| /* |
| * libcryptsetup - cryptsetup library |
| * |
| * Copyright (C) 2004, Jana Saout <jana@saout.de> |
| * Copyright (C) 2004-2007, Clemens Fruhwirth <clemens@endorphin.org> |
| * Copyright (C) 2009-2017, Red Hat, Inc. All rights reserved. |
| * Copyright (C) 2009-2017, Milan Broz |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #include <string.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <stdarg.h> |
| #include <sys/utsname.h> |
| #include <fcntl.h> |
| #include <errno.h> |
| |
| #include "libcryptsetup.h" |
| #include "luks.h" |
| #include "loopaes.h" |
| #include "verity.h" |
| #include "tcrypt.h" |
| #include "internal.h" |
| |
| struct crypt_device { |
| char *type; |
| |
| struct device *device; |
| struct device *metadata_device; |
| |
| struct volume_key *volume_key; |
| uint64_t iteration_time; |
| int rng_type; |
| |
| // FIXME: private binary headers and access it properly |
| // through sub-library (LUKS1, TCRYPT) |
| |
| union { |
| struct { /* used in CRYPT_LUKS1 */ |
| struct luks_phdr hdr; |
| uint64_t PBKDF2_per_sec; |
| } luks1; |
| struct { /* used in CRYPT_PLAIN */ |
| struct crypt_params_plain hdr; |
| char *cipher; |
| char *cipher_mode; |
| unsigned int key_size; |
| } plain; |
| struct { /* used in CRYPT_LOOPAES */ |
| struct crypt_params_loopaes hdr; |
| char *cipher; |
| char *cipher_mode; |
| unsigned int key_size; |
| } loopaes; |
| struct { /* used in CRYPT_VERITY */ |
| struct crypt_params_verity hdr; |
| char *root_hash; |
| unsigned int root_hash_size; |
| char *uuid; |
| struct device *fec_device; |
| } verity; |
| struct { /* used in CRYPT_TCRYPT */ |
| struct crypt_params_tcrypt params; |
| struct tcrypt_phdr hdr; |
| } tcrypt; |
| struct { /* used if initialized without header by name */ |
| char *active_name; |
| /* buffers, must refresh from kernel on every query */ |
| char cipher[MAX_CIPHER_LEN]; |
| char cipher_mode[MAX_CIPHER_LEN]; |
| unsigned int key_size; |
| unsigned int veracrypt_pim; |
| } none; |
| } u; |
| |
| /* callbacks definitions */ |
| void (*log)(int level, const char *msg, void *usrptr); |
| void *log_usrptr; |
| int (*confirm)(const char *msg, void *usrptr); |
| void *confirm_usrptr; |
| }; |
| |
| /* Just to suppress redundant messages about crypto backend */ |
| static int _crypto_logged = 0; |
| |
| /* Log helper */ |
| static void (*_default_log)(int level, const char *msg, void *usrptr) = NULL; |
| static int _debug_level = 0; |
| |
| void crypt_set_debug_level(int level) |
| { |
| _debug_level = level; |
| } |
| |
| int crypt_get_debug_level(void) |
| { |
| return _debug_level; |
| } |
| |
| void crypt_log(struct crypt_device *cd, int level, const char *msg) |
| { |
| if (cd && cd->log) |
| cd->log(level, msg, cd->log_usrptr); |
| else if (_default_log) |
| _default_log(level, msg, NULL); |
| } |
| |
| __attribute__((format(printf, 5, 6))) |
| void logger(struct crypt_device *cd, int level, const char *file, |
| int line, const char *format, ...) |
| { |
| va_list argp; |
| char *target = NULL; |
| |
| va_start(argp, format); |
| |
| if (vasprintf(&target, format, argp) > 0 ) { |
| if (level >= 0) { |
| crypt_log(cd, level, target); |
| #ifdef CRYPT_DEBUG |
| } else if (_debug_level) |
| printf("# %s:%d %s\n", file ?: "?", line, target); |
| #else |
| } else if (_debug_level) |
| printf("# %s\n", target); |
| #endif |
| } |
| |
| va_end(argp); |
| free(target); |
| } |
| |
| static const char *mdata_device_path(struct crypt_device *cd) |
| { |
| return device_path(cd->metadata_device ?: cd->device); |
| } |
| |
| /* internal only */ |
| struct device *crypt_metadata_device(struct crypt_device *cd) |
| { |
| return cd->metadata_device ?: cd->device; |
| } |
| |
| struct device *crypt_data_device(struct crypt_device *cd) |
| { |
| return cd->device; |
| } |
| |
| int init_crypto(struct crypt_device *ctx) |
| { |
| struct utsname uts; |
| int r; |
| |
| r = crypt_random_init(ctx); |
| if (r < 0) { |
| log_err(ctx, _("Cannot initialize crypto RNG backend.\n")); |
| return r; |
| } |
| |
| r = crypt_backend_init(ctx); |
| if (r < 0) |
| log_err(ctx, _("Cannot initialize crypto backend.\n")); |
| |
| if (!r && !_crypto_logged) { |
| log_dbg("Crypto backend (%s) initialized in cryptsetup library version %s.", |
| crypt_backend_version(), PACKAGE_VERSION); |
| if (!uname(&uts)) |
| log_dbg("Detected kernel %s %s %s.", |
| uts.sysname, uts.release, uts.machine); |
| _crypto_logged = 1; |
| } |
| |
| return r; |
| } |
| |
| static int process_key(struct crypt_device *cd, const char *hash_name, |
| size_t key_size, const char *pass, size_t passLen, |
| struct volume_key **vk) |
| { |
| int r; |
| |
| if (!key_size) |
| return -EINVAL; |
| |
| *vk = crypt_alloc_volume_key(key_size, NULL); |
| if (!*vk) |
| return -ENOMEM; |
| |
| if (hash_name) { |
| r = crypt_plain_hash(cd, hash_name, (*vk)->key, key_size, pass, passLen); |
| if (r < 0) { |
| if (r == -ENOENT) |
| log_err(cd, _("Hash algorithm %s not supported.\n"), |
| hash_name); |
| else |
| log_err(cd, _("Key processing error (using hash %s).\n"), |
| hash_name); |
| crypt_free_volume_key(*vk); |
| *vk = NULL; |
| return -EINVAL; |
| } |
| } else if (passLen > key_size) { |
| memcpy((*vk)->key, pass, key_size); |
| } else { |
| memcpy((*vk)->key, pass, passLen); |
| } |
| |
| return 0; |
| } |
| |
| static int isPLAIN(const char *type) |
| { |
| return (type && !strcmp(CRYPT_PLAIN, type)); |
| } |
| |
| static int isLUKS(const char *type) |
| { |
| return (type && !strcmp(CRYPT_LUKS1, type)); |
| } |
| |
| static int isLOOPAES(const char *type) |
| { |
| return (type && !strcmp(CRYPT_LOOPAES, type)); |
| } |
| |
| static int isVERITY(const char *type) |
| { |
| return (type && !strcmp(CRYPT_VERITY, type)); |
| } |
| |
| static int isTCRYPT(const char *type) |
| { |
| return (type && !strcmp(CRYPT_TCRYPT, type)); |
| } |
| |
| static int onlyLUKS(struct crypt_device *cd) |
| { |
| int r = 0; |
| |
| if (cd && !cd->type) { |
| log_err(cd, _("Cannot determine device type. Incompatible activation of device?\n")); |
| r = -EINVAL; |
| } |
| if (!cd || !isLUKS(cd->type)) { |
| log_err(cd, _("This operation is supported only for LUKS device.\n")); |
| r = -EINVAL; |
| } |
| |
| return r; |
| } |
| |
| static void crypt_set_null_type(struct crypt_device *cd) |
| { |
| if (!cd->type) |
| return; |
| |
| free(cd->type); |
| cd->type = NULL; |
| cd->u.none.active_name = NULL; |
| } |
| |
| static void crypt_reset_null_type(struct crypt_device *cd) |
| { |
| if (cd->type) |
| return; |
| |
| free(cd->u.none.active_name); |
| cd->u.none.active_name = NULL; |
| } |
| |
| /* keyslot helpers */ |
| static int keyslot_verify_or_find_empty(struct crypt_device *cd, int *keyslot) |
| { |
| if (*keyslot == CRYPT_ANY_SLOT) { |
| *keyslot = LUKS_keyslot_find_empty(&cd->u.luks1.hdr); |
| if (*keyslot < 0) { |
| log_err(cd, _("All key slots full.\n")); |
| return -EINVAL; |
| } |
| } |
| |
| switch (LUKS_keyslot_info(&cd->u.luks1.hdr, *keyslot)) { |
| case CRYPT_SLOT_INVALID: |
| log_err(cd, _("Key slot %d is invalid, please select between 0 and %d.\n"), |
| *keyslot, LUKS_NUMKEYS - 1); |
| return -EINVAL; |
| case CRYPT_SLOT_INACTIVE: |
| break; |
| default: |
| log_err(cd, _("Key slot %d is full, please select another one.\n"), |
| *keyslot); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * compares UUIDs returned by device-mapper (striped by cryptsetup) and uuid in header |
| */ |
| static int crypt_uuid_cmp(const char *dm_uuid, const char *hdr_uuid) |
| { |
| int i, j; |
| char *str; |
| |
| if (!dm_uuid || !hdr_uuid) |
| return -EINVAL; |
| |
| str = strchr(dm_uuid, '-'); |
| if (!str) |
| return -EINVAL; |
| |
| for (i = 0, j = 1; hdr_uuid[i]; i++) { |
| if (hdr_uuid[i] == '-') |
| continue; |
| |
| if (!str[j] || str[j] == '-') |
| return -EINVAL; |
| |
| if (str[j] != hdr_uuid[i]) |
| return -EINVAL; |
| j++; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * compares type of active device to provided string (only if there is no explicit type) |
| */ |
| static int crypt_uuid_type_cmp(struct crypt_device *cd, const char *type) |
| { |
| struct crypt_dm_active_device dmd = {}; |
| size_t len; |
| int r; |
| |
| /* Must user header-on-disk if we know type here */ |
| if (cd->type || !cd->u.none.active_name) |
| return -EINVAL; |
| |
| log_dbg("Checking if active device %s without header has UUID type %s.", |
| cd->u.none.active_name, type); |
| |
| r = dm_query_device(cd, cd->u.none.active_name, DM_ACTIVE_UUID, &dmd); |
| if (r < 0) |
| return r; |
| |
| r = -ENODEV; |
| len = strlen(type); |
| if (dmd.uuid && strlen(dmd.uuid) > len && |
| !strncmp(dmd.uuid, type, len) && dmd.uuid[len] == '-') |
| r = 0; |
| |
| free(CONST_CAST(void*)dmd.uuid); |
| return r; |
| } |
| |
| int PLAIN_activate(struct crypt_device *cd, |
| const char *name, |
| struct volume_key *vk, |
| uint64_t size, |
| uint32_t flags) |
| { |
| int r; |
| char *dm_cipher = NULL; |
| enum devcheck device_check; |
| struct crypt_dm_active_device dmd = { |
| .target = DM_CRYPT, |
| .size = size, |
| .flags = flags, |
| .data_device = crypt_data_device(cd), |
| .u.crypt = { |
| .cipher = NULL, |
| .vk = vk, |
| .offset = crypt_get_data_offset(cd), |
| .iv_offset = crypt_get_iv_offset(cd), |
| } |
| }; |
| |
| if (dmd.flags & CRYPT_ACTIVATE_SHARED) |
| device_check = DEV_SHARED; |
| else |
| device_check = DEV_EXCL; |
| |
| r = device_block_adjust(cd, dmd.data_device, device_check, |
| dmd.u.crypt.offset, &dmd.size, &dmd.flags); |
| if (r) |
| return r; |
| |
| if (crypt_get_cipher_mode(cd)) |
| r = asprintf(&dm_cipher, "%s-%s", crypt_get_cipher(cd), crypt_get_cipher_mode(cd)); |
| else |
| r = asprintf(&dm_cipher, "%s", crypt_get_cipher(cd)); |
| if (r < 0) |
| return -ENOMEM; |
| |
| dmd.u.crypt.cipher = dm_cipher; |
| log_dbg("Trying to activate PLAIN device %s using cipher %s.", |
| name, dmd.u.crypt.cipher); |
| |
| r = dm_create_device(cd, name, CRYPT_PLAIN, &dmd, 0); |
| |
| free(dm_cipher); |
| return r; |
| } |
| |
| int crypt_confirm(struct crypt_device *cd, const char *msg) |
| { |
| if (!cd || !cd->confirm) |
| return 1; |
| else |
| return cd->confirm(msg, cd->confirm_usrptr); |
| } |
| |
| void crypt_set_log_callback(struct crypt_device *cd, |
| void (*log)(int level, const char *msg, void *usrptr), |
| void *usrptr) |
| { |
| if (!cd) |
| _default_log = log; |
| else { |
| cd->log = log; |
| cd->log_usrptr = usrptr; |
| } |
| } |
| |
| void crypt_set_confirm_callback(struct crypt_device *cd, |
| int (*confirm)(const char *msg, void *usrptr), |
| void *usrptr) |
| { |
| cd->confirm = confirm; |
| cd->confirm_usrptr = usrptr; |
| } |
| |
| const char *crypt_get_dir(void) |
| { |
| return dm_get_dir(); |
| } |
| |
| int crypt_init(struct crypt_device **cd, const char *device) |
| { |
| struct crypt_device *h = NULL; |
| int r; |
| |
| if (!cd) |
| return -EINVAL; |
| |
| log_dbg("Allocating crypt device %s context.", device); |
| |
| if (!(h = malloc(sizeof(struct crypt_device)))) |
| return -ENOMEM; |
| |
| memset(h, 0, sizeof(*h)); |
| |
| r = device_alloc(&h->device, device); |
| if (r < 0) |
| goto bad; |
| |
| dm_backend_init(); |
| |
| h->iteration_time = DEFAULT_LUKS1_ITER_TIME; |
| h->rng_type = crypt_random_default_key_rng(); |
| *cd = h; |
| return 0; |
| bad: |
| device_free(h->device); |
| free(h); |
| return r; |
| } |
| |
| static int crypt_check_data_device_size(struct crypt_device *cd) |
| { |
| int r; |
| uint64_t size, size_min; |
| |
| /* Check data device size, require at least one sector */ |
| size_min = crypt_get_data_offset(cd) << SECTOR_SHIFT ?: SECTOR_SIZE; |
| |
| r = device_size(cd->device, &size); |
| if (r < 0) |
| return r; |
| |
| if (size < size_min) { |
| log_err(cd, _("Header detected but device %s is too small.\n"), |
| device_path(cd->device)); |
| return -EINVAL; |
| } |
| |
| return r; |
| } |
| |
| int crypt_set_data_device(struct crypt_device *cd, const char *device) |
| { |
| struct device *dev = NULL; |
| int r; |
| |
| log_dbg("Setting ciphertext data device to %s.", device ?: "(none)"); |
| |
| if (!isLUKS(cd->type) && !isVERITY(cd->type)) { |
| log_err(cd, _("This operation is not supported for this device type.\n")); |
| return -EINVAL; |
| } |
| |
| /* metadata device must be set */ |
| if (!cd->device || !device) |
| return -EINVAL; |
| |
| r = device_alloc(&dev, device); |
| if (r < 0) |
| return r; |
| |
| if (!cd->metadata_device) { |
| cd->metadata_device = cd->device; |
| } else |
| device_free(cd->device); |
| |
| cd->device = dev; |
| |
| return crypt_check_data_device_size(cd); |
| } |
| |
| static int _crypt_load_luks1(struct crypt_device *cd, int require_header, int repair) |
| { |
| struct luks_phdr hdr; |
| int r; |
| |
| r = init_crypto(cd); |
| if (r < 0) |
| return r; |
| |
| r = LUKS_read_phdr(&hdr, require_header, repair, cd); |
| if (r < 0) |
| return r; |
| |
| if (!cd->type && !(cd->type = strdup(CRYPT_LUKS1))) |
| return -ENOMEM; |
| |
| memcpy(&cd->u.luks1.hdr, &hdr, sizeof(hdr)); |
| |
| return r; |
| } |
| |
| static int _crypt_load_tcrypt(struct crypt_device *cd, struct crypt_params_tcrypt *params) |
| { |
| int r; |
| |
| if (!params) |
| return -EINVAL; |
| |
| r = init_crypto(cd); |
| if (r < 0) |
| return r; |
| |
| memcpy(&cd->u.tcrypt.params, params, sizeof(*params)); |
| |
| r = TCRYPT_read_phdr(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); |
| |
| cd->u.tcrypt.params.passphrase = NULL; |
| cd->u.tcrypt.params.passphrase_size = 0; |
| cd->u.tcrypt.params.keyfiles = NULL; |
| cd->u.tcrypt.params.keyfiles_count = 0; |
| cd->u.tcrypt.params.veracrypt_pim = 0; |
| |
| if (r < 0) |
| return r; |
| |
| if (!cd->type && !(cd->type = strdup(CRYPT_TCRYPT))) |
| return -ENOMEM; |
| |
| return r; |
| } |
| |
| static int _crypt_load_verity(struct crypt_device *cd, struct crypt_params_verity *params) |
| { |
| int r; |
| size_t sb_offset = 0; |
| |
| r = init_crypto(cd); |
| if (r < 0) |
| return r; |
| |
| if (params && params->flags & CRYPT_VERITY_NO_HEADER) |
| return -EINVAL; |
| |
| if (params) |
| sb_offset = params->hash_area_offset; |
| |
| r = VERITY_read_sb(cd, sb_offset, &cd->u.verity.uuid, &cd->u.verity.hdr); |
| if (r < 0) |
| return r; |
| |
| //FIXME: use crypt_free |
| if (!cd->type && !(cd->type = strdup(CRYPT_VERITY))) { |
| free(CONST_CAST(void*)cd->u.verity.hdr.hash_name); |
| free(CONST_CAST(void*)cd->u.verity.hdr.salt); |
| free(cd->u.verity.uuid); |
| crypt_memzero(&cd->u.verity.hdr, sizeof(cd->u.verity.hdr)); |
| return -ENOMEM; |
| } |
| |
| if (params) |
| cd->u.verity.hdr.flags = params->flags; |
| |
| /* Hash availability checked in sb load */ |
| cd->u.verity.root_hash_size = crypt_hash_size(cd->u.verity.hdr.hash_name); |
| if (cd->u.verity.root_hash_size > 4096) |
| return -EINVAL; |
| |
| if (params && params->data_device && |
| (r = crypt_set_data_device(cd, params->data_device)) < 0) |
| return r; |
| |
| if (params && params->fec_device) { |
| r = device_alloc(&cd->u.verity.fec_device, params->fec_device); |
| if (r < 0) |
| return r; |
| cd->u.verity.hdr.fec_area_offset = params->fec_area_offset; |
| cd->u.verity.hdr.fec_roots = params->fec_roots; |
| } |
| |
| return r; |
| } |
| |
| static int _init_by_name_crypt(struct crypt_device *cd, const char *name) |
| { |
| struct crypt_dm_active_device dmd = {}; |
| char cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN]; |
| int key_nums, r; |
| |
| r = dm_query_device(cd, name, |
| DM_ACTIVE_DEVICE | |
| DM_ACTIVE_UUID | |
| DM_ACTIVE_CRYPT_CIPHER | |
| DM_ACTIVE_CRYPT_KEYSIZE, &dmd); |
| if (r < 0) |
| goto out; |
| if (r > 0) |
| r = 0; |
| |
| if (isPLAIN(cd->type)) { |
| cd->u.plain.hdr.hash = NULL; /* no way to get this */ |
| cd->u.plain.hdr.offset = dmd.u.crypt.offset; |
| cd->u.plain.hdr.skip = dmd.u.crypt.iv_offset; |
| cd->u.plain.key_size = dmd.u.crypt.vk->keylength; |
| |
| r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher, NULL, cipher_mode); |
| if (!r) { |
| cd->u.plain.cipher = strdup(cipher); |
| cd->u.plain.cipher_mode = strdup(cipher_mode); |
| } |
| } else if (isLOOPAES(cd->type)) { |
| cd->u.loopaes.hdr.offset = dmd.u.crypt.offset; |
| |
| r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher, |
| &key_nums, cipher_mode); |
| if (!r) { |
| cd->u.loopaes.cipher = strdup(cipher); |
| cd->u.loopaes.cipher_mode = strdup(cipher_mode); |
| /* version 3 uses last key for IV */ |
| if (dmd.u.crypt.vk->keylength % key_nums) |
| key_nums++; |
| cd->u.loopaes.key_size = dmd.u.crypt.vk->keylength / key_nums; |
| } |
| } else if (isLUKS(cd->type)) { |
| if (crypt_metadata_device(cd)) { |
| r = _crypt_load_luks1(cd, 0, 0); |
| if (r < 0) { |
| log_dbg("LUKS device header does not match active device."); |
| crypt_set_null_type(cd); |
| r = 0; |
| goto out; |
| } |
| /* check whether UUIDs match each other */ |
| r = crypt_uuid_cmp(dmd.uuid, cd->u.luks1.hdr.uuid); |
| if (r < 0) { |
| log_dbg("LUKS device header uuid: %s mismatches DM returned uuid %s", |
| cd->u.luks1.hdr.uuid, dmd.uuid); |
| crypt_set_null_type(cd); |
| r = 0; |
| } |
| } else { |
| log_dbg("LUKS device header not available."); |
| crypt_set_null_type(cd); |
| r = 0; |
| } |
| } else if (isTCRYPT(cd->type)) { |
| r = TCRYPT_init_by_name(cd, name, &dmd, &cd->device, |
| &cd->u.tcrypt.params, &cd->u.tcrypt.hdr); |
| } |
| out: |
| crypt_free_volume_key(dmd.u.crypt.vk); |
| device_free(dmd.data_device); |
| free(CONST_CAST(void*)dmd.u.crypt.cipher); |
| free(CONST_CAST(void*)dmd.uuid); |
| return r; |
| } |
| |
| static int _init_by_name_verity(struct crypt_device *cd, const char *name) |
| { |
| struct crypt_params_verity params = {}; |
| struct crypt_dm_active_device dmd = { |
| .target = DM_VERITY, |
| .u.verity.vp = ¶ms, |
| }; |
| int r; |
| |
| r = dm_query_device(cd, name, |
| DM_ACTIVE_DEVICE | |
| DM_ACTIVE_VERITY_HASH_DEVICE | |
| DM_ACTIVE_VERITY_PARAMS, &dmd); |
| if (r < 0) |
| goto out; |
| if (r > 0) |
| r = 0; |
| |
| if (isVERITY(cd->type)) { |
| cd->u.verity.uuid = NULL; // FIXME |
| cd->u.verity.hdr.flags = CRYPT_VERITY_NO_HEADER; //FIXME |
| cd->u.verity.hdr.data_size = params.data_size; |
| cd->u.verity.root_hash_size = dmd.u.verity.root_hash_size; |
| cd->u.verity.root_hash = NULL; |
| cd->u.verity.hdr.hash_name = params.hash_name; |
| cd->u.verity.hdr.data_device = NULL; |
| cd->u.verity.hdr.hash_device = NULL; |
| cd->u.verity.hdr.data_block_size = params.data_block_size; |
| cd->u.verity.hdr.hash_block_size = params.hash_block_size; |
| cd->u.verity.hdr.hash_area_offset = dmd.u.verity.hash_offset; |
| cd->u.verity.hdr.fec_area_offset = dmd.u.verity.fec_offset; |
| cd->u.verity.hdr.hash_type = params.hash_type; |
| cd->u.verity.hdr.flags = params.flags; |
| cd->u.verity.hdr.salt_size = params.salt_size; |
| cd->u.verity.hdr.salt = params.salt; |
| cd->u.verity.hdr.fec_device = params.fec_device; |
| cd->u.verity.hdr.fec_roots = params.fec_roots; |
| cd->u.verity.fec_device = dmd.u.verity.fec_device; |
| cd->metadata_device = dmd.u.verity.hash_device; |
| } |
| out: |
| device_free(dmd.data_device); |
| return r; |
| } |
| |
| int crypt_init_by_name_and_header(struct crypt_device **cd, |
| const char *name, |
| const char *header_device) |
| { |
| crypt_status_info ci; |
| struct crypt_dm_active_device dmd; |
| int r; |
| |
| log_dbg("Allocating crypt device context by device %s.", name); |
| |
| ci = crypt_status(NULL, name); |
| if (ci == CRYPT_INVALID) |
| return -ENODEV; |
| |
| if (ci < CRYPT_ACTIVE) { |
| log_err(NULL, _("Device %s is not active.\n"), name); |
| return -ENODEV; |
| } |
| |
| r = dm_query_device(NULL, name, DM_ACTIVE_DEVICE | DM_ACTIVE_UUID, &dmd); |
| if (r < 0) |
| goto out; |
| |
| *cd = NULL; |
| |
| if (header_device) { |
| r = crypt_init(cd, header_device); |
| } else { |
| r = crypt_init(cd, device_path(dmd.data_device)); |
| |
| /* Underlying device disappeared but mapping still active */ |
| if (!dmd.data_device || r == -ENOTBLK) |
| log_verbose(NULL, _("Underlying device for crypt device %s disappeared.\n"), |
| name); |
| |
| /* Underlying device is not readable but crypt mapping exists */ |
| if (r == -ENOTBLK) { |
| device_free(dmd.data_device); |
| dmd.data_device = NULL; |
| r = crypt_init(cd, NULL); |
| } |
| } |
| |
| if (r < 0) |
| goto out; |
| |
| if (dmd.uuid) { |
| if (!strncmp(CRYPT_PLAIN, dmd.uuid, sizeof(CRYPT_PLAIN)-1)) |
| (*cd)->type = strdup(CRYPT_PLAIN); |
| else if (!strncmp(CRYPT_LOOPAES, dmd.uuid, sizeof(CRYPT_LOOPAES)-1)) |
| (*cd)->type = strdup(CRYPT_LOOPAES); |
| else if (!strncmp(CRYPT_LUKS1, dmd.uuid, sizeof(CRYPT_LUKS1)-1)) |
| (*cd)->type = strdup(CRYPT_LUKS1); |
| else if (!strncmp(CRYPT_VERITY, dmd.uuid, sizeof(CRYPT_VERITY)-1)) |
| (*cd)->type = strdup(CRYPT_VERITY); |
| else if (!strncmp(CRYPT_TCRYPT, dmd.uuid, sizeof(CRYPT_TCRYPT)-1)) |
| (*cd)->type = strdup(CRYPT_TCRYPT); |
| else |
| log_dbg("Unknown UUID set, some parameters are not set."); |
| } else |
| log_dbg("Active device has no UUID set, some parameters are not set."); |
| |
| if (header_device) { |
| r = crypt_set_data_device(*cd, device_path(dmd.data_device)); |
| if (r < 0) |
| goto out; |
| } |
| |
| /* Try to initialise basic parameters from active device */ |
| |
| if (dmd.target == DM_CRYPT) |
| r = _init_by_name_crypt(*cd, name); |
| else if (dmd.target == DM_VERITY) |
| r = _init_by_name_verity(*cd, name); |
| out: |
| if (r < 0) { |
| crypt_free(*cd); |
| *cd = NULL; |
| } else if (!(*cd)->type) { |
| /* For anonymous device (no header found) remember initialized name */ |
| (*cd)->u.none.active_name = strdup(name); |
| } |
| |
| device_free(dmd.data_device); |
| free(CONST_CAST(void*)dmd.uuid); |
| return r; |
| } |
| |
| int crypt_init_by_name(struct crypt_device **cd, const char *name) |
| { |
| return crypt_init_by_name_and_header(cd, name, NULL); |
| } |
| |
| static int _crypt_format_plain(struct crypt_device *cd, |
| const char *cipher, |
| const char *cipher_mode, |
| const char *uuid, |
| size_t volume_key_size, |
| struct crypt_params_plain *params) |
| { |
| if (!cipher || !cipher_mode) { |
| log_err(cd, _("Invalid plain crypt parameters.\n")); |
| return -EINVAL; |
| } |
| |
| if (volume_key_size > 1024) { |
| log_err(cd, _("Invalid key size.\n")); |
| return -EINVAL; |
| } |
| |
| if (uuid) { |
| log_err(cd, _("UUID is not supported for this crypt type.\n")); |
| return -EINVAL; |
| } |
| |
| if (!(cd->type = strdup(CRYPT_PLAIN))) |
| return -ENOMEM; |
| |
| cd->u.plain.key_size = volume_key_size; |
| cd->volume_key = crypt_alloc_volume_key(volume_key_size, NULL); |
| if (!cd->volume_key) |
| return -ENOMEM; |
| |
| cd->u.plain.cipher = strdup(cipher); |
| cd->u.plain.cipher_mode = strdup(cipher_mode); |
| |
| |
| if (params && params->hash) |
| cd->u.plain.hdr.hash = strdup(params->hash); |
| |
| cd->u.plain.hdr.offset = params ? params->offset : 0; |
| cd->u.plain.hdr.skip = params ? params->skip : 0; |
| cd->u.plain.hdr.size = params ? params->size : 0; |
| |
| if (!cd->u.plain.cipher || !cd->u.plain.cipher_mode) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int _crypt_format_luks1(struct crypt_device *cd, |
| const char *cipher, |
| const char *cipher_mode, |
| const char *uuid, |
| const char *volume_key, |
| size_t volume_key_size, |
| struct crypt_params_luks1 *params) |
| { |
| int r; |
| unsigned long required_alignment = DEFAULT_DISK_ALIGNMENT; |
| unsigned long alignment_offset = 0; |
| |
| if (!crypt_metadata_device(cd)) { |
| log_err(cd, _("Can't format LUKS without device.\n")); |
| return -EINVAL; |
| } |
| |
| if (!(cd->type = strdup(CRYPT_LUKS1))) |
| return -ENOMEM; |
| |
| if (volume_key) |
| cd->volume_key = crypt_alloc_volume_key(volume_key_size, |
| volume_key); |
| else |
| cd->volume_key = crypt_generate_volume_key(cd, volume_key_size); |
| |
| if(!cd->volume_key) |
| return -ENOMEM; |
| |
| if (params && params->data_device) { |
| cd->metadata_device = cd->device; |
| cd->device = NULL; |
| if (device_alloc(&cd->device, params->data_device) < 0) |
| return -ENOMEM; |
| required_alignment = params->data_alignment * SECTOR_SIZE; |
| } else if (params && params->data_alignment) { |
| required_alignment = params->data_alignment * SECTOR_SIZE; |
| } else |
| device_topology_alignment(cd->device, |
| &required_alignment, |
| &alignment_offset, DEFAULT_DISK_ALIGNMENT); |
| |
| r = LUKS_generate_phdr(&cd->u.luks1.hdr, cd->volume_key, cipher, cipher_mode, |
| (params && params->hash) ? params->hash : DEFAULT_LUKS1_HASH, |
| uuid, LUKS_STRIPES, |
| required_alignment / SECTOR_SIZE, |
| alignment_offset / SECTOR_SIZE, |
| cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, |
| cd->metadata_device ? 1 : 0, cd); |
| if(r < 0) |
| return r; |
| |
| /* Wipe first 8 sectors - fs magic numbers etc. */ |
| r = crypt_wipe(crypt_metadata_device(cd), 0, 8 * SECTOR_SIZE, CRYPT_WIPE_ZERO, 1); |
| if(r < 0) { |
| if (r == -EBUSY) |
| log_err(cd, _("Cannot format device %s which is still in use.\n"), |
| mdata_device_path(cd)); |
| else if (r == -EACCES) { |
| log_err(cd, _("Cannot format device %s, permission denied.\n"), |
| mdata_device_path(cd)); |
| r = -EINVAL; |
| } else |
| log_err(cd, _("Cannot wipe header on device %s.\n"), |
| mdata_device_path(cd)); |
| |
| return r; |
| } |
| |
| r = LUKS_write_phdr(&cd->u.luks1.hdr, cd); |
| |
| return r; |
| } |
| |
| static int _crypt_format_loopaes(struct crypt_device *cd, |
| const char *cipher, |
| const char *uuid, |
| size_t volume_key_size, |
| struct crypt_params_loopaes *params) |
| { |
| if (!crypt_metadata_device(cd)) { |
| log_err(cd, _("Can't format LOOPAES without device.\n")); |
| return -EINVAL; |
| } |
| |
| if (volume_key_size > 1024) { |
| log_err(cd, _("Invalid key size.\n")); |
| return -EINVAL; |
| } |
| |
| if (uuid) { |
| log_err(cd, _("UUID is not supported for this crypt type.\n")); |
| return -EINVAL; |
| } |
| |
| if (!(cd->type = strdup(CRYPT_LOOPAES))) |
| return -ENOMEM; |
| |
| cd->u.loopaes.key_size = volume_key_size; |
| |
| cd->u.loopaes.cipher = strdup(cipher ?: DEFAULT_LOOPAES_CIPHER); |
| |
| if (params && params->hash) |
| cd->u.loopaes.hdr.hash = strdup(params->hash); |
| |
| cd->u.loopaes.hdr.offset = params ? params->offset : 0; |
| cd->u.loopaes.hdr.skip = params ? params->skip : 0; |
| |
| return 0; |
| } |
| |
| static int _crypt_format_verity(struct crypt_device *cd, |
| const char *uuid, |
| struct crypt_params_verity *params) |
| { |
| int r = 0, hash_size; |
| uint64_t data_device_size; |
| |
| if (!crypt_metadata_device(cd)) { |
| log_err(cd, _("Can't format VERITY without device.\n")); |
| return -EINVAL; |
| } |
| |
| if (!params || !params->data_device) |
| return -EINVAL; |
| |
| if (params->hash_type > VERITY_MAX_HASH_TYPE) { |
| log_err(cd, _("Unsupported VERITY hash type %d.\n"), params->hash_type); |
| return -EINVAL; |
| } |
| |
| if (VERITY_BLOCK_SIZE_OK(params->data_block_size) || |
| VERITY_BLOCK_SIZE_OK(params->hash_block_size)) { |
| log_err(cd, _("Unsupported VERITY block size.\n")); |
| return -EINVAL; |
| } |
| |
| if (params->hash_area_offset % 512) { |
| log_err(cd, _("Unsupported VERITY hash offset.\n")); |
| return -EINVAL; |
| } |
| |
| if (params->fec_area_offset % 512) { |
| log_err(cd, _("Unsupported VERITY FEC offset.\n")); |
| return -EINVAL; |
| } |
| |
| if (!(cd->type = strdup(CRYPT_VERITY))) |
| return -ENOMEM; |
| |
| r = crypt_set_data_device(cd, params->data_device); |
| if (r) |
| return r; |
| if (!params->data_size) { |
| r = device_size(cd->device, &data_device_size); |
| if (r < 0) |
| return r; |
| |
| cd->u.verity.hdr.data_size = data_device_size / params->data_block_size; |
| } else |
| cd->u.verity.hdr.data_size = params->data_size; |
| |
| if (device_is_identical(crypt_metadata_device(cd), crypt_data_device(cd)) && |
| (cd->u.verity.hdr.data_size * params->data_block_size) > params->hash_area_offset) { |
| log_err(cd, _("Data area overlaps with hash area.\n")); |
| return -EINVAL; |
| } |
| |
| if (params->fec_device && |
| (r = device_alloc(&cd->u.verity.fec_device, params->fec_device)) < 0) |
| return r; |
| |
| hash_size = crypt_hash_size(params->hash_name); |
| if (hash_size <= 0) { |
| log_err(cd, _("Hash algorithm %s not supported.\n"), |
| params->hash_name); |
| return -EINVAL; |
| } |
| cd->u.verity.root_hash_size = hash_size; |
| |
| cd->u.verity.root_hash = malloc(cd->u.verity.root_hash_size); |
| if (!cd->u.verity.root_hash) |
| return -ENOMEM; |
| |
| cd->u.verity.hdr.flags = params->flags; |
| if (!(cd->u.verity.hdr.hash_name = strdup(params->hash_name))) |
| return -ENOMEM; |
| cd->u.verity.hdr.data_device = NULL; |
| cd->u.verity.hdr.fec_device = params->fec_device; |
| cd->u.verity.hdr.fec_roots = params->fec_roots; |
| cd->u.verity.hdr.data_block_size = params->data_block_size; |
| cd->u.verity.hdr.hash_block_size = params->hash_block_size; |
| cd->u.verity.hdr.hash_area_offset = params->hash_area_offset; |
| cd->u.verity.hdr.fec_area_offset = params->fec_area_offset; |
| cd->u.verity.hdr.hash_type = params->hash_type; |
| cd->u.verity.hdr.flags = params->flags; |
| cd->u.verity.hdr.salt_size = params->salt_size; |
| if (!(cd->u.verity.hdr.salt = malloc(params->salt_size))) |
| return -ENOMEM; |
| |
| if (params->salt) |
| memcpy(CONST_CAST(char*)cd->u.verity.hdr.salt, params->salt, |
| params->salt_size); |
| else |
| r = crypt_random_get(cd, CONST_CAST(char*)cd->u.verity.hdr.salt, |
| params->salt_size, CRYPT_RND_SALT); |
| if (r) |
| return r; |
| |
| if (params->flags & CRYPT_VERITY_CREATE_HASH) { |
| r = VERITY_create(cd, &cd->u.verity.hdr, |
| cd->u.verity.root_hash, cd->u.verity.root_hash_size); |
| if (!r && params->fec_device) |
| r = VERITY_FEC_create(cd, &cd->u.verity.hdr, cd->u.verity.fec_device); |
| if (r) |
| return r; |
| } |
| |
| if (!(params->flags & CRYPT_VERITY_NO_HEADER)) { |
| if (uuid) |
| cd->u.verity.uuid = strdup(uuid); |
| else { |
| r = VERITY_UUID_generate(cd, &cd->u.verity.uuid); |
| if (r) |
| return r; |
| } |
| |
| r = VERITY_write_sb(cd, cd->u.verity.hdr.hash_area_offset, |
| cd->u.verity.uuid, |
| &cd->u.verity.hdr); |
| } |
| |
| return r; |
| } |
| |
| int crypt_format(struct crypt_device *cd, |
| const char *type, |
| const char *cipher, |
| const char *cipher_mode, |
| const char *uuid, |
| const char *volume_key, |
| size_t volume_key_size, |
| void *params) |
| { |
| int r; |
| |
| if (!type) |
| return -EINVAL; |
| |
| if (cd->type) { |
| log_dbg("Context already formatted as %s.", cd->type); |
| return -EINVAL; |
| } |
| |
| log_dbg("Formatting device %s as type %s.", mdata_device_path(cd) ?: "(none)", type); |
| |
| crypt_reset_null_type(cd); |
| |
| r = init_crypto(cd); |
| if (r < 0) |
| return r; |
| |
| if (isPLAIN(type)) |
| r = _crypt_format_plain(cd, cipher, cipher_mode, |
| uuid, volume_key_size, params); |
| else if (isLUKS(type)) |
| r = _crypt_format_luks1(cd, cipher, cipher_mode, |
| uuid, volume_key, volume_key_size, params); |
| else if (isLOOPAES(type)) |
| r = _crypt_format_loopaes(cd, cipher, uuid, volume_key_size, params); |
| else if (isVERITY(type)) |
| r = _crypt_format_verity(cd, uuid, params); |
| else { |
| log_err(cd, _("Unknown crypt device type %s requested.\n"), type); |
| r = -EINVAL; |
| } |
| |
| if (r < 0) { |
| crypt_set_null_type(cd); |
| crypt_free_volume_key(cd->volume_key); |
| cd->volume_key = NULL; |
| } |
| |
| return r; |
| } |
| |
| int crypt_load(struct crypt_device *cd, |
| const char *requested_type, |
| void *params) |
| { |
| int r; |
| |
| log_dbg("Trying to load %s crypt type from device %s.", |
| requested_type ?: "any", mdata_device_path(cd) ?: "(none)"); |
| |
| if (!crypt_metadata_device(cd)) |
| return -EINVAL; |
| |
| crypt_reset_null_type(cd); |
| |
| if (!requested_type || isLUKS(requested_type)) { |
| if (cd->type && !isLUKS(cd->type)) { |
| log_dbg("Context is already initialised to type %s", cd->type); |
| return -EINVAL; |
| } |
| |
| r = _crypt_load_luks1(cd, 1, 0); |
| } else if (isVERITY(requested_type)) { |
| if (cd->type && !isVERITY(cd->type)) { |
| log_dbg("Context is already initialised to type %s", cd->type); |
| return -EINVAL; |
| } |
| r = _crypt_load_verity(cd, params); |
| } else if (isTCRYPT(requested_type)) { |
| if (cd->type && !isTCRYPT(cd->type)) { |
| log_dbg("Context is already initialised to type %s", cd->type); |
| return -EINVAL; |
| } |
| r = _crypt_load_tcrypt(cd, params); |
| } else |
| return -EINVAL; |
| |
| return r; |
| } |
| |
| int crypt_repair(struct crypt_device *cd, |
| const char *requested_type, |
| void *params __attribute__((unused))) |
| { |
| int r; |
| |
| log_dbg("Trying to repair %s crypt type from device %s.", |
| requested_type ?: "any", mdata_device_path(cd) ?: "(none)"); |
| |
| if (!crypt_metadata_device(cd)) |
| return -EINVAL; |
| |
| if (requested_type && !isLUKS(requested_type)) |
| return -EINVAL; |
| |
| |
| /* Load with repair */ |
| r = _crypt_load_luks1(cd, 1, 1); |
| if (r < 0) |
| return r; |
| |
| /* cd->type and header must be set in context */ |
| r = crypt_check_data_device_size(cd); |
| if (r < 0) |
| crypt_set_null_type(cd); |
| |
| return r; |
| } |
| |
| int crypt_resize(struct crypt_device *cd, const char *name, uint64_t new_size) |
| { |
| struct crypt_dm_active_device dmd; |
| int r; |
| |
| /* Device context type must be initialised */ |
| if (!cd->type) |
| return -EINVAL; |
| |
| log_dbg("Resizing device %s to %" PRIu64 " sectors.", name, new_size); |
| |
| r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_CRYPT_CIPHER | |
| DM_ACTIVE_UUID | DM_ACTIVE_CRYPT_KEYSIZE | |
| DM_ACTIVE_CRYPT_KEY, &dmd); |
| if (r < 0) { |
| log_err(NULL, _("Device %s is not active.\n"), name); |
| return -EINVAL; |
| } |
| |
| if (!dmd.uuid || dmd.target != DM_CRYPT) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| if (crypt_loop_device(crypt_get_device_name(cd))) { |
| log_dbg("Trying to resize underlying loop device %s.", |
| crypt_get_device_name(cd)); |
| /* Here we always use default size not new_size */ |
| if (crypt_loop_resize(crypt_get_device_name(cd))) |
| log_err(NULL, _("Cannot resize loop device.\n")); |
| } |
| |
| r = device_block_adjust(cd, dmd.data_device, DEV_OK, |
| dmd.u.crypt.offset, &new_size, &dmd.flags); |
| if (r) |
| goto out; |
| |
| if (new_size == dmd.size) { |
| log_dbg("Device has already requested size %" PRIu64 |
| " sectors.", dmd.size); |
| r = 0; |
| } else { |
| dmd.size = new_size; |
| if (isTCRYPT(cd->type)) |
| r = -ENOTSUP; |
| else |
| r = dm_create_device(cd, name, cd->type, &dmd, 1); |
| } |
| out: |
| if (dmd.target == DM_CRYPT) { |
| crypt_free_volume_key(dmd.u.crypt.vk); |
| free(CONST_CAST(void*)dmd.u.crypt.cipher); |
| } |
| free(CONST_CAST(void*)dmd.data_device); |
| free(CONST_CAST(void*)dmd.uuid); |
| |
| return r; |
| } |
| |
| int crypt_set_uuid(struct crypt_device *cd, const char *uuid) |
| { |
| if (!isLUKS(cd->type)) { |
| log_err(cd, _("This operation is not supported for this device type.\n")); |
| return -EINVAL; |
| } |
| |
| if (uuid && !strncmp(uuid, cd->u.luks1.hdr.uuid, sizeof(cd->u.luks1.hdr.uuid))) { |
| log_dbg("UUID is the same as requested (%s) for device %s.", |
| uuid, mdata_device_path(cd)); |
| return 0; |
| } |
| |
| if (uuid) |
| log_dbg("Requested new UUID change to %s for %s.", uuid, mdata_device_path(cd)); |
| else |
| log_dbg("Requested new UUID refresh for %s.", mdata_device_path(cd)); |
| |
| if (!crypt_confirm(cd, _("Do you really want to change UUID of device?"))) |
| return -EPERM; |
| |
| return LUKS_hdr_uuid_set(&cd->u.luks1.hdr, uuid, cd); |
| } |
| |
| int crypt_header_backup(struct crypt_device *cd, |
| const char *requested_type, |
| const char *backup_file) |
| { |
| int r; |
| |
| if ((requested_type && !isLUKS(requested_type)) || !backup_file) |
| return -EINVAL; |
| |
| if (cd->type && !isLUKS(cd->type)) |
| return -EINVAL; |
| |
| r = init_crypto(cd); |
| if (r < 0) |
| return r; |
| |
| log_dbg("Requested header backup of device %s (%s) to " |
| "file %s.", mdata_device_path(cd), requested_type, backup_file); |
| |
| r = LUKS_hdr_backup(backup_file, cd); |
| return r; |
| } |
| |
| int crypt_header_restore(struct crypt_device *cd, |
| const char *requested_type, |
| const char *backup_file) |
| { |
| struct luks_phdr hdr; |
| int r; |
| |
| if (requested_type && !isLUKS(requested_type)) |
| return -EINVAL; |
| |
| if (cd->type && !isLUKS(cd->type)) |
| return -EINVAL; |
| |
| r = init_crypto(cd); |
| if (r < 0) |
| return r; |
| |
| log_dbg("Requested header restore to device %s (%s) from " |
| "file %s.", mdata_device_path(cd), requested_type, backup_file); |
| |
| r = LUKS_hdr_restore(backup_file, isLUKS(cd->type) ? &cd->u.luks1.hdr : &hdr, cd); |
| |
| crypt_memzero(&hdr, sizeof(hdr)); |
| return r; |
| } |
| |
| void crypt_free(struct crypt_device *cd) |
| { |
| if (cd) { |
| log_dbg("Releasing crypt device %s context.", mdata_device_path(cd)); |
| |
| dm_backend_exit(); |
| crypt_free_volume_key(cd->volume_key); |
| |
| device_free(cd->device); |
| device_free(cd->metadata_device); |
| |
| if (isPLAIN(cd->type)) { |
| free(CONST_CAST(void*)cd->u.plain.hdr.hash); |
| free(cd->u.plain.cipher); |
| free(cd->u.plain.cipher_mode); |
| } else if (isLOOPAES(cd->type)) { |
| free(CONST_CAST(void*)cd->u.loopaes.hdr.hash); |
| free(cd->u.loopaes.cipher); |
| } else if (isVERITY(cd->type)) { |
| free(CONST_CAST(void*)cd->u.verity.hdr.hash_name); |
| free(CONST_CAST(void*)cd->u.verity.hdr.salt); |
| free(cd->u.verity.root_hash); |
| free(cd->u.verity.uuid); |
| device_free(cd->u.verity.fec_device); |
| } else if (!cd->type) { |
| free(cd->u.none.active_name); |
| } |
| |
| free(cd->type); |
| /* Some structures can contain keys (TCRYPT), wipe it */ |
| crypt_memzero(cd, sizeof(*cd)); |
| free(cd); |
| } |
| } |
| |
| int crypt_suspend(struct crypt_device *cd, |
| const char *name) |
| { |
| crypt_status_info ci; |
| int r; |
| |
| log_dbg("Suspending volume %s.", name); |
| |
| if (cd->type) { |
| r = onlyLUKS(cd); |
| } else { |
| r = crypt_uuid_type_cmp(cd, CRYPT_LUKS1); |
| if (r < 0) |
| log_err(cd, _("This operation is supported only for LUKS device.\n")); |
| } |
| |
| if (r < 0) |
| return r; |
| |
| ci = crypt_status(NULL, name); |
| if (ci < CRYPT_ACTIVE) { |
| log_err(cd, _("Volume %s is not active.\n"), name); |
| return -EINVAL; |
| } |
| |
| dm_backend_init(); |
| |
| r = dm_status_suspended(cd, name); |
| if (r < 0) |
| goto out; |
| |
| if (r) { |
| log_err(cd, _("Volume %s is already suspended.\n"), name); |
| r = -EINVAL; |
| goto out; |
| } |
| |
| r = dm_suspend_and_wipe_key(cd, name); |
| if (r == -ENOTSUP) |
| log_err(cd, _("Suspend is not supported for device %s.\n"), name); |
| else if (r) |
| log_err(cd, _("Error during suspending device %s.\n"), name); |
| out: |
| dm_backend_exit(); |
| return r; |
| } |
| |
| int crypt_resume_by_passphrase(struct crypt_device *cd, |
| const char *name, |
| int keyslot, |
| const char *passphrase, |
| size_t passphrase_size) |
| { |
| struct volume_key *vk = NULL; |
| int r; |
| |
| log_dbg("Resuming volume %s.", name); |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| if (!passphrase) |
| return -EINVAL; |
| |
| r = dm_status_suspended(cd, name); |
| if (r < 0) |
| return r; |
| |
| if (!r) { |
| log_err(cd, _("Volume %s is not suspended.\n"), name); |
| return -EINVAL; |
| } |
| |
| r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size, |
| &cd->u.luks1.hdr, &vk, cd); |
| if (r >= 0) { |
| keyslot = r; |
| r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key); |
| if (r == -ENOTSUP) |
| log_err(cd, _("Resume is not supported for device %s.\n"), name); |
| else if (r) |
| log_err(cd, _("Error during resuming device %s.\n"), name); |
| } else |
| r = keyslot; |
| |
| crypt_free_volume_key(vk); |
| return r < 0 ? r : keyslot; |
| } |
| |
| int crypt_resume_by_keyfile_offset(struct crypt_device *cd, |
| const char *name, |
| int keyslot, |
| const char *keyfile, |
| size_t keyfile_size, |
| size_t keyfile_offset) |
| { |
| struct volume_key *vk = NULL; |
| char *passphrase_read = NULL; |
| size_t passphrase_size_read; |
| int r; |
| |
| log_dbg("Resuming volume %s.", name); |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| r = dm_status_suspended(cd, name); |
| if (r < 0) |
| return r; |
| |
| if (!r) { |
| log_err(cd, _("Volume %s is not suspended.\n"), name); |
| return -EINVAL; |
| } |
| |
| if (!keyfile) |
| return -EINVAL; |
| |
| r = crypt_keyfile_read(cd, keyfile, |
| &passphrase_read, &passphrase_size_read, |
| keyfile_offset, keyfile_size, 0); |
| if (r < 0) |
| goto out; |
| |
| r = LUKS_open_key_with_hdr(keyslot, passphrase_read, |
| passphrase_size_read, &cd->u.luks1.hdr, &vk, cd); |
| if (r < 0) |
| goto out; |
| |
| keyslot = r; |
| r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key); |
| if (r) |
| log_err(cd, _("Error during resuming device %s.\n"), name); |
| out: |
| crypt_safe_free(passphrase_read); |
| crypt_free_volume_key(vk); |
| return r < 0 ? r : keyslot; |
| } |
| |
| int crypt_resume_by_keyfile(struct crypt_device *cd, |
| const char *name, |
| int keyslot, |
| const char *keyfile, |
| size_t keyfile_size) |
| { |
| return crypt_resume_by_keyfile_offset(cd, name, keyslot, |
| keyfile, keyfile_size, 0); |
| } |
| |
| // slot manipulation |
| int crypt_keyslot_add_by_passphrase(struct crypt_device *cd, |
| int keyslot, // -1 any |
| const char *passphrase, |
| size_t passphrase_size, |
| const char *new_passphrase, |
| size_t new_passphrase_size) |
| { |
| struct volume_key *vk = NULL; |
| int r; |
| |
| log_dbg("Adding new keyslot, existing passphrase %sprovided," |
| "new passphrase %sprovided.", |
| passphrase ? "" : "not ", new_passphrase ? "" : "not "); |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| if (!passphrase || !new_passphrase) |
| return -EINVAL; |
| |
| r = keyslot_verify_or_find_empty(cd, &keyslot); |
| if (r) |
| return r; |
| |
| if (!LUKS_keyslot_active_count(&cd->u.luks1.hdr)) { |
| /* No slots used, try to use pre-generated key in header */ |
| if (cd->volume_key) { |
| vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key); |
| r = vk ? 0 : -ENOMEM; |
| } else { |
| log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n")); |
| return -EINVAL; |
| } |
| } else { |
| /* Passphrase provided, use it to unlock existing keyslot */ |
| r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, passphrase, |
| passphrase_size, &cd->u.luks1.hdr, &vk, cd); |
| } |
| |
| if(r < 0) |
| goto out; |
| |
| r = LUKS_set_key(keyslot, CONST_CAST(char*)new_passphrase, new_passphrase_size, |
| &cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd); |
| if(r < 0) |
| goto out; |
| |
| r = 0; |
| out: |
| crypt_free_volume_key(vk); |
| return r < 0 ? r : keyslot; |
| } |
| |
| int crypt_keyslot_change_by_passphrase(struct crypt_device *cd, |
| int keyslot_old, |
| int keyslot_new, |
| const char *passphrase, |
| size_t passphrase_size, |
| const char *new_passphrase, |
| size_t new_passphrase_size) |
| { |
| struct volume_key *vk = NULL; |
| int r; |
| |
| log_dbg("Changing passphrase from old keyslot %d to new %d.", |
| keyslot_old, keyslot_new); |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| r = LUKS_open_key_with_hdr(keyslot_old, passphrase, passphrase_size, |
| &cd->u.luks1.hdr, &vk, cd); |
| if (r < 0) |
| goto out; |
| |
| if (keyslot_old != CRYPT_ANY_SLOT && keyslot_old != r) { |
| log_dbg("Keyslot mismatch."); |
| goto out; |
| } |
| keyslot_old = r; |
| |
| if (keyslot_new == CRYPT_ANY_SLOT) { |
| keyslot_new = LUKS_keyslot_find_empty(&cd->u.luks1.hdr); |
| if (keyslot_new < 0) |
| keyslot_new = keyslot_old; |
| } |
| |
| if (keyslot_old == keyslot_new) { |
| log_dbg("Key slot %d is going to be overwritten.", keyslot_old); |
| (void)crypt_keyslot_destroy(cd, keyslot_old); |
| } |
| |
| r = LUKS_set_key(keyslot_new, new_passphrase, new_passphrase_size, |
| &cd->u.luks1.hdr, vk, cd->iteration_time, |
| &cd->u.luks1.PBKDF2_per_sec, cd); |
| |
| if (keyslot_old == keyslot_new) { |
| if (r >= 0) |
| log_verbose(cd, _("Key slot %d changed.\n"), keyslot_new); |
| } else { |
| if (r >= 0) { |
| log_verbose(cd, _("Replaced with key slot %d.\n"), keyslot_new); |
| r = crypt_keyslot_destroy(cd, keyslot_old); |
| } |
| } |
| if (r < 0) |
| log_err(cd, _("Failed to swap new key slot.\n")); |
| out: |
| crypt_free_volume_key(vk); |
| return r < 0 ? r : keyslot_new; |
| } |
| |
| int crypt_keyslot_add_by_keyfile_offset(struct crypt_device *cd, |
| int keyslot, |
| const char *keyfile, |
| size_t keyfile_size, |
| size_t keyfile_offset, |
| const char *new_keyfile, |
| size_t new_keyfile_size, |
| size_t new_keyfile_offset) |
| { |
| struct volume_key *vk = NULL; |
| char *password = NULL; size_t passwordLen; |
| char *new_password = NULL; size_t new_passwordLen; |
| int r; |
| |
| log_dbg("Adding new keyslot, existing keyfile %s, new keyfile %s.", |
| keyfile ?: "[none]", new_keyfile ?: "[none]"); |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| if (!keyfile || !new_keyfile) |
| return -EINVAL; |
| |
| r = keyslot_verify_or_find_empty(cd, &keyslot); |
| if (r) |
| return r; |
| |
| if (!LUKS_keyslot_active_count(&cd->u.luks1.hdr)) { |
| /* No slots used, try to use pre-generated key in header */ |
| if (cd->volume_key) { |
| vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key); |
| r = vk ? 0 : -ENOMEM; |
| } else { |
| log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n")); |
| return -EINVAL; |
| } |
| } else { |
| r = crypt_keyfile_read(cd, keyfile, |
| &password, &passwordLen, |
| keyfile_offset, keyfile_size, 0); |
| if (r < 0) |
| goto out; |
| |
| r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, password, passwordLen, |
| &cd->u.luks1.hdr, &vk, cd); |
| } |
| |
| if(r < 0) |
| goto out; |
| |
| r = crypt_keyfile_read(cd, new_keyfile, |
| &new_password, &new_passwordLen, |
| new_keyfile_offset, new_keyfile_size, 0); |
| if (r < 0) |
| goto out; |
| |
| r = LUKS_set_key(keyslot, new_password, new_passwordLen, |
| &cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd); |
| out: |
| crypt_safe_free(password); |
| crypt_safe_free(new_password); |
| crypt_free_volume_key(vk); |
| return r < 0 ? r : keyslot; |
| } |
| |
| int crypt_keyslot_add_by_keyfile(struct crypt_device *cd, |
| int keyslot, |
| const char *keyfile, |
| size_t keyfile_size, |
| const char *new_keyfile, |
| size_t new_keyfile_size) |
| { |
| return crypt_keyslot_add_by_keyfile_offset(cd, keyslot, |
| keyfile, keyfile_size, 0, |
| new_keyfile, new_keyfile_size, 0); |
| } |
| |
| int crypt_keyslot_add_by_volume_key(struct crypt_device *cd, |
| int keyslot, |
| const char *volume_key, |
| size_t volume_key_size, |
| const char *passphrase, |
| size_t passphrase_size) |
| { |
| struct volume_key *vk = NULL; |
| int r; |
| |
| log_dbg("Adding new keyslot %d using volume key.", keyslot); |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| if (!passphrase) |
| return -EINVAL; |
| |
| if (volume_key) |
| vk = crypt_alloc_volume_key(volume_key_size, volume_key); |
| else if (cd->volume_key) |
| vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key); |
| |
| if (!vk) |
| return -ENOMEM; |
| |
| r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk); |
| if (r < 0) { |
| log_err(cd, _("Volume key does not match the volume.\n")); |
| goto out; |
| } |
| |
| r = keyslot_verify_or_find_empty(cd, &keyslot); |
| if (r) |
| goto out; |
| |
| r = LUKS_set_key(keyslot, passphrase, passphrase_size, |
| &cd->u.luks1.hdr, vk, cd->iteration_time, &cd->u.luks1.PBKDF2_per_sec, cd); |
| out: |
| crypt_free_volume_key(vk); |
| return (r < 0) ? r : keyslot; |
| } |
| |
| int crypt_keyslot_destroy(struct crypt_device *cd, int keyslot) |
| { |
| crypt_keyslot_info ki; |
| int r; |
| |
| log_dbg("Destroying keyslot %d.", keyslot); |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| ki = crypt_keyslot_status(cd, keyslot); |
| if (ki == CRYPT_SLOT_INVALID) { |
| log_err(cd, _("Key slot %d is invalid.\n"), keyslot); |
| return -EINVAL; |
| } |
| |
| if (ki == CRYPT_SLOT_INACTIVE) { |
| log_err(cd, _("Key slot %d is not used.\n"), keyslot); |
| return -EINVAL; |
| } |
| |
| return LUKS_del_key(keyslot, &cd->u.luks1.hdr, cd); |
| } |
| |
| // activation/deactivation of device mapping |
| int crypt_activate_by_passphrase(struct crypt_device *cd, |
| const char *name, |
| int keyslot, |
| const char *passphrase, |
| size_t passphrase_size, |
| uint32_t flags) |
| { |
| crypt_status_info ci; |
| struct volume_key *vk = NULL; |
| int r; |
| |
| log_dbg("%s volume %s [keyslot %d] using %spassphrase.", |
| name ? "Activating" : "Checking", name ?: "", |
| keyslot, passphrase ? "" : "[none] "); |
| |
| if (!passphrase) |
| return -EINVAL; |
| |
| if (name) { |
| ci = crypt_status(NULL, name); |
| if (ci == CRYPT_INVALID) |
| return -EINVAL; |
| else if (ci >= CRYPT_ACTIVE) { |
| log_err(cd, _("Device %s already exists.\n"), name); |
| return -EEXIST; |
| } |
| } |
| |
| /* plain, use hashed passphrase */ |
| if (isPLAIN(cd->type)) { |
| if (!name) |
| return -EINVAL; |
| |
| r = process_key(cd, cd->u.plain.hdr.hash, |
| cd->u.plain.key_size, |
| passphrase, passphrase_size, &vk); |
| if (r < 0) |
| goto out; |
| |
| r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags); |
| keyslot = 0; |
| } else if (isLUKS(cd->type)) { |
| r = LUKS_open_key_with_hdr(keyslot, passphrase, |
| passphrase_size, &cd->u.luks1.hdr, &vk, cd); |
| if (r >= 0) { |
| keyslot = r; |
| if (name) |
| r = LUKS1_activate(cd, name, vk, flags); |
| } |
| } else |
| r = -EINVAL; |
| out: |
| crypt_free_volume_key(vk); |
| |
| return r < 0 ? r : keyslot; |
| } |
| |
| int crypt_activate_by_keyfile_offset(struct crypt_device *cd, |
| const char *name, |
| int keyslot, |
| const char *keyfile, |
| size_t keyfile_size, |
| size_t keyfile_offset, |
| uint32_t flags) |
| { |
| crypt_status_info ci; |
| struct volume_key *vk = NULL; |
| char *passphrase_read = NULL; |
| size_t passphrase_size_read; |
| unsigned int key_count = 0; |
| int r; |
| |
| log_dbg("Activating volume %s [keyslot %d] using keyfile %s.", |
| name ?: "", keyslot, keyfile ?: "[none]"); |
| |
| if (name) { |
| ci = crypt_status(NULL, name); |
| if (ci == CRYPT_INVALID) |
| return -EINVAL; |
| else if (ci >= CRYPT_ACTIVE) { |
| log_err(cd, _("Device %s already exists.\n"), name); |
| return -EEXIST; |
| } |
| } |
| |
| if (!keyfile) |
| return -EINVAL; |
| |
| if (isPLAIN(cd->type)) { |
| if (!name) |
| return -EINVAL; |
| |
| r = crypt_keyfile_read(cd, keyfile, |
| &passphrase_read, &passphrase_size_read, |
| keyfile_offset, keyfile_size, 0); |
| if (r < 0) |
| goto out; |
| |
| r = process_key(cd, cd->u.plain.hdr.hash, |
| cd->u.plain.key_size, |
| passphrase_read, passphrase_size_read, &vk); |
| if (r < 0) |
| goto out; |
| |
| r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags); |
| } else if (isLUKS(cd->type)) { |
| r = crypt_keyfile_read(cd, keyfile, |
| &passphrase_read, &passphrase_size_read, |
| keyfile_offset, keyfile_size, 0); |
| if (r < 0) |
| goto out; |
| r = LUKS_open_key_with_hdr(keyslot, passphrase_read, |
| passphrase_size_read, &cd->u.luks1.hdr, &vk, cd); |
| if (r < 0) |
| goto out; |
| keyslot = r; |
| |
| if (name) { |
| r = LUKS1_activate(cd, name, vk, flags); |
| if (r < 0) |
| goto out; |
| } |
| r = keyslot; |
| } else if (isLOOPAES(cd->type)) { |
| r = crypt_keyfile_read(cd, keyfile, |
| &passphrase_read, &passphrase_size_read, |
| keyfile_offset, keyfile_size, 0); |
| if (r < 0) |
| goto out; |
| r = LOOPAES_parse_keyfile(cd, &vk, cd->u.loopaes.hdr.hash, &key_count, |
| passphrase_read, passphrase_size_read); |
| if (r < 0) |
| goto out; |
| if (name) |
| r = LOOPAES_activate(cd, name, cd->u.loopaes.cipher, |
| key_count, vk, flags); |
| } else |
| r = -EINVAL; |
| |
| out: |
| crypt_safe_free(passphrase_read); |
| crypt_free_volume_key(vk); |
| |
| return r; |
| } |
| |
| int crypt_activate_by_keyfile(struct crypt_device *cd, |
| const char *name, |
| int keyslot, |
| const char *keyfile, |
| size_t keyfile_size, |
| uint32_t flags) |
| { |
| return crypt_activate_by_keyfile_offset(cd, name, keyslot, keyfile, |
| keyfile_size, 0, flags); |
| } |
| |
| int crypt_activate_by_volume_key(struct crypt_device *cd, |
| const char *name, |
| const char *volume_key, |
| size_t volume_key_size, |
| uint32_t flags) |
| { |
| crypt_status_info ci; |
| struct volume_key *vk = NULL; |
| int r = -EINVAL; |
| |
| log_dbg("Activating volume %s by volume key.", name ?: "[none]"); |
| |
| if (name) { |
| ci = crypt_status(NULL, name); |
| if (ci == CRYPT_INVALID) |
| return -EINVAL; |
| else if (ci >= CRYPT_ACTIVE) { |
| log_err(cd, _("Device %s already exists.\n"), name); |
| return -EEXIST; |
| } |
| } |
| |
| /* use key directly, no hash */ |
| if (isPLAIN(cd->type)) { |
| if (!name) |
| return -EINVAL; |
| |
| if (!volume_key || !volume_key_size || volume_key_size != cd->u.plain.key_size) { |
| log_err(cd, _("Incorrect volume key specified for plain device.\n")); |
| return -EINVAL; |
| } |
| |
| vk = crypt_alloc_volume_key(volume_key_size, volume_key); |
| if (!vk) |
| return -ENOMEM; |
| |
| r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags); |
| } else if (isLUKS(cd->type)) { |
| /* If key is not provided, try to use internal key */ |
| if (!volume_key) { |
| if (!cd->volume_key) { |
| log_err(cd, _("Volume key does not match the volume.\n")); |
| return -EINVAL; |
| } |
| volume_key_size = cd->volume_key->keylength; |
| volume_key = cd->volume_key->key; |
| } |
| |
| vk = crypt_alloc_volume_key(volume_key_size, volume_key); |
| if (!vk) |
| return -ENOMEM; |
| r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk); |
| |
| if (r == -EPERM) |
| log_err(cd, _("Volume key does not match the volume.\n")); |
| |
| if (!r && name) |
| r = LUKS1_activate(cd, name, vk, flags); |
| } else if (isVERITY(cd->type)) { |
| /* volume_key == root hash */ |
| if (!volume_key || !volume_key_size) { |
| log_err(cd, _("Incorrect root hash specified for verity device.\n")); |
| return -EINVAL; |
| } |
| |
| r = VERITY_activate(cd, name, volume_key, volume_key_size, cd->u.verity.fec_device, |
| &cd->u.verity.hdr, flags|CRYPT_ACTIVATE_READONLY); |
| |
| if (r == -EPERM) { |
| free(cd->u.verity.root_hash); |
| cd->u.verity.root_hash = NULL; |
| } if (!r) { |
| cd->u.verity.root_hash_size = volume_key_size; |
| if (!cd->u.verity.root_hash) |
| cd->u.verity.root_hash = malloc(volume_key_size); |
| if (cd->u.verity.root_hash) |
| memcpy(cd->u.verity.root_hash, volume_key, volume_key_size); |
| } |
| } else if (isTCRYPT(cd->type)) { |
| if (!name) |
| return 0; |
| r = TCRYPT_activate(cd, name, &cd->u.tcrypt.hdr, |
| &cd->u.tcrypt.params, flags); |
| } else |
| log_err(cd, _("Device type is not properly initialised.\n")); |
| |
| crypt_free_volume_key(vk); |
| |
| return r; |
| } |
| |
| int crypt_deactivate(struct crypt_device *cd, const char *name) |
| { |
| struct crypt_device *fake_cd = NULL; |
| int r; |
| |
| if (!name) |
| return -EINVAL; |
| |
| log_dbg("Deactivating volume %s.", name); |
| |
| if (!cd) { |
| r = crypt_init_by_name(&fake_cd, name); |
| if (r < 0) |
| return r; |
| cd = fake_cd; |
| } |
| |
| switch (crypt_status(cd, name)) { |
| case CRYPT_ACTIVE: |
| case CRYPT_BUSY: |
| if (isTCRYPT(cd->type)) |
| r = TCRYPT_deactivate(cd, name); |
| else |
| r = dm_remove_device(cd, name, 0, 0); |
| if (r < 0 && crypt_status(cd, name) == CRYPT_BUSY) { |
| log_err(cd, _("Device %s is still in use.\n"), name); |
| r = -EBUSY; |
| } |
| break; |
| case CRYPT_INACTIVE: |
| log_err(cd, _("Device %s is not active.\n"), name); |
| r = -ENODEV; |
| break; |
| default: |
| log_err(cd, _("Invalid device %s.\n"), name); |
| r = -EINVAL; |
| } |
| |
| crypt_free(fake_cd); |
| |
| return r; |
| } |
| |
| int crypt_volume_key_get(struct crypt_device *cd, |
| int keyslot, |
| char *volume_key, |
| size_t *volume_key_size, |
| const char *passphrase, |
| size_t passphrase_size) |
| { |
| struct volume_key *vk = NULL; |
| unsigned key_len; |
| int r = -EINVAL; |
| |
| if (crypt_fips_mode()) { |
| log_err(cd, _("Function not available in FIPS mode.\n")); |
| return -EACCES; |
| } |
| |
| key_len = crypt_get_volume_key_size(cd); |
| if (key_len > *volume_key_size) { |
| log_err(cd, _("Volume key buffer too small.\n")); |
| return -ENOMEM; |
| } |
| |
| if (isPLAIN(cd->type) && cd->u.plain.hdr.hash) { |
| r = process_key(cd, cd->u.plain.hdr.hash, key_len, |
| passphrase, passphrase_size, &vk); |
| if (r < 0) |
| log_err(cd, _("Cannot retrieve volume key for plain device.\n")); |
| } else if (isLUKS(cd->type)) { |
| r = LUKS_open_key_with_hdr(keyslot, passphrase, |
| passphrase_size, &cd->u.luks1.hdr, &vk, cd); |
| } else if (isTCRYPT(cd->type)) { |
| r = TCRYPT_get_volume_key(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params, &vk); |
| } else |
| log_err(cd, _("This operation is not supported for %s crypt device.\n"), cd->type ?: "(none)"); |
| |
| if (r >= 0) { |
| memcpy(volume_key, vk->key, vk->keylength); |
| *volume_key_size = vk->keylength; |
| } |
| |
| crypt_free_volume_key(vk); |
| return r; |
| } |
| |
| int crypt_volume_key_verify(struct crypt_device *cd, |
| const char *volume_key, |
| size_t volume_key_size) |
| { |
| struct volume_key *vk; |
| int r; |
| |
| r = onlyLUKS(cd); |
| if (r < 0) |
| return r; |
| |
| vk = crypt_alloc_volume_key(volume_key_size, volume_key); |
| if (!vk) |
| return -ENOMEM; |
| |
| r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk); |
| |
| if (r == -EPERM) |
| log_err(cd, _("Volume key does not match the volume.\n")); |
| |
| crypt_free_volume_key(vk); |
| |
| return r; |
| } |
| |
| void crypt_set_iteration_time(struct crypt_device *cd, uint64_t iteration_time_ms) |
| { |
| log_dbg("Iteration time set to %" PRIu64 " milliseconds.", iteration_time_ms); |
| cd->iteration_time = iteration_time_ms; |
| } |
| |
| void crypt_set_rng_type(struct crypt_device *cd, int rng_type) |
| { |
| switch (rng_type) { |
| case CRYPT_RNG_URANDOM: |
| case CRYPT_RNG_RANDOM: |
| log_dbg("RNG set to %d (%s).", rng_type, rng_type ? "random" : "urandom"); |
| cd->rng_type = rng_type; |
| } |
| } |
| |
| int crypt_get_rng_type(struct crypt_device *cd) |
| { |
| if (!cd) |
| return -EINVAL; |
| |
| return cd->rng_type; |
| } |
| |
| int crypt_memory_lock(struct crypt_device *cd, int lock) |
| { |
| return lock ? crypt_memlock_inc(cd) : crypt_memlock_dec(cd); |
| } |
| |
| // reporting |
| crypt_status_info crypt_status(struct crypt_device *cd, const char *name) |
| { |
| int r; |
| |
| if (!cd) |
| dm_backend_init(); |
| |
| r = dm_status_device(cd, name); |
| |
| if (!cd) |
| dm_backend_exit(); |
| |
| if (r < 0 && r != -ENODEV) |
| return CRYPT_INVALID; |
| |
| if (r == 0) |
| return CRYPT_ACTIVE; |
| |
| if (r > 0) |
| return CRYPT_BUSY; |
| |
| return CRYPT_INACTIVE; |
| } |
| |
| static void hexprint(struct crypt_device *cd, const char *d, int n, const char *sep) |
| { |
| int i; |
| for(i = 0; i < n; i++) |
| log_std(cd, "%02hhx%s", (const char)d[i], sep); |
| } |
| |
| static int _luks_dump(struct crypt_device *cd) |
| { |
| int i; |
| |
| log_std(cd, "LUKS header information for %s\n\n", mdata_device_path(cd)); |
| log_std(cd, "Version: \t%" PRIu16 "\n", cd->u.luks1.hdr.version); |
| log_std(cd, "Cipher name: \t%s\n", cd->u.luks1.hdr.cipherName); |
| log_std(cd, "Cipher mode: \t%s\n", cd->u.luks1.hdr.cipherMode); |
| log_std(cd, "Hash spec: \t%s\n", cd->u.luks1.hdr.hashSpec); |
| log_std(cd, "Payload offset:\t%" PRIu32 "\n", cd->u.luks1.hdr.payloadOffset); |
| log_std(cd, "MK bits: \t%" PRIu32 "\n", cd->u.luks1.hdr.keyBytes * 8); |
| log_std(cd, "MK digest: \t"); |
| hexprint(cd, cd->u.luks1.hdr.mkDigest, LUKS_DIGESTSIZE, " "); |
| log_std(cd, "\n"); |
| log_std(cd, "MK salt: \t"); |
| hexprint(cd, cd->u.luks1.hdr.mkDigestSalt, LUKS_SALTSIZE/2, " "); |
| log_std(cd, "\n \t"); |
| hexprint(cd, cd->u.luks1.hdr.mkDigestSalt+LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " "); |
| log_std(cd, "\n"); |
| log_std(cd, "MK iterations: \t%" PRIu32 "\n", cd->u.luks1.hdr.mkDigestIterations); |
| log_std(cd, "UUID: \t%s\n\n", cd->u.luks1.hdr.uuid); |
| for(i = 0; i < LUKS_NUMKEYS; i++) { |
| if(cd->u.luks1.hdr.keyblock[i].active == LUKS_KEY_ENABLED) { |
| log_std(cd, "Key Slot %d: ENABLED\n",i); |
| log_std(cd, "\tIterations: \t%" PRIu32 "\n", |
| cd->u.luks1.hdr.keyblock[i].passwordIterations); |
| log_std(cd, "\tSalt: \t"); |
| hexprint(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt, |
| LUKS_SALTSIZE/2, " "); |
| log_std(cd, "\n\t \t"); |
| hexprint(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt + |
| LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " "); |
| log_std(cd, "\n"); |
| |
| log_std(cd, "\tKey material offset:\t%" PRIu32 "\n", |
| cd->u.luks1.hdr.keyblock[i].keyMaterialOffset); |
| log_std(cd, "\tAF stripes: \t%" PRIu32 "\n", |
| cd->u.luks1.hdr.keyblock[i].stripes); |
| } |
| else |
| log_std(cd, "Key Slot %d: DISABLED\n", i); |
| } |
| return 0; |
| } |
| |
| static int _verity_dump(struct crypt_device *cd) |
| { |
| log_std(cd, "VERITY header information for %s\n", mdata_device_path(cd)); |
| log_std(cd, "UUID: \t%s\n", cd->u.verity.uuid ?: ""); |
| log_std(cd, "Hash type: \t%u\n", cd->u.verity.hdr.hash_type); |
| log_std(cd, "Data blocks: \t%" PRIu64 "\n", cd->u.verity.hdr.data_size); |
| log_std(cd, "Data block size: \t%u\n", cd->u.verity.hdr.data_block_size); |
| log_std(cd, "Hash block size: \t%u\n", cd->u.verity.hdr.hash_block_size); |
| log_std(cd, "Hash algorithm: \t%s\n", cd->u.verity.hdr.hash_name); |
| log_std(cd, "Salt: \t"); |
| if (cd->u.verity.hdr.salt_size) |
| hexprint(cd, cd->u.verity.hdr.salt, cd->u.verity.hdr.salt_size, ""); |
| else |
| log_std(cd, "-"); |
| log_std(cd, "\n"); |
| if (cd->u.verity.root_hash) { |
| log_std(cd, "Root hash: \t"); |
| hexprint(cd, cd->u.verity.root_hash, cd->u.verity.root_hash_size, ""); |
| log_std(cd, "\n"); |
| } |
| return 0; |
| } |
| |
| int crypt_dump(struct crypt_device *cd) |
| { |
| if (isLUKS(cd->type)) |
| return _luks_dump(cd); |
| else if (isVERITY(cd->type)) |
| return _verity_dump(cd); |
| else if (isTCRYPT(cd->type)) |
| return TCRYPT_dump(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); |
| |
| log_err(cd, _("Dump operation is not supported for this device type.\n")); |
| return -EINVAL; |
| } |
| |
| |
| static int _init_by_name_crypt_none(struct crypt_device *cd) |
| { |
| struct crypt_dm_active_device dmd = {}; |
| int r; |
| |
| if (cd->type || !cd->u.none.active_name) |
| return -EINVAL; |
| |
| r = dm_query_device(cd, cd->u.none.active_name, |
| DM_ACTIVE_CRYPT_CIPHER | |
| DM_ACTIVE_CRYPT_KEYSIZE, &dmd); |
| if (r >= 0) |
| r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, |
| cd->u.none.cipher, NULL, |
| cd->u.none.cipher_mode); |
| |
| if (!r) |
| cd->u.none.key_size = dmd.u.crypt.vk->keylength; |
| |
| crypt_free_volume_key(dmd.u.crypt.vk); |
| free(CONST_CAST(void*)dmd.u.crypt.cipher); |
| return r; |
| } |
| |
| const char *crypt_get_cipher(struct crypt_device *cd) |
| { |
| if (isPLAIN(cd->type)) |
| return cd->u.plain.cipher; |
| |
| if (isLUKS(cd->type)) |
| return cd->u.luks1.hdr.cipherName; |
| |
| if (isLOOPAES(cd->type)) |
| return cd->u.loopaes.cipher; |
| |
| if (isTCRYPT(cd->type)) |
| return cd->u.tcrypt.params.cipher; |
| |
| if (!cd->type && !_init_by_name_crypt_none(cd)) |
| return cd->u.none.cipher; |
| |
| return NULL; |
| } |
| |
| const char *crypt_get_cipher_mode(struct crypt_device *cd) |
| { |
| if (isPLAIN(cd->type)) |
| return cd->u.plain.cipher_mode; |
| |
| if (isLUKS(cd->type)) |
| return cd->u.luks1.hdr.cipherMode; |
| |
| if (isLOOPAES(cd->type)) |
| return cd->u.loopaes.cipher_mode; |
| |
| if (isTCRYPT(cd->type)) |
| return cd->u.tcrypt.params.mode; |
| |
| if (!cd->type && !_init_by_name_crypt_none(cd)) |
| return cd->u.none.cipher_mode; |
| |
| return NULL; |
| } |
| |
| const char *crypt_get_uuid(struct crypt_device *cd) |
| { |
| if (isLUKS(cd->type)) |
| return cd->u.luks1.hdr.uuid; |
| |
| if (isVERITY(cd->type)) |
| return cd->u.verity.uuid; |
| |
| return NULL; |
| } |
| |
| const char *crypt_get_device_name(struct crypt_device *cd) |
| { |
| const char *path = device_block_path(cd->device); |
| |
| if (!path) |
| path = device_path(cd->device); |
| |
| return path; |
| } |
| |
| int crypt_get_volume_key_size(struct crypt_device *cd) |
| { |
| if (isPLAIN(cd->type)) |
| return cd->u.plain.key_size; |
| |
| if (isLUKS(cd->type)) |
| return cd->u.luks1.hdr.keyBytes; |
| |
| if (isLOOPAES(cd->type)) |
| return cd->u.loopaes.key_size; |
| |
| if (isVERITY(cd->type)) |
| return cd->u.verity.root_hash_size; |
| |
| if (isTCRYPT(cd->type)) |
| return cd->u.tcrypt.params.key_size; |
| |
| if (!cd->type && !_init_by_name_crypt_none(cd)) |
| return cd->u.none.key_size; |
| |
| return 0; |
| } |
| |
| uint64_t crypt_get_data_offset(struct crypt_device *cd) |
| { |
| if (isPLAIN(cd->type)) |
| return cd->u.plain.hdr.offset; |
| |
| if (isLUKS(cd->type)) |
| return cd->u.luks1.hdr.payloadOffset; |
| |
| if (isLOOPAES(cd->type)) |
| return cd->u.loopaes.hdr.offset; |
| |
| if (isTCRYPT(cd->type)) |
| return TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); |
| |
| return 0; |
| } |
| |
| uint64_t crypt_get_iv_offset(struct crypt_device *cd) |
| { |
| if (isPLAIN(cd->type)) |
| return cd->u.plain.hdr.skip; |
| |
| if (isLUKS(cd->type)) |
| return 0; |
| |
| if (isLOOPAES(cd->type)) |
| return cd->u.loopaes.hdr.skip; |
| |
| if (isTCRYPT(cd->type)) |
| return TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); |
| |
| return 0; |
| } |
| |
| crypt_keyslot_info crypt_keyslot_status(struct crypt_device *cd, int keyslot) |
| { |
| if (onlyLUKS(cd) < 0) |
| return CRYPT_SLOT_INVALID; |
| |
| return LUKS_keyslot_info(&cd->u.luks1.hdr, keyslot); |
| } |
| |
| int crypt_keyslot_max(const char *type) |
| { |
| if (type && isLUKS(type)) |
| return LUKS_NUMKEYS; |
| |
| return -EINVAL; |
| } |
| |
| int crypt_keyslot_area(struct crypt_device *cd, |
| int keyslot, |
| uint64_t *offset, |
| uint64_t *length) |
| { |
| if (!isLUKS(cd->type)) |
| return -EINVAL; |
| |
| return LUKS_keyslot_area(&cd->u.luks1.hdr, keyslot, offset, length); |
| } |
| |
| const char *crypt_get_type(struct crypt_device *cd) |
| { |
| return cd->type; |
| } |
| |
| int crypt_get_verity_info(struct crypt_device *cd, |
| struct crypt_params_verity *vp) |
| { |
| if (!isVERITY(cd->type) || !vp) |
| return -EINVAL; |
| |
| vp->data_device = device_path(cd->device); |
| vp->hash_device = mdata_device_path(cd); |
| vp->fec_device = device_path(cd->u.verity.fec_device); |
| vp->fec_area_offset = cd->u.verity.hdr.fec_area_offset; |
| vp->fec_roots = cd->u.verity.hdr.fec_roots; |
| vp->hash_name = cd->u.verity.hdr.hash_name; |
| vp->salt = cd->u.verity.hdr.salt; |
| vp->salt_size = cd->u.verity.hdr.salt_size; |
| vp->data_block_size = cd->u.verity.hdr.data_block_size; |
| vp->hash_block_size = cd->u.verity.hdr.hash_block_size; |
| vp->data_size = cd->u.verity.hdr.data_size; |
| vp->hash_area_offset = cd->u.verity.hdr.hash_area_offset; |
| vp->hash_type = cd->u.verity.hdr.hash_type; |
| vp->flags = cd->u.verity.hdr.flags & CRYPT_VERITY_NO_HEADER; |
| return 0; |
| } |
| |
| int crypt_get_active_device(struct crypt_device *cd, const char *name, |
| struct crypt_active_device *cad) |
| { |
| struct crypt_dm_active_device dmd; |
| int r; |
| |
| r = dm_query_device(cd, name, 0, &dmd); |
| if (r < 0) |
| return r; |
| |
| if (dmd.target != DM_CRYPT && dmd.target != DM_VERITY) |
| return -ENOTSUP; |
| |
| if (cd && isTCRYPT(cd->type)) { |
| cad->offset = TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); |
| cad->iv_offset = TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params); |
| } else { |
| cad->offset = dmd.u.crypt.offset; |
| cad->iv_offset = dmd.u.crypt.iv_offset; |
| } |
| cad->size = dmd.size; |
| cad->flags = dmd.flags; |
| |
| return 0; |
| } |