blob: de734cdc4c2146df4742b21169372c4cac6d2f5e [file] [log] [blame]
/*
* Reed-Solomon encoder, based on libfec
*
* Copyright (C) 2002, Phil Karn, KA9Q
* libcryptsetup modifications
* Copyright (C) 2017, Red Hat, Inc. All rights reserved.
*
* This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include <stdlib.h>
#include "rs.h"
/* Special reserved value encoding zero in index form. */
#define A0 (rs->nn)
/* Reed-Solomon codec control block */
struct rs {
int mm; /* Bits per symbol */
int nn; /* Symbols per block (= (1<<mm)-1) */
data_t *alpha_to;/* log lookup table */
data_t *index_of;/* Antilog lookup table */
data_t *genpoly; /* Generator polynomial */
int nroots; /* Number of generator roots = number of parity symbols */
int fcr; /* First consecutive root, index form */
int prim; /* Primitive element, index form */
int iprim; /* prim-th root of 1, index form */
int pad; /* Padding bytes in shortened block */
};
static inline int modnn(struct rs *rs, int x)
{
while (x >= rs->nn) {
x -= rs->nn;
x = (x >> rs->mm) + (x & rs->nn);
}
return x;
}
/* Initialize a Reed-Solomon codec
* symsize = symbol size, bits
* gfpoly = Field generator polynomial coefficients
* fcr = first root of RS code generator polynomial, index form
* prim = primitive element to generate polynomial roots
* nroots = RS code generator polynomial degree (number of roots)
* pad = padding bytes at front of shortened block
*/
struct rs *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad)
{
struct rs *rs;
int i, j, sr, root, iprim;
/* Check parameter ranges */
if (symsize < 0 || symsize > 8 * (int)sizeof(data_t))
return NULL;
if (fcr < 0 || fcr >= (1<<symsize))
return NULL;
if (prim <= 0 || prim >= (1<<symsize))
return NULL;
if (nroots < 0 || nroots >= (1<<symsize))
return NULL; /* Can't have more roots than symbol values! */
if (pad < 0 || pad >= ((1<<symsize) - 1 - nroots))
return NULL; /* Too much padding */
rs = calloc(1, sizeof(struct rs));
if (rs == NULL)
return NULL;
rs->mm = symsize;
rs->nn = (1<<symsize) - 1;
rs->pad = pad;
rs->alpha_to = malloc(sizeof(data_t) * (rs->nn + 1));
if (rs->alpha_to == NULL) {
free(rs);
return NULL;
}
rs->index_of = malloc(sizeof(data_t) * (rs->nn + 1));
if (rs->index_of == NULL) {
free(rs->alpha_to);
free(rs);
return NULL;
}
memset(rs->index_of, 0, sizeof(data_t) * (rs->nn + 1));
/* Generate Galois field lookup tables */
rs->index_of[0] = A0; /* log(zero) = -inf */
rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
sr = 1;
for (i = 0; i < rs->nn; i++) {
rs->index_of[sr] = i;
rs->alpha_to[i] = sr;
sr <<= 1;
if(sr & (1<<symsize))
sr ^= gfpoly;
sr &= rs->nn;
}
if (sr != 1) {
/* field generator polynomial is not primitive! */
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
/* Form RS code generator polynomial from its roots */
rs->genpoly = malloc(sizeof(data_t) * (nroots + 1));
if (rs->genpoly == NULL) {
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
rs->fcr = fcr;
rs->prim = prim;
rs->nroots = nroots;
/* Find prim-th root of 1, used in decoding */
for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn)
;
rs->iprim = iprim / prim;
rs->genpoly[0] = 1;
for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
rs->genpoly[i + 1] = 1;
/* Multiply rs->genpoly[] by @**(root + x) */
for (j = i; j > 0; j--){
if (rs->genpoly[j] != 0)
rs->genpoly[j] = rs->genpoly[j - 1] ^ rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[j]] + root)];
else
rs->genpoly[j] = rs->genpoly[j - 1];
}
/* rs->genpoly[0] can never be zero */
rs->genpoly[0] = rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[0]] + root)];
}
/* convert rs->genpoly[] to index form for quicker encoding */
for (i = 0; i <= nroots; i++)
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
return rs;
}
void free_rs_char(struct rs *rs)
{
if (!rs)
return;
free(rs->alpha_to);
free(rs->index_of);
free(rs->genpoly);
free(rs);
}
void encode_rs_char(struct rs *rs, data_t *data, data_t *parity)
{
int i, j;
data_t feedback;
memset(parity, 0, rs->nroots * sizeof(data_t));
for (i = 0; i < rs->nn - rs->nroots - rs->pad; i++) {
feedback = rs->index_of[data[i] ^ parity[0]];
if (feedback != A0) {
/* feedback term is non-zero */
#ifdef UNNORMALIZED
/* This line is unnecessary when GENPOLY[NROOTS] is unity, as it must
* always be for the polynomials constructed by init_rs() */
feedback = modnn(rs, rs->nn - rs->genpoly[rs->nroots] + feedback);
#endif
for (j = 1; j < rs->nroots; j++)
parity[j] ^= rs->alpha_to[modnn(rs, feedback + rs->genpoly[rs->nroots - j])];
}
/* Shift */
memmove(&parity[0], &parity[1], sizeof(data_t) * (rs->nroots - 1));
if (feedback != A0)
parity[rs->nroots - 1] = rs->alpha_to[modnn(rs, feedback + rs->genpoly[0])];
else
parity[rs->nroots - 1] = 0;
}
}