blob: 4cf392dd459310c1efb3795d8d63af0edb5da000 [file] [log] [blame]
/*
* Misc utility routines for accessing PMU corerev specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Copyright (C) 1999-2019, Broadcom.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: hndpmu.c 783841 2018-10-09 06:24:16Z $
*/
/**
* @file
* Note: this file contains PLL/FLL related functions. A chip can contain multiple PLLs/FLLs.
* However, in the context of this file the baseband ('BB') PLL/FLL is referred to.
*
* Throughout this code, the prefixes 'pmu1_' and 'pmu2_' are used.
* They refer to different revisions of the PMU (which is at revision 18 @ Apr 25, 2012)
* pmu1_ marks the transition from PLL to ADFLL (Digital Frequency Locked Loop). It supports
* fractional frequency generation. pmu2_ does not support fractional frequency generation.
*/
#include <bcm_cfg.h>
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <bcmdevs.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <hndchipc.h>
#include <hndpmu.h>
#include <hndlhl.h>
#if defined(BCMULP)
#include <ulp.h>
#endif /* defined(BCMULP) */
#include <sbgci.h>
#ifdef EVENT_LOG_COMPILE
#include <event_log.h>
#endif // endif
#include <sbgci.h>
#include <lpflags.h>
#define PMU_ERROR(args)
#define PMU_MSG(args)
/* To check in verbose debugging messages not intended
* to be on except on private builds.
*/
#define PMU_NONE(args)
#define flags_shift 14
/** contains resource bit positions for a specific chip */
struct rsc_per_chip_s {
uint8 ht_avail;
uint8 macphy_clkavail;
uint8 ht_start;
uint8 otp_pu;
uint8 macphy_aux_clkavail;
};
typedef struct rsc_per_chip_s rsc_per_chip_t;
#if defined(BCMPMU_STATS) && !defined(BCMPMU_STATS_DISABLED)
bool _pmustatsenab = TRUE;
#else
bool _pmustatsenab = FALSE;
#endif /* BCMPMU_STATS */
/**
* Balance between stable SDIO operation and power consumption is achieved using this function.
* Note that each drive strength table is for a specific VDDIO of the SDIO pads, ideally this
* function should read the VDDIO itself to select the correct table. For now it has been solved
* with the 'BCM_SDIO_VDDIO' preprocessor constant.
*
* 'drivestrength': desired pad drive strength in mA. Drive strength of 0 requests tri-state (if
* hardware supports this), if no hw support drive strength is not programmed.
*/
void
si_sdiod_drive_strength_init(si_t *sih, osl_t *osh, uint32 drivestrength)
{
/*
* Note:
* This function used to set the SDIO drive strength via PMU_CHIPCTL1 for the
* 43143, 4330, 4334, 4336, 43362 chips. These chips are now no longer supported, so
* the code has been deleted.
* Newer chips have the SDIO drive strength setting via a GCI Chip Control register,
* but the bit definitions are chip-specific. We are keeping this function available
* (accessed via DHD 'sdiod_drive' IOVar) in case these newer chips need to provide access.
*/
UNUSED_PARAMETER(sih);
UNUSED_PARAMETER(osh);
UNUSED_PARAMETER(drivestrength);
}
void
si_switch_pmu_dependency(si_t *sih, uint mode)
{
#ifdef DUAL_PMU_SEQUENCE
osl_t *osh = si_osh(sih);
uint32 current_res_state;
uint32 min_mask, max_mask;
const pmu_res_depend_t *pmu_res_depend_table = NULL;
uint pmu_res_depend_table_sz = 0;
uint origidx;
pmuregs_t *pmu;
chipcregs_t *cc;
BCM_REFERENCE(cc);
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
cc = si_setcore(sih, CC_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
cc = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
current_res_state = R_REG(osh, &pmu->res_state);
min_mask = R_REG(osh, &pmu->min_res_mask);
max_mask = R_REG(osh, &pmu->max_res_mask);
W_REG(osh, &pmu->min_res_mask, (min_mask | current_res_state));
switch (mode) {
case PMU_4364_1x1_MODE:
{
if (CHIPID(sih->chip) == BCM4364_CHIP_ID) {
pmu_res_depend_table = bcm4364a0_res_depend_1x1;
pmu_res_depend_table_sz =
ARRAYSIZE(bcm4364a0_res_depend_1x1);
max_mask = PMU_4364_MAX_MASK_1x1;
W_REG(osh, &pmu->res_table_sel, RES4364_SR_SAVE_RESTORE);
W_REG(osh, &pmu->res_updn_timer, PMU_4364_SAVE_RESTORE_UPDNTIME_1x1);
#if defined(SAVERESTORE)
if (SR_ENAB()) {
/* Disable 3x3 SR engine */
W_REG(osh, &cc->sr1_control0,
CC_SR0_4364_SR_ENG_CLK_EN |
CC_SR0_4364_SR_RSRC_TRIGGER |
CC_SR0_4364_SR_WD_MEM_MIN_DIV |
CC_SR0_4364_SR_INVERT_CLK |
CC_SR0_4364_SR_ENABLE_HT |
CC_SR0_4364_SR_ALLOW_PIC |
CC_SR0_4364_SR_PMU_MEM_DISABLE);
}
#endif /* SAVERESTORE */
}
break;
}
case PMU_4364_3x3_MODE:
{
if (CHIPID(sih->chip) == BCM4364_CHIP_ID) {
W_REG(osh, &pmu->res_table_sel, RES4364_SR_SAVE_RESTORE);
W_REG(osh, &pmu->res_updn_timer,
PMU_4364_SAVE_RESTORE_UPDNTIME_3x3);
/* Change the dependency table only if required */
if ((max_mask != PMU_4364_MAX_MASK_3x3) ||
(max_mask != PMU_4364_MAX_MASK_RSDB)) {
pmu_res_depend_table = bcm4364a0_res_depend_rsdb;
pmu_res_depend_table_sz =
ARRAYSIZE(bcm4364a0_res_depend_rsdb);
max_mask = PMU_4364_MAX_MASK_3x3;
}
#if defined(SAVERESTORE)
if (SR_ENAB()) {
/* Enable 3x3 SR engine */
W_REG(osh, &cc->sr1_control0,
CC_SR0_4364_SR_ENG_CLK_EN |
CC_SR0_4364_SR_RSRC_TRIGGER |
CC_SR0_4364_SR_WD_MEM_MIN_DIV |
CC_SR0_4364_SR_INVERT_CLK |
CC_SR0_4364_SR_ENABLE_HT |
CC_SR0_4364_SR_ALLOW_PIC |
CC_SR0_4364_SR_PMU_MEM_DISABLE |
CC_SR0_4364_SR_ENG_EN_MASK);
}
#endif /* SAVERESTORE */
}
break;
}
case PMU_4364_RSDB_MODE:
default:
{
if (CHIPID(sih->chip) == BCM4364_CHIP_ID) {
W_REG(osh, &pmu->res_table_sel, RES4364_SR_SAVE_RESTORE);
W_REG(osh, &pmu->res_updn_timer,
PMU_4364_SAVE_RESTORE_UPDNTIME_3x3);
/* Change the dependency table only if required */
if ((max_mask != PMU_4364_MAX_MASK_3x3) ||
(max_mask != PMU_4364_MAX_MASK_RSDB)) {
pmu_res_depend_table =
bcm4364a0_res_depend_rsdb;
pmu_res_depend_table_sz =
ARRAYSIZE(bcm4364a0_res_depend_rsdb);
max_mask = PMU_4364_MAX_MASK_RSDB;
}
#if defined(SAVERESTORE)
if (SR_ENAB()) {
/* Enable 3x3 SR engine */
W_REG(osh, &cc->sr1_control0,
CC_SR0_4364_SR_ENG_CLK_EN |
CC_SR0_4364_SR_RSRC_TRIGGER |
CC_SR0_4364_SR_WD_MEM_MIN_DIV |
CC_SR0_4364_SR_INVERT_CLK |
CC_SR0_4364_SR_ENABLE_HT |
CC_SR0_4364_SR_ALLOW_PIC |
CC_SR0_4364_SR_PMU_MEM_DISABLE |
CC_SR0_4364_SR_ENG_EN_MASK);
}
#endif /* SAVERESTORE */
}
break;
}
}
si_pmu_resdeptbl_upd(sih, osh, pmu, pmu_res_depend_table, pmu_res_depend_table_sz);
W_REG(osh, &pmu->max_res_mask, max_mask);
W_REG(osh, &pmu->min_res_mask, min_mask);
si_pmu_wait_for_steady_state(sih, osh, pmu);
/* Add some delay; allow resources to come up and settle. */
OSL_DELAY(200);
si_setcoreidx(sih, origidx);
#endif /* DUAL_PMU_SEQUENCE */
}
#if defined(BCMULP)
int
si_pmu_ulp_register(si_t *sih)
{
return ulp_p1_module_register(ULP_MODULE_ID_PMU, &ulp_pmu_ctx, (void *)sih);
}
static uint
si_pmu_ulp_get_retention_size_cb(void *handle, ulp_ext_info_t *einfo)
{
ULP_DBG(("%s: sz: %d\n", __FUNCTION__, sizeof(si_pmu_ulp_cr_dat_t)));
return sizeof(si_pmu_ulp_cr_dat_t);
}
static int
si_pmu_ulp_enter_cb(void *handle, ulp_ext_info_t *einfo, uint8 *cache_data)
{
si_pmu_ulp_cr_dat_t crinfo = {0};
crinfo.ilpcycles_per_sec = ilpcycles_per_sec;
ULP_DBG(("%s: ilpcycles_per_sec: %x\n", __FUNCTION__, ilpcycles_per_sec));
memcpy(cache_data, (void*)&crinfo, sizeof(crinfo));
return BCME_OK;
}
static int
si_pmu_ulp_exit_cb(void *handle, uint8 *cache_data,
uint8 *p2_cache_data)
{
si_pmu_ulp_cr_dat_t *crinfo = (si_pmu_ulp_cr_dat_t *)cache_data;
ilpcycles_per_sec = crinfo->ilpcycles_per_sec;
ULP_DBG(("%s: ilpcycles_per_sec: %x, cache_data: %p\n", __FUNCTION__,
ilpcycles_per_sec, cache_data));
return BCME_OK;
}
void
si_pmu_ulp_chipconfig(si_t *sih, osl_t *osh)
{
uint32 reg_val;
BCM_REFERENCE(reg_val);
if (CHIPID(sih->chip) == BCM43012_CHIP_ID) {
/* DS1 reset and clk enable init value config */
si_pmu_chipcontrol(sih, PMU_CHIPCTL14, ~0x0,
(PMUCCTL14_43012_ARMCM3_RESET_INITVAL |
PMUCCTL14_43012_DOT11MAC_CLKEN_INITVAL |
PMUCCTL14_43012_SDIOD_RESET_INIVAL |
PMUCCTL14_43012_SDIO_CLK_DMN_RESET_INITVAL |
PMUCCTL14_43012_SOCRAM_CLKEN_INITVAL |
PMUCCTL14_43012_M2MDMA_RESET_INITVAL |
PMUCCTL14_43012_DOT11MAC_PHY_CLK_EN_INITVAL |
PMUCCTL14_43012_DOT11MAC_PHY_CNTL_EN_INITVAL));
/* Clear SFlash clock request and enable High Quality clock */
CHIPC_REG(sih, clk_ctl_st, CCS_SFLASH_CLKREQ | CCS_HQCLKREQ, CCS_HQCLKREQ);
reg_val = PMU_REG(sih, min_res_mask, ~0x0, ULP_MIN_RES_MASK);
ULP_DBG(("si_pmu_ulp_chipconfig: min_res_mask: 0x%08x\n", reg_val));
/* Force power switch off */
si_pmu_chipcontrol(sih, PMU_CHIPCTL2,
(PMUCCTL02_43012_SUBCORE_PWRSW_FORCE_ON |
PMUCCTL02_43012_PHY_PWRSW_FORCE_ON), 0);
}
}
void
si_pmu_ulp_ilp_config(si_t *sih, osl_t *osh, uint32 ilp_period)
{
pmuregs_t *pmu;
pmu = si_setcoreidx(sih, si_findcoreidx(sih, PMU_CORE_ID, 0));
W_REG(osh, &pmu->ILPPeriod, ilp_period);
si_lhl_ilp_config(sih, osh, ilp_period);
}
/** Initialize DS1 PMU hardware resources */
void
si_pmu_ds1_res_init(si_t *sih, osl_t *osh)
{
pmuregs_t *pmu;
uint origidx;
const pmu_res_updown_t *pmu_res_updown_table = NULL;
uint pmu_res_updown_table_sz = 0;
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
switch (CHIPID(sih->chip)) {
case BCM43012_CHIP_ID:
pmu_res_updown_table = bcm43012a0_res_updown_ds1;
pmu_res_updown_table_sz = ARRAYSIZE(bcm43012a0_res_updown_ds1);
break;
default:
break;
}
/* Program up/down timers */
while (pmu_res_updown_table_sz--) {
ASSERT(pmu_res_updown_table != NULL);
PMU_MSG(("DS1: Changing rsrc %d res_updn_timer to 0x%x\n",
pmu_res_updown_table[pmu_res_updown_table_sz].resnum,
pmu_res_updown_table[pmu_res_updown_table_sz].updown));
W_REG(osh, &pmu->res_table_sel,
pmu_res_updown_table[pmu_res_updown_table_sz].resnum);
W_REG(osh, &pmu->res_updn_timer,
pmu_res_updown_table[pmu_res_updown_table_sz].updown);
}
/* Return to original core */
si_setcoreidx(sih, origidx);
}
#endif /* defined(BCMULP) */
uint32
si_pmu_wake_bit_offset(si_t *sih)
{
uint32 wakebit;
switch (CHIPID(sih->chip)) {
case BCM4347_CHIP_GRPID:
wakebit = CC2_4347_GCI2WAKE_MASK;
break;
default:
wakebit = 0;
ASSERT(0);
break;
}
return wakebit;
}
void si_pmu_set_min_res_mask(si_t *sih, osl_t *osh, uint min_res_mask)
{
pmuregs_t *pmu;
uint origidx;
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
}
else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
W_REG(osh, &pmu->min_res_mask, min_res_mask);
OSL_DELAY(100);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
bool
si_pmu_cap_fast_lpo(si_t *sih)
{
return (PMU_REG(sih, core_cap_ext, 0, 0) & PCAP_EXT_USE_MUXED_ILP_CLK_MASK) ? TRUE : FALSE;
}
int
si_pmu_fast_lpo_disable(si_t *sih)
{
if (!si_pmu_cap_fast_lpo(sih)) {
PMU_ERROR(("%s: No Fast LPO capability\n", __FUNCTION__));
return BCME_ERROR;
}
PMU_REG(sih, pmucontrol_ext,
PCTL_EXT_FASTLPO_ENAB |
PCTL_EXT_FASTLPO_SWENAB |
PCTL_EXT_FASTLPO_PCIE_SWENAB,
0);
OSL_DELAY(1000);
return BCME_OK;
}
#ifdef BCMPMU_STATS
/*
* 8 pmu statistics timer default map
*
* for CORE_RDY_AUX measure, set as below for timer 6 and 7 instead of CORE_RDY_MAIN.
* //core-n active duration : pmu_rsrc_state(CORE_RDY_AUX)
* { SRC_CORE_RDY_AUX, FALSE, TRUE, LEVEL_HIGH},
* //core-n active duration : pmu_rsrc_state(CORE_RDY_AUX)
* { SRC_CORE_RDY_AUX, FALSE, TRUE, EDGE_RISE}
*/
static pmu_stats_timer_t pmustatstimer[] = {
{ SRC_LINK_IN_L12, FALSE, TRUE, PMU_STATS_LEVEL_HIGH}, //link_in_l12
{ SRC_LINK_IN_L23, FALSE, TRUE, PMU_STATS_LEVEL_HIGH}, //link_in_l23
{ SRC_PM_ST_IN_D0, FALSE, TRUE, PMU_STATS_LEVEL_HIGH}, //pm_st_in_d0
{ SRC_PM_ST_IN_D3, FALSE, TRUE, PMU_STATS_LEVEL_HIGH}, //pm_st_in_d3
//deep-sleep duration : pmu_rsrc_state(XTAL_PU)
{ SRC_XTAL_PU, FALSE, TRUE, PMU_STATS_LEVEL_LOW},
//deep-sleep entry count : pmu_rsrc_state(XTAL_PU)
{ SRC_XTAL_PU, FALSE, TRUE, PMU_STATS_EDGE_FALL},
//core-n active duration : pmu_rsrc_state(CORE_RDY_MAIN)
{ SRC_CORE_RDY_MAIN, FALSE, TRUE, PMU_STATS_LEVEL_HIGH},
//core-n active duration : pmu_rsrc_state(CORE_RDY_MAIN)
{ SRC_CORE_RDY_MAIN, FALSE, TRUE, PMU_STATS_EDGE_RISE}
};
static void
si_pmustatstimer_update(osl_t *osh, pmuregs_t *pmu, uint8 timerid)
{
uint32 stats_timer_ctrl;
W_REG(osh, &pmu->pmu_statstimer_addr, timerid);
stats_timer_ctrl =
((pmustatstimer[timerid].src_num << PMU_ST_SRC_SHIFT) &
PMU_ST_SRC_MASK) |
((pmustatstimer[timerid].cnt_mode << PMU_ST_CNT_MODE_SHIFT) &
PMU_ST_CNT_MODE_MASK) |
((pmustatstimer[timerid].enable << PMU_ST_EN_SHIFT) & PMU_ST_EN_MASK) |
((pmustatstimer[timerid].int_enable << PMU_ST_INT_EN_SHIFT) & PMU_ST_INT_EN_MASK);
W_REG(osh, &pmu->pmu_statstimer_ctrl, stats_timer_ctrl);
W_REG(osh, &pmu->pmu_statstimer_N, 0);
}
void
si_pmustatstimer_int_enable(si_t *sih)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
OR_REG(osh, &pmu->pmuintmask0, PMU_INT_STAT_TIMER_INT_MASK);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_int_disable(si_t *sih)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
AND_REG(osh, &pmu->pmuintmask0, ~PMU_INT_STAT_TIMER_INT_MASK);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_init(si_t *sih)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
uint32 core_cap_ext;
uint8 max_stats_timer_num;
int8 i;
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
core_cap_ext = R_REG(osh, &pmu->core_cap_ext);
max_stats_timer_num = ((core_cap_ext & PCAP_EXT_ST_NUM_MASK) >> PCAP_EXT_ST_NUM_SHIFT) + 1;
for (i = 0; i < max_stats_timer_num; i++) {
si_pmustatstimer_update(osh, pmu, i);
}
OR_REG(osh, &pmu->pmuintmask0, PMU_INT_STAT_TIMER_INT_MASK);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_dump(si_t *sih)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
uint32 core_cap_ext, pmucapabilities, AlpPeriod, ILPPeriod, pmuintmask0, pmuintstatus;
uint8 max_stats_timer_num, max_stats_timer_src_num;
uint32 stat_timer_ctrl, stat_timer_N;
uint8 i;
uint32 current_time_ms = OSL_SYSUPTIME();
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
pmucapabilities = R_REG(osh, &pmu->pmucapabilities);
core_cap_ext = R_REG(osh, &pmu->core_cap_ext);
AlpPeriod = R_REG(osh, &pmu->slowclkperiod);
ILPPeriod = R_REG(osh, &pmu->ILPPeriod);
max_stats_timer_num = ((core_cap_ext & PCAP_EXT_ST_NUM_MASK) >>
PCAP_EXT_ST_NUM_SHIFT) + 1;
max_stats_timer_src_num = ((core_cap_ext & PCAP_EXT_ST_SRC_NUM_MASK) >>
PCAP_EXT_ST_SRC_NUM_SHIFT) + 1;
pmuintstatus = R_REG(osh, &pmu->pmuintstatus);
pmuintmask0 = R_REG(osh, &pmu->pmuintmask0);
PMU_ERROR(("%s : TIME %d\n", __FUNCTION__, current_time_ms));
PMU_ERROR(("\tMAX Timer Num %d, MAX Source Num %d\n",
max_stats_timer_num, max_stats_timer_src_num));
PMU_ERROR(("\tpmucapabilities 0x%8x, core_cap_ext 0x%8x, AlpPeriod 0x%8x, ILPPeriod 0x%8x, "
"pmuintmask0 0x%8x, pmuintstatus 0x%8x, pmurev %d\n",
pmucapabilities, core_cap_ext, AlpPeriod, ILPPeriod,
pmuintmask0, pmuintstatus, PMUREV(sih->pmurev)));
for (i = 0; i < max_stats_timer_num; i++) {
W_REG(osh, &pmu->pmu_statstimer_addr, i);
stat_timer_ctrl = R_REG(osh, &pmu->pmu_statstimer_ctrl);
stat_timer_N = R_REG(osh, &pmu->pmu_statstimer_N);
PMU_ERROR(("\t Timer %d : control 0x%8x, %d\n",
i, stat_timer_ctrl, stat_timer_N));
}
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_start(si_t *sih, uint8 timerid)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
pmustatstimer[timerid].enable = TRUE;
W_REG(osh, &pmu->pmu_statstimer_addr, timerid);
OR_REG(osh, &pmu->pmu_statstimer_ctrl, PMU_ST_ENAB << PMU_ST_EN_SHIFT);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_stop(si_t *sih, uint8 timerid)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
pmustatstimer[timerid].enable = FALSE;
W_REG(osh, &pmu->pmu_statstimer_addr, timerid);
AND_REG(osh, &pmu->pmu_statstimer_ctrl, ~(PMU_ST_ENAB << PMU_ST_EN_SHIFT));
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_clear(si_t *sih, uint8 timerid)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
W_REG(osh, &pmu->pmu_statstimer_addr, timerid);
W_REG(osh, &pmu->pmu_statstimer_N, 0);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_clear_overflow(si_t *sih)
{
uint8 i;
uint32 core_cap_ext;
uint8 max_stats_timer_num;
uint32 timerN;
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
core_cap_ext = R_REG(osh, &pmu->core_cap_ext);
max_stats_timer_num = ((core_cap_ext & PCAP_EXT_ST_NUM_MASK) >> PCAP_EXT_ST_NUM_SHIFT) + 1;
for (i = 0; i < max_stats_timer_num; i++) {
W_REG(osh, &pmu->pmu_statstimer_addr, i);
timerN = R_REG(osh, &pmu->pmu_statstimer_N);
if (timerN == 0xFFFFFFFF) {
PMU_ERROR(("pmustatstimer overflow clear - timerid : %d\n", i));
si_pmustatstimer_clear(sih, i);
}
}
/* Return to original core */
si_setcoreidx(sih, origidx);
}
uint32
si_pmustatstimer_read(si_t *sih, uint8 timerid)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
uint32 stats_timer_N;
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
W_REG(osh, &pmu->pmu_statstimer_addr, timerid);
stats_timer_N = R_REG(osh, &pmu->pmu_statstimer_N);
/* Return to original core */
si_setcoreidx(sih, origidx);
return stats_timer_N;
}
void
si_pmustatstimer_cfg_src_num(si_t *sih, uint8 src_num, uint8 timerid)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
pmustatstimer[timerid].src_num = src_num;
si_pmustatstimer_update(osh, pmu, timerid);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void
si_pmustatstimer_cfg_cnt_mode(si_t *sih, uint8 cnt_mode, uint8 timerid)
{
pmuregs_t *pmu;
uint origidx;
osl_t *osh = si_osh(sih);
/* Remember original core before switch to chipc/pmu */
origidx = si_coreidx(sih);
if (AOB_ENAB(sih)) {
pmu = si_setcore(sih, PMU_CORE_ID, 0);
} else {
pmu = si_setcoreidx(sih, SI_CC_IDX);
}
ASSERT(pmu != NULL);
pmustatstimer[timerid].cnt_mode = cnt_mode;
si_pmustatstimer_update(osh, pmu, timerid);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
#endif /* BCMPMU_STATS */