key_size(cd);
if (key_len > *volume_key_size) {
log_err(cd, _("Volume key buffer too small.\n"));
return -ENOMEM;
}
if (isPLAIN(cd->type) && cd->u.plain.hdr.hash) {
r = process_key(cd, cd->u.plain.hdr.hash, key_len,
passphrase, passphrase_size, &vk);
if (r < 0)
log_err(cd, _("Cannot retrieve volume key for plain device.\n"));
} else if (isLUKS(cd->type)) {
r = LUKS_open_key_with_hdr(keyslot, passphrase,
passphrase_size, &cd->u.luks1.hdr, &vk, cd);
} else if (isTCRYPT(cd->type)) {
r = TCRYPT_get_volume_key(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params, &vk);
} else
log_err(cd, _("This operation is not supported for %s crypt device.\n"), cd->type ?: "(none)");
if (r >= 0) {
memcpy(volume_key, vk->key, vk->keylength);
*volume_key_size = vk->keylength;
}
crypt_free_volume_key(vk);
return r;
}
int crypt_volume_key_verify(struct crypt_device *cd,
const char *volume_key,
size_t volume_key_size)
{
struct volume_key *vk;
int r;
r = onlyLUKS(cd);
if (r < 0)
return r;
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk);
if (r == -EPERM)
log_err(cd, _("Volume key does not match the volume.\n"));
crypt_free_volume_key(vk);
return r;
}
void crypt_set_iteration_time(struct crypt_device *cd, uint64_t iteration_time_ms)
{
log_dbg("Iteration time set to %" PRIu64 " milliseconds.", iteration_time_ms);
cd->iteration_time = iteration_time_ms;
}
void crypt_set_rng_type(struct crypt_device *cd, int rng_type)
{
switch (rng_type) {
case CRYPT_RNG_URANDOM:
case CRYPT_RNG_RANDOM:
log_dbg("RNG set to %d (%s).", rng_type, rng_type ? "random" : "urandom");
cd->rng_type = rng_type;
}
}
int crypt_get_rng_type(struct crypt_device *cd)
{
if (!cd)
return -EINVAL;
return cd->rng_type;
}
int crypt_memory_lock(struct crypt_device *cd, int lock)
{
return lock ? crypt_memlock_inc(cd) : crypt_memlock_dec(cd);
}
// reporting
crypt_status_info crypt_status(struct crypt_device *cd, const char *name)
{
int r;
if (!cd)
dm_backend_init();
r = dm_status_device(cd, name);
if (!cd)
dm_backend_exit();
if (r < 0 && r != -ENODEV)
return CRYPT_INVALID;
if (r == 0)
return CRYPT_ACTIVE;
if (r > 0)
return CRYPT_BUSY;
return CRYPT_INACTIVE;
}
static void hexprint(struct crypt_device *cd, const char *d, int n, const char *sep)
{
int i;
for(i = 0; i < n; i++)
log_std(cd, "%02hhx%s", (const char)d[i], sep);
}
static int _luks_dump(struct crypt_device *cd)
{
int i;
log_std(cd, "LUKS header information for %s\n\n", mdata_device_path(cd));
log_std(cd, "Version: \t%" PRIu16 "\n", cd->u.luks1.hdr.version);
log_std(cd, "Cipher name: \t%s\n", cd->u.luks1.hdr.cipherName);
log_std(cd, "Cipher mode: \t%s\n", cd->u.luks1.hdr.cipherMode);
log_std(cd, "Hash spec: \t%s\n", cd->u.luks1.hdr.hashSpec);
log_std(cd, "Payload offset:\t%" PRIu32 "\n", cd->u.luks1.hdr.payloadOffset);
log_std(cd, "MK bits: \t%" PRIu32 "\n", cd->u.luks1.hdr.keyBytes * 8);
log_std(cd, "MK digest: \t");
hexprint(cd, cd->u.luks1.hdr.mkDigest, LUKS_DIGESTSIZE, " ");
log_std(cd, "\n");
log_std(cd, "MK salt: \t");
hexprint(cd, cd->u.luks1.hdr.mkDigestSalt, LUKS_SALTSIZE/2, " ");
log_std(cd, "\n \t");
hexprint(cd, cd->u.luks1.hdr.mkDigestSalt+LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " ");
log_std(cd, "\n");
log_std(cd, "MK iterations: \t%" PRIu32 "\n", cd->u.luks1.hdr.mkDigestIterations);
log_std(cd, "UUID: \t%s\n\n", cd->u.luks1.hdr.uuid);
for(i = 0; i < LUKS_NUMKEYS; i++) {
if(cd->u.luks1.hdr.keyblock[i].active == LUKS_KEY_ENABLED) {
log_std(cd, "Key Slot %d: ENABLED\n",i);
log_std(cd, "\tIterations: \t%" PRIu32 "\n",
cd->u.luks1.hdr.keyblock[i].passwordIterations);
log_std(cd, "\tSalt: \t");
hexprint(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt,
LUKS_SALTSIZE/2, " ");
log_std(cd, "\n\t \t");
hexprint(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt +
LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " ");
log_std(cd, "\n");
log_std(cd, "\tKey material offset:\t%" PRIu32 "\n",
cd->u.luks1.hdr.keyblock[i].keyMaterialOffset);
log_std(cd, "\tAF stripes: \t%" PRIu32 "\n",
cd->u.luks1.hdr.keyblock[i].stripes);
}
else
log_std(cd, "Key Slot %d: DISABLED\n", i);
}
return 0;
}
static int _verity_dump(struct crypt_device *cd)
{
log_std(cd, "VERITY header information for %s\n", mdata_device_path(cd));
log_std(cd, "UUID: \t%s\n", cd->u.verity.uuid ?: "");
log_std(cd, "Hash type: \t%u\n", cd->u.verity.hdr.hash_type);
log_std(cd, "Data blocks: \t%" PRIu64 "\n", cd->u.verity.hdr.data_size);
log_std(cd, "Data block size: \t%u\n", cd->u.verity.hdr.data_block_size);
log_std(cd, "Hash block size: \t%u\n", cd->u.verity.hdr.hash_block_size);
log_std(cd, "Hash algorithm: \t%s\n", cd->u.verity.hdr.hash_name);
log_std(cd, "Salt: \t");
if (cd->u.verity.hdr.salt_size)
hexprint(cd, cd->u.verity.hdr.salt, cd->u.verity.hdr.salt_size, "");
else
log_std(cd, "-");
log_std(cd, "\n");
if (cd->u.verity.root_hash) {
log_std(cd, "Root hash: \t");
hexprint(cd, cd->u.verity.root_hash, cd->u.verity.root_hash_size, "");
log_std(cd, "\n");
}
return 0;
}
int crypt_dump(struct crypt_device *cd)
{
if (isLUKS(cd->type))
return _luks_dump(cd);
else if (isVERITY(cd->type))
return _verity_dump(cd);
else if (isTCRYPT(cd->type))
return TCRYPT_dump(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
log_err(cd, _("Dump operation is not supported for this device type.\n"));
return -EINVAL;
}
static int _init_by_name_crypt_none(struct crypt_device *cd)
{
struct crypt_dm_active_device dmd = {};
int r;
if (cd->type || !cd->u.none.active_name)
return -EINVAL;
r = dm_query_device(cd, cd->u.none.active_name,
DM_ACTIVE_CRYPT_CIPHER |
DM_ACTIVE_CRYPT_KEYSIZE, &dmd);
if (r >= 0)
r = crypt_parse_name_and_mode(dmd.u.crypt.cipher,
cd->u.none.cipher, NULL,
cd->u.none.cipher_mode);
if (!r)
cd->u.none.key_size = dmd.u.crypt.vk->keylength;
crypt_free_volume_key(dmd.u.crypt.vk);
free(CONST_CAST(void*)dmd.u.crypt.cipher);
return r;
}
const char *crypt_get_cipher(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->u.plain.cipher;
if (isLUKS(cd->type))
return cd->u.luks1.hdr.cipherName;
if (isLOOPAES(cd->type))
return cd->u.loopaes.cipher;
if (isTCRYPT(cd->type))
return cd->u.tcrypt.params.cipher;
if (!cd->type && !_init_by_name_crypt_none(cd))
return cd->u.none.cipher;
return NULL;
}
const char *crypt_get_cipher_mode(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->u.plain.cipher_mode;
if (isLUKS(cd->type))
return cd->u.luks1.hdr.cipherMode;
if (isLOOPAES(cd->type))
return cd->u.loopaes.cipher_mode;
if (isTCRYPT(cd->type))
return cd->u.tcrypt.params.mode;
if (!cd->type && !_init_by_name_crypt_none(cd))
return cd->u.none.cipher_mode;
return NULL;
}
const char *crypt_get_uuid(struct crypt_device *cd)
{
if (isLUKS(cd->type))
return cd->u.luks1.hdr.uuid;
if (isVERITY(cd->type))
return cd->u.verity.uuid;
return NULL;
}
const char *crypt_get_device_name(struct crypt_device *cd)
{
const char *path = device_block_path(cd->device);
if (!path)
path = device_path(cd->device);
return path;
}
int crypt_get_volume_key_size(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->u.plain.key_size;
if (isLUKS(cd->type))
return cd->u.luks1.hdr.keyBytes;
if (isLOOPAES(cd->type))
return cd->u.loopaes.key_size;
if (isVERITY(cd->type))
return cd->u.verity.root_hash_size;
if (isTCRYPT(cd->type))
return cd->u.tcrypt.params.key_size;
if (!cd->type && !_init_by_name_crypt_none(cd))
return cd->u.none.key_size;
return 0;
}
uint64_t crypt_get_data_offset(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->u.plain.hdr.offset;
if (isLUKS(cd->type))
return cd->u.luks1.hdr.payloadOffset;
if (isLOOPAES(cd->type))
return cd->u.loopaes.hdr.offset;
if (isTCRYPT(cd->type))
return TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
return 0;
}
uint64_t crypt_get_iv_offset(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->u.plain.hdr.skip;
if (isLUKS(cd->type))
return 0;
if (isLOOPAES(cd->type))
return cd->u.loopaes.hdr.skip;
if (isTCRYPT(cd->type))
return TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
return 0;
}
crypt_keyslot_info crypt_keyslot_status(struct crypt_device *cd, int keyslot)
{
if (onlyLUKS(cd) < 0)
return CRYPT_SLOT_INVALID;
return LUKS_keyslot_info(&cd->u.luks1.hdr, keyslot);
}
int crypt_keyslot_max(const char *type)
{
if (type && isLUKS(type))
return LUKS_NUMKEYS;
return -EINVAL;
}
int crypt_keyslot_area(struct crypt_device *cd,
int keyslot,
uint64_t *offset,
uint64_t *length)
{
if (!isLUKS(cd->type))
return -EINVAL;
return LUKS_keyslot_area(&cd->u.luks1.hdr, keyslot, offset, length);
}
const char *crypt_get_type(struct crypt_device *cd)
{
return cd->type;
}
int crypt_get_verity_info(struct crypt_device *cd,
struct crypt_params_verity *vp)
{
if (!isVERITY(cd->type) || !vp)
return -EINVAL;
vp->data_device = device_path(cd->device);
vp->hash_device = mdata_device_path(cd);
vp->fec_device = device_path(cd->u.verity.fec_device);
vp->fec_area_offset = cd->u.verity.hdr.fec_area_offset;
vp->fec_roots = cd->u.verity.hdr.fec_roots;
vp->hash_name = cd->u.verity.hdr.hash_name;
vp->salt = cd->u.verity.hdr.salt;
vp->salt_size = cd->u.verity.hdr.salt_size;
vp->data_block_size = cd->u.verity.hdr.data_block_size;
vp->hash_block_size = cd->u.verity.hdr.hash_block_size;
vp->data_size = cd->u.verity.hdr.data_size;
vp->hash_area_offset = cd->u.verity.hdr.hash_area_offset;
vp->hash_type = cd->u.verity.hdr.hash_type;
vp->flags = cd->u.verity.hdr.flags & CRYPT_VERITY_NO_HEADER;
return 0;
}
int crypt_get_active_device(struct crypt_device *cd, const char *name,
struct crypt_active_device *cad)
{
struct crypt_dm_active_device dmd;
int r;
r = dm_query_device(cd, name, 0, &dmd);
if (r < 0)
return r;
if (dmd.target != DM_CRYPT && dmd.target != DM_VERITY)
return -ENOTSUP;
if (cd && isTCRYPT(cd->type)) {
cad->offset = TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
cad->iv_offset = TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
} else {
cad->offset = dmd.u.crypt.offset;
cad->iv_offset = dmd.u.crypt.iv_offset;
}
cad->size = dmd.size;
cad->flags = dmd.flags;
return 0;
}