blob: 1605801587b75b7ee226dd4513036b746eebf08e [file] [log] [blame]
/*
* Driver O/S-independent utility routines
*
* Copyright (C) 2020, Broadcom.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
*
* <<Broadcom-WL-IPTag/Dual:>>
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <stdarg.h>
#ifdef BCMDRIVER
#include <osl.h>
#include <bcmutils.h>
#if !defined(BCMDONGLEHOST) || defined(BCMNVRAM)
#include <bcmnvram.h>
#endif
#else /* !BCMDRIVER */
#include <stdio.h>
#include <string.h>
#include <bcmutils.h>
#if defined(BCMEXTSUP)
#include <bcm_osl.h>
#endif
#ifndef ASSERT
#define ASSERT(exp)
#endif
#endif /* !BCMDRIVER */
#ifdef WL_UNITTEST
/*
* Definitions and includes needed during software unit test compilation and execution.
*/
#include <stdio.h>
#include <stdlib.h>
#ifdef ASSERT
#undef ASSERT
#endif /* ASSERT */
#define ASSERT(exp)
#endif /* WL_UNITTEST */
#if defined(_WIN32) || defined(NDIS)
/* Debatable */
#include <bcmstdlib.h>
#endif
#include <bcmstdlib_s.h>
#include <bcmendian.h>
#include <bcmdevs.h>
#include <ethernet.h>
#include <vlan.h>
#include <bcmip.h>
#include <802.1d.h>
#include <802.11.h>
#include <bcmip.h>
#include <bcmipv6.h>
#include <bcmtcp.h>
#ifdef BCMPERFSTATS
#include <bcmperf.h>
#endif
#define NUMBER_OF_BITS_BYTE 8u
#ifdef CUSTOM_DSCP_TO_PRIO_MAPPING
#define CUST_IPV4_TOS_PREC_MASK 0x3F
#define DCSP_MAX_VALUE 64
extern uint dhd_dscpmap_enable;
/* 0:BE,1:BK,2:RESV(BK):,3:EE,:4:CL,5:VI,6:VO,7:NC */
int dscp2priomap[DCSP_MAX_VALUE]=
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, /* BK->BE */
2, 0, 0, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0,
4, 0, 0, 0, 0, 0, 0, 0,
5, 0, 0, 0, 0, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0
};
#endif /* CUSTOM_DSCP_TO_PRIO_MAPPING */
#ifdef PRIVACY_MASK
struct ether_addr privacy_addrmask;
/* RAM accessor function to avoid 'privacy_addrmask' in ROM/RAM shared data section. */
static struct ether_addr *
BCMRAMFN(privacy_addrmask_get)(void)
{
return &privacy_addrmask;
}
#endif /* PRIVACY_MASK */
#ifdef BCMDRIVER
#ifndef BCM_ARM_BACKTRACE
/* function pointers for firmware stack backtrace utility */
void (*const print_btrace_int_fn)(int depth, uint32 pc, uint32 lr, uint32 sp) = NULL;
void (*const print_btrace_fn)(int depth) = NULL;
#else
void print_backtrace(int depth);
void (*const print_btrace_fn)(int depth) = print_backtrace;
void print_backtrace_int(int depth, uint32 pc, uint32 lr, uint32 sp);
void (*const print_btrace_int_fn)(int depth, uint32 pc, uint32 lr, uint32 sp) = print_backtrace_int;
#endif
#if !defined(BCMDONGLEHOST)
/* Forward declarations */
char * getvar_internal(char *vars, const char *name);
int getintvar_internal(char *vars, const char *name);
int getintvararray_internal(char *vars, const char *name, int index);
int getintvararraysize_internal(char *vars, const char *name);
#ifndef WL_FWSIGN
/*
* Search the name=value vars for a specific one and return its value.
* Returns NULL if not found.
*/
char *
getvar(char *vars, const char *name)
{
NVRAM_RECLAIM_CHECK(name);
return getvar_internal(vars, name);
}
char *
getvar_internal(char *vars, const char *name)
{
char *s;
uint len;
if (!name)
return NULL;
len = strlen(name);
if (len == 0u) {
return NULL;
}
/* first look in vars[] */
for (s = vars; s && *s;) {
if ((bcmp(s, name, len) == 0) && (s[len] == '=')) {
return (&s[len+1u]);
}
while (*s++)
;
}
/* then query nvram */
return (nvram_get(name));
}
/*
* Search the vars for a specific one and return its value as
* an integer. Returns 0 if not found.
*/
int
getintvar(char *vars, const char *name)
{
NVRAM_RECLAIM_CHECK(name);
return getintvar_internal(vars, name);
}
int
getintvar_internal(char *vars, const char *name)
{
char *val;
if ((val = getvar_internal(vars, name)) == NULL)
return (0);
return (bcm_strtoul(val, NULL, 0));
}
int
getintvararray(char *vars, const char *name, int index)
{
NVRAM_RECLAIM_CHECK(name);
return getintvararray_internal(vars, name, index);
}
int
getintvararray_internal(char *vars, const char *name, int index)
{
char *buf, *endp;
int i = 0;
int val = 0;
if ((buf = getvar_internal(vars, name)) == NULL) {
return (0);
}
/* table values are always separated by "," or " " */
while (*buf != '\0') {
val = bcm_strtoul(buf, &endp, 0);
if (i == index) {
return val;
}
buf = endp;
/* delimiter is ',' */
if (*buf == ',')
buf++;
i++;
}
return (0);
}
int
getintvararraysize(char *vars, const char *name)
{
NVRAM_RECLAIM_CHECK(name);
return getintvararraysize_internal(vars, name);
}
int
getintvararraysize_internal(char *vars, const char *name)
{
char *buf, *endp;
int count = 0;
int val = 0;
if ((buf = getvar_internal(vars, name)) == NULL) {
return (0);
}
/* table values are always separated by "," or " " */
while (*buf != '\0') {
val = bcm_strtoul(buf, &endp, 0);
buf = endp;
/* delimiter is ',' */
if (*buf == ',')
buf++;
count++;
}
BCM_REFERENCE(val);
return count;
}
/* Read an array of values from a possibly slice-specific nvram string
* Store the values in either the uint8 dest_array1 or in the int16 dest_array2.
* Pass in NULL for the dest_array[12] that is not to be used.
*/
static int
BCMATTACHFN(getintvararray_slicespecific)(osl_t *osh, char *vars, char *vars_table_accessor,
const char* name, uint8* dest_array1, int16* dest_array2, uint dest_size)
{
uint i;
uint array_size = 0;
int err = BCME_OK;
uint prefixed_name_sz;
char *prefixed_name = NULL;
const char *new_name;
int val;
prefixed_name_sz = get_slicespecific_var_name(osh, vars_table_accessor,
name, &prefixed_name);
if (prefixed_name_sz == 0) {
return BCME_NOMEM;
}
new_name = prefixed_name;
(void) new_name;
if (getvar(vars, new_name) == NULL) {
/* Try again without the slice prefix in the name */
new_name = name;
if (getvar(vars, name) == NULL) {
err = BCME_NOTFOUND;
goto done;
}
}
array_size = (uint)getintvararraysize(vars, new_name);
if (array_size > dest_size) {
err = BCME_BUFTOOSHORT;
ASSERT(array_size <= dest_size);
goto done;
}
/* limit the initialization to the size of the nvram array */
array_size = MIN(array_size, dest_size);
/* load the destination array with the nvram array values */
for (i = 0; i < array_size; i++) {
val = getintvararray(vars, new_name, i);
if (dest_array1) {
dest_array1[i] = (uint8)val;
} else if (dest_array2) {
dest_array2[i] = (int16)val;
}
}
done:
MFREE(osh, prefixed_name, prefixed_name_sz);
return (err < 0) ? err : (int)array_size;
}
int
BCMATTACHFN(get_uint8_vararray_slicespecific)(osl_t *osh, char *vars, char *vars_table_accessor,
const char* name, uint8* dest_array, uint dest_size)
{
int ret;
ret = getintvararray_slicespecific(osh, vars, vars_table_accessor,
name, dest_array, NULL, dest_size);
return ret;
}
int
BCMATTACHFN(get_int16_vararray_slicespecific)(osl_t *osh, char *vars, char *vars_table_accessor,
const char* name, int16* dest_array, uint dest_size)
{
return getintvararray_slicespecific(osh, vars, vars_table_accessor,
name, NULL, dest_array, dest_size);
}
/* Prepend a slice-specific accessor to an nvram string name.
* Sets name_out to the allocated string. Returns the allocated size of the name string.
* Caller is responsible for freeing the resulting name string with MFREE.
*/
uint
BCMATTACHFN(get_slicespecific_var_name)(osl_t *osh, char *vars_table_accessor, const char *name,
char **name_out)
{
char *name_with_prefix = NULL;
uint sz;
uint max_copy_size;
sz = strlen(name) + strlen(vars_table_accessor) + 1;
name_with_prefix = (char *) MALLOC_NOPERSIST(osh, sz);
if (name_with_prefix == NULL) {
sz = 0;
goto end;
}
name_with_prefix[0] = 0;
name_with_prefix[sz - 1] = 0;
max_copy_size = sz - 1;
/* if accessor contains a "slice/N/" string */
if (vars_table_accessor[0] != 0) {
/* prepend accessor to the vars-name */
bcmstrncat(name_with_prefix, vars_table_accessor, max_copy_size);
max_copy_size -= strlen(name_with_prefix);
}
/* Append vars-name */
bcmstrncat(name_with_prefix, name, max_copy_size);
end:
*name_out = name_with_prefix;
return sz;
}
#endif /* WL_FWSIGN */
/* Search for token in comma separated token-string */
static int
findmatch(const char *string, const char *name)
{
uint len;
char *c;
len = strlen(name);
while ((c = strchr(string, ',')) != NULL) {
if (len == (uint)(c - string) && !strncmp(string, name, len))
return 1;
string = c + 1;
}
return (!strcmp(string, name));
}
/* Return gpio pin number assigned to the named pin
*
* Variable should be in format:
*
* gpio<N>=pin_name,pin_name
*
* This format allows multiple features to share the gpio with mutual
* understanding.
*
* 'def_pin' is returned if a specific gpio is not defined for the requested functionality
* and if def_pin is not used by others.
*/
uint
getgpiopin(char *vars, char *pin_name, uint def_pin)
{
char name[] = "gpioXXXX";
char *val;
uint pin;
/* Go thru all possibilities till a match in pin name */
for (pin = 0; pin < GPIO_NUMPINS; pin ++) {
snprintf(name, sizeof(name), "gpio%d", pin);
val = getvar(vars, name);
if (val && findmatch(val, pin_name))
return pin;
}
if (def_pin != GPIO_PIN_NOTDEFINED) {
/* make sure the default pin is not used by someone else */
snprintf(name, sizeof(name), "gpio%d", def_pin);
if (getvar(vars, name)) {
def_pin = GPIO_PIN_NOTDEFINED;
}
}
return def_pin;
}
#endif /* !BCMDONGLEHOST */
/* return total length of buffer chain. In case of CSO, submsdu may have extra tsohdr and if
* pktotlen should not include submsdu tso header, use the API pkttotlen_no_sfhtoe_hdr.
*/
uint
BCMFASTPATH(pkttotlen)(osl_t *osh, void *p)
{
uint total = 0;
for (; p; p = PKTNEXT(osh, p)) {
total += PKTLEN(osh, p);
if (BCMLFRAG_ENAB() && PKTISFRAG(osh, p)) {
total += PKTFRAGTOTLEN(osh, p);
}
}
return (total);
}
#ifdef WLCSO
/* return total length of buffer chain, but exclude tso hdr of submsdu if its added */
uint
BCMFASTPATH(pkttotlen_no_sfhtoe_hdr)(osl_t *osh, void *p, uint toe_hdr_len)
{
uint total = 0;
for (; p; p = PKTNEXT(osh, p)) {
total += PKTLEN(osh, p);
/* exclude toe_hdr_len if its part of PKTLEN() */
if (PKTISSUBMSDUTOEHDR(osh, p)) {
total -= toe_hdr_len;
}
if (BCMLFRAG_ENAB() && PKTISFRAG(osh, p)) {
total += PKTFRAGTOTLEN(osh, p);
}
}
return (total);
}
#endif /* WLCSO */
/* return total length of buffer chain */
uint
BCMFASTPATH(pkttotcnt)(osl_t *osh, void *p)
{
uint cnt = 0;
for (; p; p = PKTNEXT(osh, p)) {
cnt++;
}
return (cnt);
}
/* return the last buffer of chained pkt */
void *
BCMFASTPATH(pktlast)(osl_t *osh, void *p)
{
for (; PKTNEXT(osh, p); p = PKTNEXT(osh, p))
;
return (p);
}
/* count segments of a chained packet */
uint
BCMFASTPATH(pktsegcnt)(osl_t *osh, void *p)
{
uint cnt;
for (cnt = 0; p; p = PKTNEXT(osh, p)) {
if (PKTLEN(osh, p)) {
cnt++;
}
#ifdef BCMLFRAG
if (BCMLFRAG_ENAB() && PKTISFRAG(osh, p)) {
cnt += PKTFRAGTOTNUM(osh, p);
}
#endif /* BCMLFRAG */
}
return cnt;
}
#ifdef DONGLEBUILD
/**
* Takes in a lbuf/lfrag and no of bytes to be trimmed from tail.
* trim bytes could be spread out in below 3 formats
* 1. entirely in dongle
* 2. entirely in host
* 3. split between host-dongle
*/
void
BCMFASTPATH(pktfrag_trim_tailbytes)(osl_t * osh, void* p, uint16 trim_len, uint8 type)
{
uint16 tcmseg_len = PKTLEN(osh, p); /* TCM segment length */
uint16 hostseg_len = PKTFRAGUSEDLEN(osh, p); /* HOST segment length */
/* return if zero trim length- Nothing to do */
if (trim_len == 0)
return;
/* if header conv is on, there is no fcs at the end */
/* JIRA:SW4349-318 */
if (PKTISHDRCONVTD(osh, p))
return;
/* if pktfetched, then its already trimmed */
if (PKTISPKTFETCHED(osh, p))
return;
if (PKTFRAGUSEDLEN(osh, p) >= trim_len) {
/* TRIM bytes entirely in host */
ASSERT_FP(PKTISRXFRAG(osh, p));
PKTSETFRAGUSEDLEN(osh, p, (hostseg_len - trim_len));
} else {
/* trim bytes either in dongle or split between dongle-host */
PKTSETLEN(osh, p, (tcmseg_len - (trim_len - hostseg_len)));
/* No more contents in host; reset length to zero */
if (PKTFRAGUSEDLEN(osh, p))
PKTSETFRAGUSEDLEN(osh, p, 0);
}
}
#endif /* DONGLEBUILD */
/* copy a pkt buffer chain into a buffer */
uint
pktcopy(osl_t *osh, void *p, uint offset, uint len, uchar *buf)
{
uint n, ret = 0;
/* skip 'offset' bytes */
for (; p && offset; p = PKTNEXT(osh, p)) {
if (offset < PKTLEN(osh, p))
break;
offset -= PKTLEN(osh, p);
}
if (!p)
return 0;
/* copy the data */
for (; p && len; p = PKTNEXT(osh, p)) {
n = MIN(PKTLEN(osh, p) - offset, len);
bcopy(PKTDATA(osh, p) + offset, buf, n);
buf += n;
len -= n;
ret += n;
offset = 0;
}
return ret;
}
/* copy a buffer into a pkt buffer chain */
uint
pktfrombuf(osl_t *osh, void *p, uint offset, uint len, uchar *buf)
{
uint n, ret = 0;
/* skip 'offset' bytes */
for (; p && offset; p = PKTNEXT(osh, p)) {
if (offset < PKTLEN(osh, p))
break;
offset -= PKTLEN(osh, p);
}
if (!p)
return 0;
/* copy the data */
for (; p && len; p = PKTNEXT(osh, p)) {
n = MIN(PKTLEN(osh, p) - offset, len);
bcopy(buf, PKTDATA(osh, p) + offset, n);
buf += n;
len -= n;
ret += n;
offset = 0;
}
return ret;
}
#ifdef NOT_YET
/* copy data from one pkt buffer (chain) to another */
uint
pkt2pktcopy(osl_t *osh, void *p1, uint offs1, void *p2, uint offs2, uint maxlen)
{
uint8 *dp1, *dp2;
uint len1, len2, copylen, totallen;
for (; p1 && offs; p1 = PKTNEXT(osh, p1)) {
if (offs1 < (uint)PKTLEN(osh, p1))
break;
offs1 -= PKTLEN(osh, p1);
}
for (; p2 && offs; p2 = PKTNEXT(osh, p2)) {
if (offs2 < (uint)PKTLEN(osh, p2))
break;
offs2 -= PKTLEN(osh, p2);
}
/* Heck w/it, only need the above for now */
}
#endif /* NOT_YET */
uint8 *
BCMFASTPATH(pktdataoffset)(osl_t *osh, void *p, uint offset)
{
uint total = pkttotlen(osh, p);
uint pkt_off = 0, len = 0;
uint8 *pdata = (uint8 *) PKTDATA(osh, p);
if (offset > total)
return NULL;
for (; p; p = PKTNEXT(osh, p)) {
pdata = (uint8 *) PKTDATA(osh, p);
pkt_off = offset - len;
len += PKTLEN(osh, p);
if (len > offset)
break;
}
return (uint8*) (pdata+pkt_off);
}
/* given a offset in pdata, find the pkt seg hdr */
void *
pktoffset(osl_t *osh, void *p, uint offset)
{
uint total = pkttotlen(osh, p);
uint len = 0;
if (offset > total)
return NULL;
for (; p; p = PKTNEXT(osh, p)) {
len += PKTLEN(osh, p);
if (len > offset)
break;
}
return p;
}
void
bcm_mdelay(uint ms)
{
uint i;
for (i = 0; i < ms; i++) {
OSL_DELAY(1000);
}
}
#if defined(BCMPERFSTATS) || defined(BCMTSTAMPEDLOGS)
#if defined(__ARM_ARCH_7R__)
#define BCMLOG_CYCLE_OVERHEAD 54 /* Number of CPU cycle overhead due to bcmlog().
* This is to compensate CPU cycle incurred by
* added bcmlog() function call for profiling.
*/
#else
#define BCMLOG_CYCLE_OVERHEAD 0
#endif
#define LOGSIZE 256 /* should be power of 2 to avoid div below */
static struct {
uint cycles;
const char *fmt;
uint a1;
uint a2;
uchar indent; /* track indent level for nice printing */
} logtab[LOGSIZE];
/* last entry logged */
static uint logi = 0;
/* next entry to read */
static uint volatile readi = 0;
#endif /* defined(BCMPERFSTATS) || defined(BCMTSTAMPEDLOGS) */
#ifdef BCMPERFSTATS
/* TODO: make the utility configurable (choose between icache, dcache, hits, misses ...) */
void
bcm_perf_enable()
{
BCMPERF_ENABLE_INSTRCOUNT();
BCMPERF_ENABLE_ICACHE_MISS();
BCMPERF_ENABLE_ICACHE_HIT();
}
/* WARNING: This routine uses OSL_GETCYCLES(), which can give unexpected results on
* modern speed stepping CPUs. Use bcmtslog() instead in combination with TSF counter.
*/
void
bcmlog(char *fmt, uint a1, uint a2)
{
static uint last = 0;
uint cycles, i, elapsed;
OSL_GETCYCLES(cycles);
i = logi;
elapsed = cycles - last;
if (elapsed > BCMLOG_CYCLE_OVERHEAD)
logtab[i].cycles = elapsed - BCMLOG_CYCLE_OVERHEAD;
else
logtab[i].cycles = 0;
logtab[i].fmt = fmt;
logtab[i].a1 = a1;
logtab[i].a2 = a2;
logi = (i + 1) % LOGSIZE;
last = cycles;
/* if log buffer is overflowing, readi should be advanced.
* Otherwise logi and readi will become out of sync.
*/
if (logi == readi) {
readi = (readi + 1) % LOGSIZE;
} else {
/* This redundant else is to make CPU cycles of bcmlog() function to be uniform,
* so that the cycle compensation with BCMLOG_CYCLE_OVERHEAD is more accurate.
*/
readi = readi % LOGSIZE;
}
}
/* Same as bcmlog but specializes the use of a1 and a2 to
* store icache misses and instruction count.
* TODO : make this use a configuration array to decide what counter to read.
* We are limited to 2 numbers but it seems it is the most we can get anyway
* since dcache and icache cannot be enabled at the same time. Recording
* both the hits and misses at the same time for a given cache is not that useful either.
*/
void
bcmstats(char *fmt)
{
static uint last = 0;
static uint32 ic_miss = 0;
static uint32 instr_count = 0;
uint32 ic_miss_cur;
uint32 instr_count_cur;
uint cycles, i;
OSL_GETCYCLES(cycles);
BCMPERF_GETICACHE_MISS(ic_miss_cur);
BCMPERF_GETINSTRCOUNT(instr_count_cur);
i = logi;
logtab[i].cycles = cycles - last;
logtab[i].a1 = ic_miss_cur - ic_miss;
logtab[i].a2 = instr_count_cur - instr_count;
logtab[i].fmt = fmt;
logi = (i + 1) % LOGSIZE;
last = cycles;
instr_count = instr_count_cur;
ic_miss = ic_miss_cur;
/* if log buffer is overflowing, readi should be advanced.
* Otherwise logi and readi will become out of sync.
*/
if (logi == readi) {
readi = (readi + 1) % LOGSIZE;
} else {
/* This redundant else is to make CPU cycles of bcmstats() function to be uniform
*/
readi = readi % LOGSIZE;
}
}
/*
* TODO (linux version): a "proc" version where the log would be dumped
* on the proc file directly.
*/
void
bcmdumplog(char *buf, int size)
{
char *limit;
int j = 0;
int num;
limit = buf + size - 80;
*buf = '\0';
num = logi - readi;
if (num < 0)
num += LOGSIZE;
/* print in chronological order */
for (j = 0; j < num && (buf < limit); readi = (readi + 1) % LOGSIZE, j++) {
if (logtab[readi].fmt == NULL)
continue;
buf += snprintf(buf, (limit - buf), "%d\t", logtab[readi].cycles);
buf += snprintf(buf, (limit - buf), logtab[readi].fmt, logtab[readi].a1,
logtab[readi].a2);
buf += snprintf(buf, (limit - buf), "\n");
}
}
/*
* Dump one log entry at a time.
* Return index of next entry or -1 when no more .
*/
int
bcmdumplogent(char *buf, uint i)
{
bool hit;
/*
* If buf is NULL, return the starting index,
* interpreting i as the indicator of last 'i' entries to dump.
*/
if (buf == NULL) {
i = ((i > 0) && (i < (LOGSIZE - 1))) ? i : (LOGSIZE - 1);
return ((logi - i) % LOGSIZE);
}
*buf = '\0';
ASSERT(i < LOGSIZE);
if (i == logi)
return (-1);
hit = FALSE;
for (; (i != logi) && !hit; i = (i + 1) % LOGSIZE) {
if (logtab[i].fmt == NULL)
continue;
buf += snprintf(buf, LOGSIZE, "%d: %d\t", i, logtab[i].cycles);
buf += snprintf(buf, LOGSIZE, logtab[i].fmt, logtab[i].a1, logtab[i].a2);
buf += snprintf(buf, LOGSIZE, "\n");
hit = TRUE;
}
return (i);
}
#endif /* BCMPERFSTATS */
#if defined(BCMTSTAMPEDLOGS)
/* Store a TSF timestamp and a log line in the log buffer */
/*
a1 is used to signify entering/exiting a routine. When entering
the indent level is increased. When exiting, the delta since entering
is printed and the indent level is bumped back out.
Nesting can go up to level MAX_TS_INDENTS deep.
*/
#define MAX_TS_INDENTS 20
void
bcmtslog(uint32 tstamp, const char *fmt, uint a1, uint a2)
{
uint i = logi;
bool use_delta = TRUE;
static uint32 last = 0; /* used only when use_delta is true */
static uchar indent = 0;
static uint32 indents[MAX_TS_INDENTS];
logtab[i].cycles = tstamp;
if (use_delta)
logtab[i].cycles -= last;
logtab[i].a2 = a2;
if (a1 == TS_EXIT && indent) {
indent--;
logtab[i].a2 = tstamp - indents[indent];
}
logtab[i].fmt = fmt;
logtab[i].a1 = a1;
logtab[i].indent = indent;
if (a1 == TS_ENTER) {
indents[indent] = tstamp;
if (indent < MAX_TS_INDENTS - 1)
indent++;
}
if (use_delta)
last = tstamp;
logi = (i + 1) % LOGSIZE;
}
/* Print out a microsecond timestamp as "sec.ms.us " */
void
bcmprinttstamp(uint32 ticks)
{
uint us, ms, sec;
us = (ticks % TSF_TICKS_PER_MS) * 1000 / TSF_TICKS_PER_MS;
ms = ticks / TSF_TICKS_PER_MS;
sec = ms / 1000;
ms -= sec * 1000;
printf("%04u.%03u.%03u ", sec, ms, us);
}
/* Print out the log buffer with timestamps */
void
bcmprinttslogs(void)
{
int j = 0;
int num;
num = logi - readi;
if (num < 0)
num += LOGSIZE;
/* Format and print the log entries directly in chronological order */
for (j = 0; j < num; readi = (readi + 1) % LOGSIZE, j++) {
if (logtab[readi].fmt == NULL)
continue;
bcmprinttstamp(logtab[readi].cycles);
printf(logtab[readi].fmt, logtab[readi].a1, logtab[readi].a2);
printf("\n");
}
}
/*
Identical to bcmdumplog, but output is based on tsf instead of cycles.
a1 is used to signify entering/exiting a routine. When entering
the indent level is increased. When exiting, the delta since entering
is printed and the indent level is bumped back out.
*/
void
bcmdumptslog(struct bcmstrbuf *b)
{
char *limit;
int j = 0;
int num;
uint us, ms, sec;
int skip;
char *lines = "| | | | | | | | | | | | | | | | | | | |";
limit = BCMSTRBUF_BUF(b) + BCMSTRBUF_LEN(b) - 80;
num = logi - readi;
if (num < 0)
num += LOGSIZE;
/* print in chronological order */
for (j = 0; j < num && (BCMSTRBUF_BUF(b) < limit); readi = (readi + 1) % LOGSIZE, j++) {
char *last_buf = BCMSTRBUF_BUF(b);
if (logtab[readi].fmt == NULL)
continue;
us = (logtab[readi].cycles % TSF_TICKS_PER_MS) * 1000 / TSF_TICKS_PER_MS;
ms = logtab[readi].cycles / TSF_TICKS_PER_MS;
sec = ms / 1000;
ms -= sec * 1000;
bcm_bprintf(b, "%04u.%03u.%03u ", sec, ms, us);
/* 2 spaces for each indent level */
bcm_bprintf(b, "%.*s", logtab[readi].indent * 2, lines);
/*
* The following call to snprintf generates a compiler warning
* due to -Wformat-security. However, the format string is coming
* from internal callers rather than external data input, and is a
* useful debugging tool serving a variety of diagnostics. Rather
* than expand code size by replicating multiple functions with different
* argument lists, or disabling the warning globally, let's consider
* if we can just disable the warning for this one instance.
*/
bcm_bprintf(b, logtab[readi].fmt);
/* If a1 is ENTER or EXIT, print the + or - */
skip = 0;
if (logtab[readi].a1 == TS_ENTER) {
bcm_bprintf(b, " +");
skip++;
}
if (logtab[readi].a1 == TS_EXIT) {
bcm_bprintf(b, " -");
skip++;
}
/* else print the real a1 */
if (logtab[readi].a1 && !skip)
bcm_bprintf(b, " %d", logtab[readi].a1);
/*
If exiting routine, print a nicely formatted delta since entering.
Otherwise, just print a2 normally.
*/
if (logtab[readi].a2) {
if (logtab[readi].a1 == TS_EXIT) {
int num_space = 75 - (BCMSTRBUF_BUF(b) - last_buf);
bcm_bprintf(b, "%*.s", num_space, "");
bcm_bprintf(b, "%5d usecs", logtab[readi].a2);
} else
bcm_bprintf(b, " %d", logtab[readi].a2);
}
bcm_bprintf(b, "\n");
last_buf = BCMSTRBUF_BUF(b);
}
}
#endif /* BCMTSTAMPEDLOGS */
#if defined(BCMDBG) || defined(DHD_DEBUG)
/* pretty hex print a pkt buffer chain */
void
prpkt(const char *msg, osl_t *osh, void *p0)
{
void *p;
if (msg && (msg[0] != '\0'))
printf("%s:\n", msg);
for (p = p0; p; p = PKTNEXT(osh, p))
prhex(NULL, PKTDATA(osh, p), PKTLEN(osh, p));
}
#endif /* BCMDBG || DHD_DEBUG */
/* Takes an Ethernet frame and sets out-of-bound PKTPRIO.
* Also updates the inplace vlan tag if requested.
* For debugging, it returns an indication of what it did.
*/
uint
BCMFASTPATH(pktsetprio)(void *pkt, bool update_vtag)
{
struct ether_header *eh;
struct ethervlan_header *evh;
uint8 *pktdata;
int priority = 0;
int rc = 0;
pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt);
ASSERT_FP(ISALIGNED((uintptr)pktdata, sizeof(uint16)));
eh = (struct ether_header *) pktdata;
if (eh->ether_type == hton16(ETHER_TYPE_8021Q)) {
uint16 vlan_tag;
int vlan_prio, dscp_prio = 0;
evh = (struct ethervlan_header *)eh;
vlan_tag = ntoh16(evh->vlan_tag);
vlan_prio = (int) (vlan_tag >> VLAN_PRI_SHIFT) & VLAN_PRI_MASK;
if ((evh->ether_type == hton16(ETHER_TYPE_IP)) ||
(evh->ether_type == hton16(ETHER_TYPE_IPV6))) {
uint8 *ip_body = pktdata + sizeof(struct ethervlan_header);
uint8 tos_tc = IP_TOS46(ip_body);
dscp_prio = (int)(tos_tc >> IPV4_TOS_PREC_SHIFT);
}
/* DSCP priority gets precedence over 802.1P (vlan tag) */
if (dscp_prio != 0) {
priority = dscp_prio;
rc |= PKTPRIO_VDSCP;
} else {
priority = vlan_prio;
rc |= PKTPRIO_VLAN;
}
/*
* If the DSCP priority is not the same as the VLAN priority,
* then overwrite the priority field in the vlan tag, with the
* DSCP priority value. This is required for Linux APs because
* the VLAN driver on Linux, overwrites the skb->priority field
* with the priority value in the vlan tag
*/
if (update_vtag && (priority != vlan_prio)) {
vlan_tag &= ~(VLAN_PRI_MASK << VLAN_PRI_SHIFT);
vlan_tag |= (uint16)priority << VLAN_PRI_SHIFT;
evh->vlan_tag = hton16(vlan_tag);
rc |= PKTPRIO_UPD;
}
#if defined(EAPOL_PKT_PRIO) || defined(DHD_LOSSLESS_ROAMING)
} else if (eh->ether_type == hton16(ETHER_TYPE_802_1X)) {
priority = PRIO_8021D_NC;
rc = PKTPRIO_DSCP;
#endif /* EAPOL_PKT_PRIO || DHD_LOSSLESS_ROAMING */
#if defined(WLTDLS)
} else if (eh->ether_type == hton16(ETHER_TYPE_89_0D)) {
/* Bump up the priority for TDLS frames */
priority = PRIO_8021D_VI;
rc = PKTPRIO_DSCP;
#endif /* WLTDLS */
} else if ((eh->ether_type == hton16(ETHER_TYPE_IP)) ||
(eh->ether_type == hton16(ETHER_TYPE_IPV6))) {
uint8 *ip_body = pktdata + sizeof(struct ether_header);
uint8 tos_tc = IP_TOS46(ip_body);
uint8 dscp = tos_tc >> IPV4_TOS_DSCP_SHIFT;
switch (dscp) {
case DSCP_EF:
case DSCP_VA:
priority = PRIO_8021D_VO;
break;
case DSCP_AF31:
case DSCP_AF32:
case DSCP_AF33:
case DSCP_CS3:
priority = PRIO_8021D_CL;
break;
case DSCP_AF21:
case DSCP_AF22:
case DSCP_AF23:
priority = PRIO_8021D_EE;
break;
case DSCP_AF11:
case DSCP_AF12:
case DSCP_AF13:
case DSCP_CS2:
priority = PRIO_8021D_BE;
break;
case DSCP_CS6:
case DSCP_CS7:
priority = PRIO_8021D_NC;
break;
default:
#ifndef CUSTOM_DSCP_TO_PRIO_MAPPING
priority = (int)(tos_tc >> IPV4_TOS_PREC_SHIFT);
#else
if (dhd_dscpmap_enable) {
priority = (int)dscp2priomap[((tos_tc >> IPV4_TOS_DSCP_SHIFT)
& CUST_IPV4_TOS_PREC_MASK)];
}
else {
priority = (int)(tos_tc >> IPV4_TOS_PREC_SHIFT);
}
#endif /* CUSTOM_DSCP_TO_PRIO_MAPPING */
break;
}
rc |= PKTPRIO_DSCP;
}
ASSERT_FP(priority >= 0 && priority <= MAXPRIO);
PKTSETPRIO(pkt, priority);
return (rc | priority);
}
/* lookup user priority for specified DSCP */
static uint8
dscp2up(uint8 *up_table, uint8 dscp)
{
uint8 user_priority = 255;
/* lookup up from table if parameters valid */
if (up_table != NULL && dscp < UP_TABLE_MAX) {
user_priority = up_table[dscp];
}
/* 255 is unused value so return up from dscp */
if (user_priority == 255) {
user_priority = dscp >> (IPV4_TOS_PREC_SHIFT - IPV4_TOS_DSCP_SHIFT);
}
return user_priority;
}
/* set user priority by QoS Map Set table (UP table), table size is UP_TABLE_MAX */
uint
BCMFASTPATH(pktsetprio_qms)(void *pkt, uint8* up_table, bool update_vtag)
{
if (up_table) {
uint8 *pktdata;
uint pktlen;
uint8 dscp;
uint user_priority = 0;
uint rc = 0;
pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt);
pktlen = PKTLEN(OSH_NULL, pkt);
if (pktgetdscp(pktdata, pktlen, &dscp)) {
rc = PKTPRIO_DSCP;
user_priority = dscp2up(up_table, dscp);
PKTSETPRIO(pkt, user_priority);
}
return (rc | user_priority);
} else {
return pktsetprio(pkt, update_vtag);
}
}
/* Returns TRUE and DSCP if IP header found, FALSE otherwise.
*/
bool
BCMFASTPATH(pktgetdscp)(uint8 *pktdata, uint pktlen, uint8 *dscp)
{
struct ether_header *eh;
struct ethervlan_header *evh;
uint8 *ip_body;
bool rc = FALSE;
/* minimum length is ether header and IP header */
if (pktlen < (sizeof(struct ether_header) + IPV4_MIN_HEADER_LEN)) {
return FALSE;
}
eh = (struct ether_header *) pktdata;
if ((eh->ether_type == HTON16(ETHER_TYPE_IP)) ||
(eh->ether_type == HTON16(ETHER_TYPE_IPV6))) {
ip_body = pktdata + sizeof(struct ether_header);
*dscp = IP_DSCP46(ip_body);
rc = TRUE;
}
else if (eh->ether_type == HTON16(ETHER_TYPE_8021Q)) {
evh = (struct ethervlan_header *)eh;
/* minimum length is ethervlan header and IP header */
if (pktlen >= sizeof(struct ethervlan_header) + IPV4_MIN_HEADER_LEN &&
evh->ether_type == HTON16(ETHER_TYPE_IP)) {
ip_body = pktdata + sizeof(struct ethervlan_header);
*dscp = IP_DSCP46(ip_body);
rc = TRUE;
}
}
return rc;
}
/* usr_prio range from low to high with usr_prio value */
static bool
up_table_set(uint8 *up_table, uint8 usr_prio, uint8 low, uint8 high)
{
int i;
if (usr_prio > 7 || low > high || low >= UP_TABLE_MAX || high >= UP_TABLE_MAX) {
return FALSE;
}
for (i = low; i <= high; i++) {
up_table[i] = usr_prio;
}
return TRUE;
}
/* set user priority table */
int
BCMFASTPATH(wl_set_up_table)(uint8 *up_table, bcm_tlv_t *qos_map_ie)
{
uint8 len;
if (up_table == NULL || qos_map_ie == NULL) {
return BCME_ERROR;
}
/* clear table to check table was set or not */
memset(up_table, 0xff, UP_TABLE_MAX);
/* length of QoS Map IE must be 16+n*2, n is number of exceptions */
if (qos_map_ie != NULL && qos_map_ie->id == DOT11_MNG_QOS_MAP_ID &&
(len = qos_map_ie->len) >= QOS_MAP_FIXED_LENGTH &&
(len % 2) == 0) {
uint8 *except_ptr = (uint8 *)qos_map_ie->data;
uint8 except_len = len - QOS_MAP_FIXED_LENGTH;
uint8 *range_ptr = except_ptr + except_len;
int i;
/* fill in ranges */
for (i = 0; i < QOS_MAP_FIXED_LENGTH; i += 2) {
uint8 low = range_ptr[i];
uint8 high = range_ptr[i + 1];
if (low == 255 && high == 255) {
continue;
}
if (!up_table_set(up_table, i / 2, low, high)) {
/* clear the table on failure */
memset(up_table, 0xff, UP_TABLE_MAX);
return BCME_ERROR;
}
}
/* update exceptions */
for (i = 0; i < except_len; i += 2) {
uint8 dscp = except_ptr[i];
uint8 usr_prio = except_ptr[i+1];
/* exceptions with invalid dscp/usr_prio are ignored */
up_table_set(up_table, usr_prio, dscp, dscp);
}
}
return BCME_OK;
}
#ifndef BCM_BOOTLOADER
/* The 0.5KB string table is not removed by compiler even though it's unused */
static char bcm_undeferrstr[32];
static const char *bcmerrorstrtable[] = BCMERRSTRINGTABLE;
/* Convert the error codes into related error strings */
/* BCMRAMFN for BCME_LAST usage */
const char *
BCMRAMFN(bcmerrorstr)(int bcmerror)
{
/* check if someone added a bcmerror code but forgot to add errorstring */
ASSERT(ABS(BCME_LAST) == (ARRAYSIZE(bcmerrorstrtable) - 1));
if (bcmerror > 0 || bcmerror < BCME_LAST) {
snprintf(bcm_undeferrstr, sizeof(bcm_undeferrstr), "Undefined error %d", bcmerror);
return bcm_undeferrstr;
}
ASSERT(strlen(bcmerrorstrtable[-bcmerror]) < BCME_STRLEN);
return bcmerrorstrtable[-bcmerror];
}
#endif /* !BCM_BOOTLOADER */
#ifdef BCMDBG_PKT /* pkt logging for debugging */
/* Add a packet to the pktlist */
static void
_pktlist_add(pktlist_info_t *pktlist, void *pkt, int line, char *file)
{
uint16 i;
char *basename;
#ifdef BCMDBG_PTRACE
uint16 *idx = PKTLIST_IDX(pkt);
#endif /* BCMDBG_PTRACE */
ASSERT(pktlist->count < PKTLIST_SIZE);
/* Verify the packet is not already part of the list */
for (i = 0; i < pktlist->count; i++) {
if (pktlist->list[i].pkt == pkt)
ASSERT(0);
}
pktlist->list[pktlist->count].pkt = pkt;
pktlist->list[pktlist->count].line = line;
basename = strrchr(file, '/');
if (basename)
basename++;
else
basename = file;
pktlist->list[pktlist->count].file = basename;
#ifdef BCMDBG_PTRACE
*idx = pktlist->count;
bzero(pktlist->list[pktlist->count].pkt_trace, PKTTRACE_MAX_BYTES);
#endif /* BCMDBG_PTRACE */
pktlist->count++;
return;
}
void
pktlist_add(pktlist_info_t *pktlist, void *pkt, int line, char *file)
{
void *p;
for (p = pkt; p != NULL; p = PKTCLINK(p))
_pktlist_add(pktlist, p, line, file);
}
/* Remove a packet from the pktlist */
static void
_pktlist_remove(pktlist_info_t *pktlist, void *pkt)
{
uint16 i;
uint16 num = pktlist->count;
#ifdef BCMDBG_PTRACE
uint16 *idx = PKTLIST_IDX(pkt);
ASSERT((*idx) < pktlist->count);
#endif /* BCMDBG_PTRACE */
/* find the index where pkt exists */
for (i = 0; i < num; i++) {
/* check for the existence of pkt in the list */
if (pktlist->list[i].pkt == pkt) {
#ifdef BCMDBG_PTRACE
ASSERT((*idx) == i);
#endif /* BCMDBG_PTRACE */
/* replace with the last element */
pktlist->list[i].pkt = pktlist->list[num-1].pkt;
pktlist->list[i].line = pktlist->list[num-1].line;
pktlist->list[i].file = pktlist->list[num-1].file;
#ifdef BCMDBG_PTRACE
memcpy(pktlist->list[i].pkt_trace, pktlist->list[num-1].pkt_trace,
PKTTRACE_MAX_BYTES);
idx = PKTLIST_IDX(pktlist->list[i].pkt);
*idx = i;
#endif /* BCMDBG_PTRACE */
pktlist->count--;
return;
}
}
ASSERT(0);
}
void
pktlist_remove(pktlist_info_t *pktlist, void *pkt)
{
void *p;
for (p = pkt; p != NULL; p = PKTCLINK(p))
_pktlist_remove(pktlist, p);
}
#ifdef BCMDBG_PTRACE
static void
_pktlist_trace(pktlist_info_t *pktlist, void *pkt, uint16 bit)
{
uint16 *idx = PKTLIST_IDX(pkt);
ASSERT(((*idx) < pktlist->count) && (bit < PKTTRACE_MAX_BITS));
ASSERT(pktlist->list[(*idx)].pkt == pkt);
pktlist->list[(*idx)].pkt_trace[bit/NBBY] |= (1 << ((bit)%NBBY));
}
void
pktlist_trace(pktlist_info_t *pktlist, void *pkt, uint16 bit)
{
void *p;
for (p = pkt; p != NULL; p = PKTCLINK(p))
_pktlist_trace(pktlist, p, bit);
}
#endif /* BCMDBG_PTRACE */
/* Dump the pktlist (and the contents of each packet if 'data'
* is set). 'buf' should be large enough
*/
char *
pktlist_dump(pktlist_info_t *pktlist, char *buf)
{
char *obuf = buf;
uint16 i;
if (buf != NULL)
buf += sprintf(buf, "Packet list dump:\n");
else
printf("Packet list dump:\n");
for (i = 0; i < (pktlist->count); i++) {
if (buf != NULL)
buf += sprintf(buf, "Pkt_addr: 0x%p Line: %d File: %s\t",
OSL_OBFUSCATE_BUF(pktlist->list[i].pkt), pktlist->list[i].line,
pktlist->list[i].file);
else
printf("Pkt_addr: 0x%p Line: %d File: %s\t",
OSL_OBFUSCATE_BUF(pktlist->list[i].pkt),
pktlist->list[i].line, pktlist->list[i].file);
/* #ifdef NOTDEF Remove this ifdef to print pkttag and pktdata */
if (buf != NULL) {
if (PKTTAG(pktlist->list[i].pkt)) {
/* Print pkttag */
buf += sprintf(buf, "Pkttag(in hex): ");
buf += bcm_format_hex(buf, PKTTAG(pktlist->list[i].pkt),
OSL_PKTTAG_SZ);
}
buf += sprintf(buf, "Pktdata(in hex): ");
buf += bcm_format_hex(buf, PKTDATA(OSH_NULL, pktlist->list[i].pkt),
PKTLEN(OSH_NULL, pktlist->list[i].pkt));
} else {
void *pkt = pktlist->list[i].pkt, *npkt;
printf("Pkt[%d] Dump:\n", i);
while (pkt) {
int hroom;
uint pktlen;
uchar *src;
#ifdef BCMDBG_PTRACE
uint16 *idx = PKTLIST_IDX(pkt);
ASSERT((*idx) < pktlist->count);
prhex("Pkt Trace (in hex):", pktlist->list[(*idx)].pkt_trace,
PKTTRACE_MAX_BYTES);
#endif /* BCMDBG_PTRACE */
npkt = (void *)PKTNEXT(OSH_NULL, pkt);
PKTSETNEXT(OSH_NULL, pkt, NULL);
src = (uchar *)(PKTTAG(pkt));
pktlen = PKTLEN(OSH_NULL, pkt);
hroom = PKTHEADROOM(OSH_NULL, pkt);
printf("Pkttag_addr: %p\n", OSL_OBFUSCATE_BUF(src));
if (src)
prhex("Pkttag(in hex): ", src, OSL_PKTTAG_SZ);
src = (uchar *) (PKTDATA(OSH_NULL, pkt));
printf("Pkthead_addr: %p len: %d\n",
OSL_OBFUSCATE_BUF(src - hroom), hroom);
prhex("Pkt headroom content(in hex): ", src - hroom, hroom);
printf("Pktdata_addr: %p len: %d\n",
OSL_OBFUSCATE_BUF(src), pktlen);
prhex("Pktdata(in hex): ", src, pktlen);
pkt = npkt;
}
}
/* #endif NOTDEF */
if (buf != NULL)
buf += sprintf(buf, "\n");
else
printf("\n");
}
return obuf;
}
#endif /* BCMDBG_PKT */
/* iovar table lookup */
/* could mandate sorted tables and do a binary search */
const bcm_iovar_t*
bcm_iovar_lookup(const bcm_iovar_t *table, const char *name)
{
const bcm_iovar_t *vi;
const char *lookup_name;
/* skip any ':' delimited option prefixes */
lookup_name = strrchr(name, ':');
if (lookup_name != NULL)
lookup_name++;
else
lookup_name = name;
ASSERT(table != NULL);
for (vi = table; vi->name; vi++) {
if (!strcmp(vi->name, lookup_name))
return vi;
}
/* ran to end of table */
return NULL; /* var name not found */
}
int
bcm_iovar_lencheck(const bcm_iovar_t *vi, void *arg, uint len, bool set)
{
int bcmerror = 0;
BCM_REFERENCE(arg);
/* length check on io buf */
switch (vi->type) {
case IOVT_BOOL:
case IOVT_INT8:
case IOVT_INT16:
case IOVT_INT32:
case IOVT_UINT8:
case IOVT_UINT16:
case IOVT_UINT32:
/* all integers are int32 sized args at the ioctl interface */
if (len < sizeof(int)) {
bcmerror = BCME_BUFTOOSHORT;
}
break;
case IOVT_BUFFER:
/* buffer must meet minimum length requirement */
if (len < vi->minlen) {
bcmerror = BCME_BUFTOOSHORT;
}
break;
case IOVT_VOID:
if (!set) {
/* Cannot return nil... */
bcmerror = BCME_UNSUPPORTED;
}
break;
default:
/* unknown type for length check in iovar info */
ASSERT(0);
bcmerror = BCME_UNSUPPORTED;
}
return bcmerror;
}
/*
* Hierarchical Multiword bitmap based small id allocator.
*
* Multilevel hierarchy bitmap. (maximum 2 levels)
* First hierarchy uses a multiword bitmap to identify 32bit words in the
* second hierarchy that have at least a single bit set. Each bit in a word of
* the second hierarchy represents a unique ID that may be allocated.
*
* BCM_MWBMAP_ITEMS_MAX: Maximum number of IDs managed.
* BCM_MWBMAP_BITS_WORD: Number of bits in a bitmap word word
* BCM_MWBMAP_WORDS_MAX: Maximum number of bitmap words needed for free IDs.
* BCM_MWBMAP_WDMAP_MAX: Maximum number of bitmap wordss identifying first non
* non-zero bitmap word carrying at least one free ID.
* BCM_MWBMAP_SHIFT_OP: Used in MOD, DIV and MUL operations.
* BCM_MWBMAP_INVALID_IDX: Value ~0U is treated as an invalid ID
*
* Design Notes:
* BCM_MWBMAP_USE_CNTSETBITS trades CPU for memory. A runtime count of how many
* bits are computed each time on allocation and deallocation, requiring 4
* array indexed access and 3 arithmetic operations. When not defined, a runtime
* count of set bits state is maintained. Upto 32 Bytes per 1024 IDs is needed.
* In a 4K max ID allocator, up to 128Bytes are hence used per instantiation.
* In a memory limited system e.g. dongle builds, a CPU for memory tradeoff may
* be used by defining BCM_MWBMAP_USE_CNTSETBITS.
*
* Note: wd_bitmap[] is statically declared and is not ROM friendly ... array
* size is fixed. No intention to support larger than 4K indice allocation. ID
* allocators for ranges smaller than 4K will have a wastage of only 12Bytes
* with savings in not having to use an indirect access, had it been dynamically
* allocated.
*/
#if defined(DONGLEBUILD)
#define BCM_MWBMAP_USE_CNTSETBITS /* runtime count set bits */
#if defined(PCIEDEV_HOST_PKTID_AUDIT_ENABLED)
#define BCM_MWBMAP_ITEMS_MAX (38 * 1024)
#else /* ! PCIEDEV_HOST_PKTID_AUDIT_ENABLED */
#define BCM_MWBMAP_ITEMS_MAX (7 * 1024)
#endif /* PCIEDEV_HOST_PKTID_AUDIT_ENABLED */
#else /* ! DONGLEBUILD */
#define BCM_MWBMAP_ITEMS_MAX (64 * 1024) /* May increase to 64K */
#endif /* DONGLEBUILD */
#define BCM_MWBMAP_BITS_WORD (NBITS(uint32))
#define BCM_MWBMAP_WORDS_MAX (BCM_MWBMAP_ITEMS_MAX / BCM_MWBMAP_BITS_WORD)
#define BCM_MWBMAP_WDMAP_MAX (BCM_MWBMAP_WORDS_MAX / BCM_MWBMAP_BITS_WORD)
#define BCM_MWBMAP_SHIFT_OP (5)
#define BCM_MWBMAP_MODOP(ix) ((ix) & (BCM_MWBMAP_BITS_WORD - 1))
#define BCM_MWBMAP_DIVOP(ix) ((ix) >> BCM_MWBMAP_SHIFT_OP)
#define BCM_MWBMAP_MULOP(ix) ((ix) << BCM_MWBMAP_SHIFT_OP)
/* Redefine PTR() and/or HDL() conversion to invoke audit for debugging */
#define BCM_MWBMAP_PTR(hdl) ((struct bcm_mwbmap *)(hdl))
#define BCM_MWBMAP_HDL(ptr) ((void *)(ptr))
#if defined(BCM_MWBMAP_DEBUG)
#define BCM_MWBMAP_AUDIT(mwb) \
do { \
ASSERT((mwb != NULL) && \
(((struct bcm_mwbmap *)(mwb))->magic == (void *)(mwb))); \
bcm_mwbmap_audit(mwb); \
} while (0)
#define MWBMAP_ASSERT(exp) ASSERT(exp)
#define MWBMAP_DBG(x) printf x
#else /* !BCM_MWBMAP_DEBUG */
#define BCM_MWBMAP_AUDIT(mwb) do {} while (0)
#define MWBMAP_ASSERT(exp) do {} while (0)
#define MWBMAP_DBG(x)
#endif /* !BCM_MWBMAP_DEBUG */
typedef struct bcm_mwbmap { /* Hierarchical multiword bitmap allocator */
uint16 wmaps; /* Total number of words in free wd bitmap */
uint16 imaps; /* Total number of words in free id bitmap */
int32 ifree; /* Count of free indices. Used only in audits */
uint16 total; /* Total indices managed by multiword bitmap */
void * magic; /* Audit handle parameter from user */
uint32 wd_bitmap[BCM_MWBMAP_WDMAP_MAX]; /* 1st level bitmap of */
#if !defined(BCM_MWBMAP_USE_CNTSETBITS)
int8 wd_count[BCM_MWBMAP_WORDS_MAX]; /* free id running count, 1st lvl */
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
uint32 id_bitmap[0]; /* Second level bitmap */
} bcm_mwbmap_t;
/* Incarnate a hierarchical multiword bitmap based small index allocator. */
struct bcm_mwbmap *
BCMATTACHFN(bcm_mwbmap_init)(osl_t *osh, uint32 items_max)
{
struct bcm_mwbmap * mwbmap_p;
uint32 wordix, size, words, extra;
/* Implementation Constraint: Uses 32bit word bitmap */
MWBMAP_ASSERT(BCM_MWBMAP_BITS_WORD == 32U);
MWBMAP_ASSERT(BCM_MWBMAP_SHIFT_OP == 5U);
MWBMAP_ASSERT(ISPOWEROF2(BCM_MWBMAP_ITEMS_MAX));
MWBMAP_ASSERT((BCM_MWBMAP_ITEMS_MAX % BCM_MWBMAP_BITS_WORD) == 0U);
ASSERT(items_max <= BCM_MWBMAP_ITEMS_MAX);
/* Determine the number of words needed in the multiword bitmap */
extra = BCM_MWBMAP_MODOP(items_max);
words = BCM_MWBMAP_DIVOP(items_max) + ((extra != 0U) ? 1U : 0U);
/* Allocate runtime state of multiword bitmap */
/* Note: wd_count[] or wd_bitmap[] are not dynamically allocated */
size = sizeof(bcm_mwbmap_t) + (sizeof(uint32) * words);
mwbmap_p = (bcm_mwbmap_t *)MALLOC(osh, size);
if (mwbmap_p == (bcm_mwbmap_t *)NULL) {
ASSERT(0);
goto error1;
}
memset(mwbmap_p, 0, size);
/* Initialize runtime multiword bitmap state */
mwbmap_p->imaps = (uint16)words;
mwbmap_p->ifree = (int32)items_max;
mwbmap_p->total = (uint16)items_max;
/* Setup magic, for use in audit of handle */
mwbmap_p->magic = BCM_MWBMAP_HDL(mwbmap_p);
/* Setup the second level bitmap of free indices */
/* Mark all indices as available */
for (wordix = 0U; wordix < mwbmap_p->imaps; wordix++) {
mwbmap_p->id_bitmap[wordix] = (uint32)(~0U);
#if !defined(BCM_MWBMAP_USE_CNTSETBITS)
mwbmap_p->wd_count[wordix] = BCM_MWBMAP_BITS_WORD;
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
}
/* Ensure that extra indices are tagged as un-available */
if (extra) { /* fixup the free ids in last bitmap and wd_count */
uint32 * bmap_p = &mwbmap_p->id_bitmap[mwbmap_p->imaps - 1];
*bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */
#if !defined(BCM_MWBMAP_USE_CNTSETBITS)
mwbmap_p->wd_count[mwbmap_p->imaps - 1] = (int8)extra; /* fixup count */
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
}
/* Setup the first level bitmap hierarchy */
extra = BCM_MWBMAP_MODOP(mwbmap_p->imaps);
words = BCM_MWBMAP_DIVOP(mwbmap_p->imaps) + ((extra != 0U) ? 1U : 0U);
mwbmap_p->wmaps = (uint16)words;
for (wordix = 0U; wordix < mwbmap_p->wmaps; wordix++)
mwbmap_p->wd_bitmap[wordix] = (uint32)(~0U);
if (extra) {
uint32 * bmap_p = &mwbmap_p->wd_bitmap[mwbmap_p->wmaps - 1];
*bmap_p ^= (uint32)(~0U << extra); /* fixup bitmap */
}
return mwbmap_p;
error1:
return BCM_MWBMAP_INVALID_HDL;
}
/* Release resources used by multiword bitmap based small index allocator. */
void
BCMATTACHFN(bcm_mwbmap_fini)(osl_t * osh, struct bcm_mwbmap * mwbmap_hdl)
{
bcm_mwbmap_t * mwbmap_p;
BCM_MWBMAP_AUDIT(mwbmap_hdl);
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
MFREE(osh, mwbmap_p, sizeof(struct bcm_mwbmap)
+ (sizeof(uint32) * mwbmap_p->imaps));
return;
}
/* Allocate a unique small index using a multiword bitmap index allocator. */
uint32
BCMFASTPATH(bcm_mwbmap_alloc)(struct bcm_mwbmap * mwbmap_hdl)
{
bcm_mwbmap_t * mwbmap_p;
uint32 wordix, bitmap;
BCM_MWBMAP_AUDIT(mwbmap_hdl);
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
/* Start with the first hierarchy */
for (wordix = 0; wordix < mwbmap_p->wmaps; ++wordix) {
bitmap = mwbmap_p->wd_bitmap[wordix]; /* get the word bitmap */
if (bitmap != 0U) {
uint32 count, bitix, *bitmap_p;
bitmap_p = &mwbmap_p->wd_bitmap[wordix];
/* clear all except trailing 1 */
if (bitmap != (1u << 31u)) {
bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap))));
}
MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) ==
bcm_count_leading_zeros(bitmap));
bitix = (BCM_MWBMAP_BITS_WORD - 1)
- bcm_count_leading_zeros(bitmap); /* use asm clz */
wordix = BCM_MWBMAP_MULOP(wordix) + bitix;
/* Clear bit if wd count is 0, without conditional branch */
#if defined(BCM_MWBMAP_USE_CNTSETBITS)
count = bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1;
#else /* ! BCM_MWBMAP_USE_CNTSETBITS */
mwbmap_p->wd_count[wordix]--;
count = mwbmap_p->wd_count[wordix];
MWBMAP_ASSERT(count ==
(bcm_cntsetbits(mwbmap_p->id_bitmap[wordix]) - 1));
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
MWBMAP_ASSERT(count >= 0);
/* clear wd_bitmap bit if id_map count is 0 */
bitmap = (count == 0) << bitix;
MWBMAP_DBG((
"Lvl1: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x wfree %d",
bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap, count));
*bitmap_p ^= bitmap;
/* Use bitix in the second hierarchy */
bitmap_p = &mwbmap_p->id_bitmap[wordix];
bitmap = mwbmap_p->id_bitmap[wordix]; /* get the id bitmap */
MWBMAP_ASSERT(bitmap != 0U);
/* clear all except trailing 1 */
if (bitmap != (1u << 31u)) {
bitmap = (uint32)(((int)(bitmap)) & (-((int)(bitmap))));
}
MWBMAP_ASSERT(C_bcm_count_leading_zeros(bitmap) ==
bcm_count_leading_zeros(bitmap));
bitix = BCM_MWBMAP_MULOP(wordix)
+ (BCM_MWBMAP_BITS_WORD - 1)
- bcm_count_leading_zeros(bitmap); /* use asm clz */
mwbmap_p->ifree--; /* decrement system wide free count */
MWBMAP_ASSERT(mwbmap_p->ifree >= 0);
MWBMAP_DBG((
"Lvl2: bitix<%02u> wordix<%02u>: %08x ^ %08x = %08x ifree %d",
bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap,
mwbmap_p->ifree));
*bitmap_p ^= bitmap; /* mark as allocated = 1b0 */
return bitix;
}
}
ASSERT(mwbmap_p->ifree == 0);
return BCM_MWBMAP_INVALID_IDX;
}
/* Force an index at a specified position to be in use */
void
bcm_mwbmap_force(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix)
{
bcm_mwbmap_t * mwbmap_p;
uint32 count, wordix, bitmap, *bitmap_p;
BCM_MWBMAP_AUDIT(mwbmap_hdl);
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
ASSERT(bitix < mwbmap_p->total);
/* Start with second hierarchy */
wordix = BCM_MWBMAP_DIVOP(bitix);
bitmap = (uint32)(1U << BCM_MWBMAP_MODOP(bitix));
bitmap_p = &mwbmap_p->id_bitmap[wordix];
ASSERT((*bitmap_p & bitmap) == bitmap);
mwbmap_p->ifree--; /* update free count */
ASSERT(mwbmap_p->ifree >= 0);
MWBMAP_DBG(("Lvl2: bitix<%u> wordix<%u>: %08x ^ %08x = %08x ifree %d",
bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) ^ bitmap,
mwbmap_p->ifree));
*bitmap_p ^= bitmap; /* mark as in use */
/* Update first hierarchy */
bitix = wordix;
wordix = BCM_MWBMAP_DIVOP(bitix);
bitmap_p = &mwbmap_p->wd_bitmap[wordix];
#if defined(BCM_MWBMAP_USE_CNTSETBITS)
count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]);
#else /* ! BCM_MWBMAP_USE_CNTSETBITS */
mwbmap_p->wd_count[bitix]--;
count = mwbmap_p->wd_count[bitix];
MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]));
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
MWBMAP_ASSERT(count >= 0);
bitmap = (count == 0) << BCM_MWBMAP_MODOP(bitix);
MWBMAP_DBG(("Lvl1: bitix<%02lu> wordix<%02u>: %08x ^ %08x = %08x wfree %d",
BCM_MWBMAP_MODOP(bitix), wordix, *bitmap_p, bitmap,
(*bitmap_p) ^ bitmap, count));
*bitmap_p ^= bitmap; /* mark as in use */
return;
}
/* Free a previously allocated index back into the multiword bitmap allocator */
void
BCMPOSTTRAPFASTPATH(bcm_mwbmap_free)(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix)
{
bcm_mwbmap_t * mwbmap_p;
uint32 wordix, bitmap, *bitmap_p;
BCM_MWBMAP_AUDIT(mwbmap_hdl);
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
ASSERT_FP(bitix < mwbmap_p->total);
/* Start with second level hierarchy */
wordix = BCM_MWBMAP_DIVOP(bitix);
bitmap = (1U << BCM_MWBMAP_MODOP(bitix));
bitmap_p = &mwbmap_p->id_bitmap[wordix];
ASSERT_FP((*bitmap_p & bitmap) == 0U); /* ASSERT not a double free */
mwbmap_p->ifree++; /* update free count */
ASSERT_FP(mwbmap_p->ifree <= mwbmap_p->total);
MWBMAP_DBG(("Lvl2: bitix<%02u> wordix<%02u>: %08x | %08x = %08x ifree %d",
bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap,
mwbmap_p->ifree));
*bitmap_p |= bitmap; /* mark as available */
/* Now update first level hierarchy */
bitix = wordix;
wordix = BCM_MWBMAP_DIVOP(bitix); /* first level's word index */
bitmap = (1U << BCM_MWBMAP_MODOP(bitix));
bitmap_p = &mwbmap_p->wd_bitmap[wordix];
#if !defined(BCM_MWBMAP_USE_CNTSETBITS)
mwbmap_p->wd_count[bitix]++;
#endif
#if defined(BCM_MWBMAP_DEBUG)
{
uint32 count;
#if defined(BCM_MWBMAP_USE_CNTSETBITS)
count = bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]);
#else /* ! BCM_MWBMAP_USE_CNTSETBITS */
count = mwbmap_p->wd_count[bitix];
MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[bitix]));
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
MWBMAP_ASSERT(count <= BCM_MWBMAP_BITS_WORD);
MWBMAP_DBG(("Lvl1: bitix<%02u> wordix<%02u>: %08x | %08x = %08x wfree %d",
bitix, wordix, *bitmap_p, bitmap, (*bitmap_p) | bitmap, count));
}
#endif /* BCM_MWBMAP_DEBUG */
*bitmap_p |= bitmap;
return;
}
/* Fetch the toal number of free indices in the multiword bitmap allocator */
uint32
bcm_mwbmap_free_cnt(struct bcm_mwbmap * mwbmap_hdl)
{
bcm_mwbmap_t * mwbmap_p;
BCM_MWBMAP_AUDIT(mwbmap_hdl);
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
ASSERT(mwbmap_p->ifree >= 0);
return mwbmap_p->ifree;
}
/* Determine whether an index is inuse or free */
bool
bcm_mwbmap_isfree(struct bcm_mwbmap * mwbmap_hdl, uint32 bitix)
{
bcm_mwbmap_t * mwbmap_p;
uint32 wordix, bitmap;
BCM_MWBMAP_AUDIT(mwbmap_hdl);
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
ASSERT(bitix < mwbmap_p->total);
wordix = BCM_MWBMAP_DIVOP(bitix);
bitmap = (1U << BCM_MWBMAP_MODOP(bitix));
return ((mwbmap_p->id_bitmap[wordix] & bitmap) != 0U);
}
/* Debug dump a multiword bitmap allocator */
void
bcm_mwbmap_show(struct bcm_mwbmap * mwbmap_hdl)
{
uint32 ix, count;
bcm_mwbmap_t * mwbmap_p;
BCM_MWBMAP_AUDIT(mwbmap_hdl);
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
printf("mwbmap_p %p wmaps %u imaps %u ifree %d total %u\n",
OSL_OBFUSCATE_BUF((void *)mwbmap_p),
mwbmap_p->wmaps, mwbmap_p->imaps, mwbmap_p->ifree, mwbmap_p->total);
for (ix = 0U; ix < mwbmap_p->wmaps; ix++) {
printf("\tWDMAP:%2u. 0x%08x\t", ix, mwbmap_p->wd_bitmap[ix]);
bcm_bitprint32(mwbmap_p->wd_bitmap[ix]);
printf("\n");
}
for (ix = 0U; ix < mwbmap_p->imaps; ix++) {
#if defined(BCM_MWBMAP_USE_CNTSETBITS)
count = bcm_cntsetbits(mwbmap_p->id_bitmap[ix]);
#else /* ! BCM_MWBMAP_USE_CNTSETBITS */
count = mwbmap_p->wd_count[ix];
MWBMAP_ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[ix]));
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
printf("\tIDMAP:%2u. 0x%08x %02u\t", ix, mwbmap_p->id_bitmap[ix], count);
bcm_bitprint32(mwbmap_p->id_bitmap[ix]);
printf("\n");
}
return;
}
/* Audit a hierarchical multiword bitmap */
void
bcm_mwbmap_audit(struct bcm_mwbmap * mwbmap_hdl)
{
bcm_mwbmap_t * mwbmap_p;
uint32 count, free_cnt = 0U, wordix, idmap_ix, bitix, *bitmap_p;
mwbmap_p = BCM_MWBMAP_PTR(mwbmap_hdl);
for (wordix = 0U; wordix < mwbmap_p->wmaps; ++wordix) {
bitmap_p = &mwbmap_p->wd_bitmap[wordix];
for (bitix = 0U; bitix < BCM_MWBMAP_BITS_WORD; bitix++) {
if ((*bitmap_p) & (1 << bitix)) {
idmap_ix = BCM_MWBMAP_MULOP(wordix) + bitix;
#if defined(BCM_MWBMAP_USE_CNTSETBITS)
count = bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix]);
#else /* ! BCM_MWBMAP_USE_CNTSETBITS */
count = mwbmap_p->wd_count[idmap_ix];
ASSERT(count == bcm_cntsetbits(mwbmap_p->id_bitmap[idmap_ix]));
#endif /* ! BCM_MWBMAP_USE_CNTSETBITS */
ASSERT(count != 0U);
free_cnt += count;
}
}
}
ASSERT((int)free_cnt == mwbmap_p->ifree);
}
/* END : Multiword bitmap based 64bit to Unique 32bit Id allocator. */
/* Simple 16bit Id allocator using a stack implementation. */
typedef struct id16_map {
uint32 failures; /* count of failures */
void *dbg; /* debug placeholder */
uint16 total; /* total number of ids managed by allocator */
uint16 start; /* start value of 16bit ids to be managed */
int stack_idx; /* index into stack of available ids */
uint16 stack[0]; /* stack of 16 bit ids */
} id16_map_t;
#define ID16_MAP_SZ(items) (sizeof(id16_map_t) + \
(sizeof(uint16) * (items)))
#if defined(BCM_DBG)
/* Uncomment BCM_DBG_ID16 to debug double free */
/* #define BCM_DBG_ID16 */
typedef struct id16_map_dbg {
uint16 total;
bool avail[0];
} id16_map_dbg_t;
#define ID16_MAP_DBG_SZ(items) (sizeof(id16_map_dbg_t) + \
(sizeof(bool) * (items)))
#define ID16_MAP_MSG(x) print x
#else
#define ID16_MAP_MSG(x)
#endif /* BCM_DBG */
void * /* Construct an id16 allocator: [start_val16 .. start_val16+total_ids) */
id16_map_init(osl_t *osh, uint16 total_ids, uint16 start_val16)
{
uint16 idx, val16;
id16_map_t * id16_map;
ASSERT(total_ids > 0);
/* A start_val16 of ID16_UNDEFINED, allows the caller to fill the id16 map
* with random values.
*/
ASSERT((start_val16 == ID16_UNDEFINED) ||
(start_val16 + total_ids) < ID16_INVALID);
id16_map = (id16_map_t *) MALLOC(osh, ID16_MAP_SZ(total_ids));
if (id16_map == NULL) {
return NULL;
}
id16_map->total = total_ids;
id16_map->start = start_val16;
id16_map->failures = 0;
id16_map->dbg = NULL;
/*
* Populate stack with 16bit id values, commencing with start_val16.
* if start_val16 is ID16_UNDEFINED, then do not populate the id16 map.
*/
id16_map->stack_idx = -1;
if (id16_map->start != ID16_UNDEFINED) {
val16 = start_val16;
for (idx = 0; idx < total_ids; idx++, val16++) {
id16_map->stack_idx = idx;
id16_map->stack[id16_map->stack_idx] = val16;
}
}
#if defined(BCM_DBG) && defined(BCM_DBG_ID16)
if (id16_map->start != ID16_UNDEFINED) {
id16_map->dbg = MALLOC(osh, ID16_MAP_DBG_SZ(total_ids));
if (id16_map->dbg) {
id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg;
id16_map_dbg->total = total_ids;
for (idx = 0; idx < total_ids; idx++) {
id16_map_dbg->avail[idx] = TRUE;
}
}
}
#endif /* BCM_DBG && BCM_DBG_ID16 */
return (void *)id16_map;
}
void * /* Destruct an id16 allocator instance */
id16_map_fini(osl_t *osh, void * id16_map_hndl)
{
uint16 total_ids;
id16_map_t * id16_map;
if (id16_map_hndl == NULL)
return NULL;
id16_map = (id16_map_t *)id16_map_hndl;
total_ids = id16_map->total;
ASSERT(total_ids > 0);
#if defined(BCM_DBG) && defined(BCM_DBG_ID16)
if (id16_map->dbg) {
MFREE(osh, id16_map->dbg, ID16_MAP_DBG_SZ(total_ids));
}
#endif /* BCM_DBG && BCM_DBG_ID16 */
id16_map->total = 0;
MFREE(osh, id16_map, ID16_MAP_SZ(total_ids));
return NULL;
}
void
id16_map_clear(void * id16_map_hndl, uint16 total_ids, uint16 start_val16)
{
uint16 idx, val16;
id16_map_t * id16_map;
ASSERT(total_ids > 0);
/* A start_val16 of ID16_UNDEFINED, allows the caller to fill the id16 map
* with random values.
*/
ASSERT((start_val16 == ID16_UNDEFINED) ||
(start_val16 + total_ids) < ID16_INVALID);
id16_map = (id16_map_t *)id16_map_hndl;
if (id16_map == NULL) {
return;
}
id16_map->total = total_ids;
id16_map->start = start_val16;
id16_map->failures = 0;
/* Populate stack with 16bit id values, commencing with start_val16 */
id16_map->stack_idx = -1;
if (id16_map->start != ID16_UNDEFINED) {
val16 = start_val16;
for (idx = 0; idx < total_ids; idx++, val16++) {
id16_map->stack_idx = idx;
id16_map->stack[id16_map->stack_idx] = val16;
}
}
#if defined(BCM_DBG) && defined(BCM_DBG_ID16)
if (id16_map->start != ID16_UNDEFINED) {
if (id16_map->dbg) {
id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg;
id16_map_dbg->total = total_ids;
for (idx = 0; idx < total_ids; idx++) {
id16_map_dbg->avail[idx] = TRUE;
}
}
}
#endif /* BCM_DBG && BCM_DBG_ID16 */
}
uint16 /* Allocate a unique 16bit id */
BCMFASTPATH(id16_map_alloc)(void * id16_map_hndl)
{
uint16 val16;
id16_map_t * id16_map;
ASSERT_FP(id16_map_hndl != NULL);
id16_map = (id16_map_t *)id16_map_hndl;
ASSERT_FP(id16_map->total > 0);
if (id16_map->stack_idx < 0) {
id16_map->failures++;
return ID16_INVALID;
}
val16 = id16_map->stack[id16_map->stack_idx];
id16_map->stack_idx--;
#if defined(BCM_DBG) && defined(BCM_DBG_ID16)
ASSERT_FP((id16_map->start == ID16_UNDEFINED) ||
(val16 < (id16_map->start + id16_map->total)));
if (id16_map->dbg) { /* Validate val16 */
id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg;
ASSERT_FP(id16_map_dbg->avail[val16 - id16_map->start] == TRUE);
id16_map_dbg->avail[val16 - id16_map->start] = FALSE;
}
#endif /* BCM_DBG && BCM_DBG_ID16 */
return val16;
}
void /* Free a 16bit id value into the id16 allocator */
BCMFASTPATH(id16_map_free)(void * id16_map_hndl, uint16 val16)
{
id16_map_t * id16_map;
ASSERT_FP(id16_map_hndl != NULL);
id16_map = (id16_map_t *)id16_map_hndl;
#if defined(BCM_DBG) && defined(BCM_DBG_ID16)
ASSERT_FP((id16_map->start == ID16_UNDEFINED) ||
(val16 < (id16_map->start + id16_map->total)));
if (id16_map->dbg) { /* Validate val16 */
id16_map_dbg_t *id16_map_dbg = (id16_map_dbg_t *)id16_map->dbg;
ASSERT_FP(id16_map_dbg->avail[val16 - id16_map->start] == FALSE);
id16_map_dbg->avail[val16 - id16_map->start] = TRUE;
}
#endif /* BCM_DBG && BCM_DBG_ID16 */
id16_map->stack_idx++;
id16_map->stack[id16_map->stack_idx] = val16;
}
uint32 /* Returns number of failures to allocate an unique id16 */
id16_map_failures(void * id16_map_hndl)
{
ASSERT(id16_map_hndl != NULL);
return ((id16_map_t *)id16_map_hndl)->failures;
}
bool
id16_map_audit(void * id16_map_hndl)
{
int idx;
int insane = 0;
id16_map_t * id16_map;
ASSERT(id16_map_hndl != NULL);
id16_map = (id16_map_t *)id16_map_hndl;
ASSERT(id16_map->stack_idx >= -1);
ASSERT(id16_map->stack_idx < (int)id16_map->total);
if (id16_map->start == ID16_UNDEFINED)
goto done;
for (idx = 0; idx <= id16_map->stack_idx; idx++) {
ASSERT(id16_map->stack[idx] >= id16_map->start);
ASSERT(id16_map->stack[idx] < (id16_map->start + id16_map->total));
#if defined(BCM_DBG) && defined(BCM_DBG_ID16)
if (id16_map->dbg) {
uint16 val16 = id16_map->stack[idx];
if (((id16_map_dbg_t *)(id16_map->dbg))->avail[val16] != TRUE) {
insane |= 1;
ID16_MAP_MSG(("id16_map<%p>: stack_idx %u invalid val16 %u\n",
OSL_OBFUSATE_BUF(id16_map_hndl), idx, val16));
}
}
#endif /* BCM_DBG && BCM_DBG_ID16 */
}
#if defined(BCM_DBG) && defined(BCM_DBG_ID16)
if (id16_map->dbg) {
uint16 avail = 0; /* Audit available ids counts */
for (idx = 0; idx < id16_map_dbg->total; idx++) {
if (((id16_map_dbg_t *)(id16_map->dbg))->avail[idx16] == TRUE)
avail++;
}
if (avail && (avail != (id16_map->stack_idx + 1))) {
insane |= 1;
ID16_MAP_MSG(("id16_map<%p>: avail %u stack_idx %u\n",
OSL_OBFUSCATE_BUF(id16_map_hndl),
avail, id16_map->stack_idx));
}
}
#endif /* BCM_DBG && BCM_DBG_ID16 */
done:
/* invoke any other system audits */
return (!!insane);
}
/* END: Simple id16 allocator */
void
BCMATTACHFN(dll_pool_detach)(void * osh, dll_pool_t * pool, uint16 elems_max, uint16 elem_size)
{
uint32 mem_size;
mem_size = sizeof(dll_pool_t) + (elems_max * elem_size);
if (pool)
MFREE(osh, pool, mem_size);
}
dll_pool_t *
BCMATTACHFN(dll_pool_init)(void * osh, uint16 elems_max, uint16 elem_size)
{
uint32 mem_size, i;
dll_pool_t * dll_pool_p;
dll_t * elem_p;
ASSERT(elem_size > sizeof(dll_t));
mem_size = sizeof(dll_pool_t) + (elems_max * elem_size);
if ((dll_pool_p = (dll_pool_t *)MALLOCZ(osh, mem_size)) == NULL) {
ASSERT(0);
return dll_pool_p;
}
dll_init(&dll_pool_p->free_list);
dll_pool_p->elems_max = elems_max;
dll_pool_p->elem_size = elem_size;
elem_p = dll_pool_p->elements;
for (i = 0; i < elems_max; i++) {
dll_append(&dll_pool_p->free_list, elem_p);
elem_p = (dll_t *)((uintptr)elem_p + elem_size);
}
dll_pool_p->free_count = elems_max;
return dll_pool_p;
}
void *
dll_pool_alloc(dll_pool_t * dll_pool_p)
{
dll_t * elem_p;
if (dll_pool_p->free_count == 0) {
ASSERT(dll_empty(&dll_pool_p->free_list));
return NULL;
}
elem_p = dll_head_p(&dll_pool_p->free_list);
dll_delete(elem_p);
dll_pool_p->free_count -= 1;
return (void *)elem_p;
}
void
BCMPOSTTRAPFN(dll_pool_free)(dll_pool_t * dll_pool_p, void * elem_p)
{
dll_t * node_p = (dll_t *)elem_p;
dll_prepend(&dll_pool_p->free_list, node_p);
dll_pool_p->free_count += 1;
}
void
dll_pool_free_tail(dll_pool_t * dll_pool_p, void * elem_p)
{
dll_t * node_p = (dll_t *)elem_p;
dll_append(&dll_pool_p->free_list, node_p);
dll_pool_p->free_count += 1;
}
#ifdef BCMDBG
void
dll_pool_dump(dll_pool_t * dll_pool_p, dll_elem_dump elem_dump)
{
dll_t * elem_p;
dll_t * next_p;
printf("dll_pool<%p> free_count<%u> elems_max<%u> elem_size<%u>\n",
OSL_OBFUSCATE_BUF(dll_pool_p), dll_pool_p->free_count,
dll_pool_p->elems_max, dll_pool_p->elem_size);
for (elem_p = dll_head_p(&dll_pool_p->free_list);
!dll_end(&dll_pool_p->free_list, elem_p); elem_p = next_p) {
next_p = dll_next_p(elem_p);
printf("\telem<%p>\n", OSL_OBFUSCATE_BUF(elem_p));
if (elem_dump != NULL)
elem_dump((void *)elem_p);
}
}
#endif /* BCMDBG */
#endif /* BCMDRIVER */
#if defined(BCMDRIVER) || defined(WL_UNITTEST)
/* triggers bcm_bprintf to print to kernel log */
bool bcm_bprintf_bypass = FALSE;
/* Initialization of bcmstrbuf structure */
void
BCMPOSTTRAPFN(bcm_binit)(struct bcmstrbuf *b, char *buf, uint size)
{
b->origsize = b->size = size;
b->origbuf = b->buf = buf;
if (size > 0) {
buf[0] = '\0';
}
}
/* Buffer sprintf wrapper to guard against buffer overflow */
int
BCMPOSTTRAPFN(bcm_bprintf)(struct bcmstrbuf *b, const char *fmt, ...)
{
va_list ap;
int r;
va_start(ap, fmt);
r = vsnprintf(b->buf, b->size, fmt, ap);
if (bcm_bprintf_bypass == TRUE) {
printf("%s", b->buf);
goto exit;
}
/* Non Ansi C99 compliant returns -1,
* Ansi compliant return r >= b->size,
* bcmstdlib returns 0, handle all
*/
/* r == 0 is also the case when strlen(fmt) is zero.
* typically the case when "" is passed as argument.
*/
if ((r == -1) || (r >= (int)b->size)) {
b->size = 0;
} else {
b->size -= r;
b->buf += r;
}
exit:
va_end(ap);
return r;
}
void
bcm_bprhex(struct bcmstrbuf *b, const char *msg, bool newline, const uint8 *buf, uint len)
{
uint i;
if (msg != NULL && msg[0] != '\0')
bcm_bprintf(b, "%s", msg);
for (i = 0u; i < len; i ++)
bcm_bprintf(b, "%02X", buf[i]);
if (newline)
bcm_bprintf(b, "\n");
}
void
bcm_inc_bytes(uchar *num, int num_bytes, uint8 amount)
{
int i;
for (i = 0; i < num_bytes; i++) {
num[i] += amount;
if (num[i] >= amount)
break;
amount = 1;
}
}
int
bcm_cmp_bytes(const uchar *arg1, const uchar *arg2, uint8 nbytes)
{
int i;
for (i = nbytes - 1; i >= 0; i--) {
if (arg1[i] != arg2[i])
return (arg1[i] - arg2[i]);
}
return 0;
}
void
bcm_print_bytes(const char *name, const uchar *data, uint len)
{
uint i;
int per_line = 0;
printf("%s: %d \n", name ? name : "", len);
for (i = 0u; i < len; i++) {
printf("%02x ", *data++);
per_line++;
if (per_line == 16) {
per_line = 0;
printf("\n");
}
}
printf("\n");
}
/* Search for an IE having a specific tag and an OUI type from a buffer.
* tlvs: buffer to search for IE
* tlvs_len: buffer length
* tag: IE tag
* oui: Specific OUI to match
* oui_len: length of the OUI
* type: OUI type
* Return the matched IE, else return null.
*/
bcm_tlv_t *
bcm_find_ie(const uint8* tlvs, uint tlvs_len, uint8 tag, uint8 oui_len,
const char *oui, uint8 type)
{
const bcm_tlv_t *ie;
COV_TAINTED_DATA_SINK(tlvs_len);
COV_NEG_SINK(tlvs_len);
/* Walk through the IEs looking for an OUI match */
while ((ie = bcm_parse_tlvs_advance(&tlvs, &tlvs_len, tag,
BCM_TLV_ADVANCE_TO))) {
if ((ie->len > oui_len) &&
!bcmp(ie->data, oui, oui_len) &&
ie->data[oui_len] == type) {
COV_TAINTED_DATA_ARG(ie);
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
return (bcm_tlv_t *)(ie); /* a match */
GCC_DIAGNOSTIC_POP();
}
/* Point to the next IE */
bcm_tlv_buffer_advance_past(ie, &tlvs, &tlvs_len);
}
return NULL;
}
/* Look for vendor-specific IE with specified OUI and optional type */
bcm_tlv_t *
bcm_find_vendor_ie(const void *tlvs, uint tlvs_len, const char *voui, uint8 *type, uint type_len)
{
const bcm_tlv_t *ie;
uint8 ie_len;
COV_TAINTED_DATA_SINK(tlvs_len);
COV_NEG_SINK(tlvs_len);
ie = (const bcm_tlv_t*)tlvs;
/* make sure we are looking at a valid IE */
if (ie == NULL || !bcm_valid_tlv(ie, tlvs_len)) {
return NULL;
}
/* Walk through the IEs looking for an OUI match */
do {
ie_len = ie->len;
if ((ie->id == DOT11_MNG_VS_ID) &&
(ie_len >= (DOT11_OUI_LEN + type_len)) &&
!bcmp(ie->data, voui, DOT11_OUI_LEN))
{
/* compare optional type */
if (type_len == 0 ||
!bcmp(&ie->data[DOT11_OUI_LEN], type, type_len)) {
COV_TAINTED_DATA_ARG(ie);
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
return (bcm_tlv_t *)(ie); /* a match */
GCC_DIAGNOSTIC_POP();
}
}
} while ((ie = bcm_next_tlv(ie, &tlvs_len)) != NULL);
return NULL;
}
#if defined(WLTINYDUMP) || defined(BCMDBG) || defined(WLMSG_INFORM) || \
defined(WLMSG_ASSOC) || defined(WLMSG_PRPKT) || defined(WLMSG_WSEC)
#define SSID_FMT_BUF_LEN ((4 * DOT11_MAX_SSID_LEN) + 1)
int
bcm_format_ssid(char* buf, const uchar ssid[], uint ssid_len)
{
uint i, c;
char *p = buf;
char *endp = buf + SSID_FMT_BUF_LEN;
if (ssid_len > DOT11_MAX_SSID_LEN) ssid_len = DOT11_MAX_SSID_LEN;
for (i = 0; i < ssid_len; i++) {
c = (uint)ssid[i];
if (c == '\\') {
*p++ = '\\';
*p++ = '\\';
} else if (bcm_isprint((uchar)c)) {
*p++ = (char)c;
} else {
p += snprintf(p, (endp - p), "\\x%02X", c);
}
}
*p = '\0';
ASSERT(p < endp);
return (int)(p - buf);
}
#endif /* WLTINYDUMP || BCMDBG || WLMSG_INFORM || WLMSG_ASSOC || WLMSG_PRPKT */
#endif /* BCMDRIVER || WL_UNITTEST */
/* Masking few bytes of MAC address per customer in all prints/eventlogs. */
int
BCMRAMFN(bcm_addrmask_set)(int enable)
{
#ifdef PRIVACY_MASK
struct ether_addr *privacy = privacy_addrmask_get();
if (enable) {
/* apply mask as (For SS)
* orig : 12:34:56:78:90:ab
* masked : 12:xx:xx:xx:x0:ab
*/
privacy->octet[1] = privacy->octet[2] =
privacy->octet[3] = 0;
privacy->octet[0] = privacy->octet[5] = 0xff;
privacy->octet[4] = 0x0f;
} else
{
/* No masking. All are 0xff. */
memcpy(privacy, &ether_bcast, sizeof(struct ether_addr));
}
return BCME_OK;
#else
BCM_REFERENCE(enable);
return BCME_UNSUPPORTED;
#endif /* PRIVACY_MASK */
}
int
bcm_addrmask_get(int *val)
{
#ifdef PRIVACY_MASK
struct ether_addr *privacy = privacy_addrmask_get();
if (!eacmp(&ether_bcast, privacy)) {
*val = FALSE;
} else {
*val = TRUE;
}
return BCME_OK;
#else
BCM_REFERENCE(val);
return BCME_UNSUPPORTED;
#endif
}
uint64
BCMRAMFN(bcm_ether_ntou64)(const struct ether_addr *ea)
{
uint64 mac;
struct ether_addr addr;
memcpy(&addr, ea, sizeof(struct ether_addr));
#ifdef PRIVACY_MASK
struct ether_addr *privacy = privacy_addrmask_get();
if (!ETHER_ISMULTI(ea)) {
*(uint32*)(&addr.octet[0]) &= *((uint32*)&privacy->octet[0]);
*(uint16*)(&addr.octet[4]) &= *((uint16*)&privacy->octet[4]);
}
#endif /* PRIVACY_MASK */
mac = ((uint64)HTON16(*((const uint16*)&addr.octet[4]))) << 32 |
HTON32(*((const uint32*)&addr.octet[0]));
return (mac);
}
char *
bcm_ether_ntoa(const struct ether_addr *ea, char *buf)
{
static const char hex[] =
{
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
const uint8 *octet = ea->octet;
char *p = buf;
int i;
for (i = 0; i < 6; i++, octet++) {
*p++ = hex[(*octet >> 4) & 0xf];
*p++ = hex[*octet & 0xf];
*p++ = ':';
}
*(p-1) = '\0';
return (buf);
}
/* Find the position of first bit set
* in the given number.
*/
int
bcm_find_fsb(uint32 num)
{
uint8 pos = 0;
if (!num)
return pos;
while (!(num & 1)) {
num >>= 1;
pos++;
}
return (pos+1);
}
/* TODO: need to pass in the buffer length for validation check */
char *
bcm_ip_ntoa(struct ipv4_addr *ia, char *buf)
{
snprintf(buf, 16, "%d.%d.%d.%d",
ia->addr[0], ia->addr[1], ia->addr[2], ia->addr[3]);
return (buf);
}
/* TODO: need to pass in the buffer length for validation check */
char *
bcm_ipv6_ntoa(void *ipv6, char *buf)
{
/* Implementing RFC 5952 Sections 4 + 5 */
/* Not thoroughly tested */
uint16 tmp[8];
uint16 *a = &tmp[0];
char *p = buf;
int i, i_max = -1, cnt = 0, cnt_max = 1;
uint8 *a4 = NULL;
memcpy((uint8 *)&tmp[0], (uint8 *)ipv6, IPV6_ADDR_LEN);
for (i = 0; i < IPV6_ADDR_LEN/2; i++) {
if (a[i]) {
if (cnt > cnt_max) {
cnt_max = cnt;
i_max = i - cnt;
}
cnt = 0;
} else
cnt++;
}
if (cnt > cnt_max) {
cnt_max = cnt;
i_max = i - cnt;
}
if (i_max == 0 &&
/* IPv4-translated: ::ffff:0:a.b.c.d */
((cnt_max == 4 && a[4] == 0xffff && a[5] == 0) ||
/* IPv4-mapped: ::ffff:a.b.c.d */
(cnt_max == 5 && a[5] == 0xffff)))
a4 = (uint8*) (a + 6);
for (i = 0; i < IPV6_ADDR_LEN/2; i++) {
if ((uint8*) (a + i) == a4) {
snprintf(p, 17, ":%u.%u.%u.%u", a4[0], a4[1], a4[2], a4[3]);
break;
} else if (i == i_max) {
*p++ = ':';
i += cnt_max - 1;
p[0] = ':';
p[1] = '\0';
} else {
if (i)
*p++ = ':';
p += snprintf(p, 8, "%x", ntoh16(a[i]));
}
}
return buf;
}
#if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS)
const unsigned char bcm_ctype[256] = {
_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 0-7 */
_BCM_C, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C|_BCM_S, _BCM_C,
_BCM_C, /* 8-15 */
_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 16-23 */
_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C,_BCM_C, /* 24-31 */
_BCM_S|_BCM_SP,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 32-39 */
_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 40-47 */
_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D,_BCM_D, /* 48-55 */
_BCM_D,_BCM_D,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 56-63 */
_BCM_P, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X, _BCM_U|_BCM_X,
_BCM_U|_BCM_X, _BCM_U, /* 64-71 */
_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 72-79 */
_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U,_BCM_U, /* 80-87 */
_BCM_U,_BCM_U,_BCM_U,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_P, /* 88-95 */
_BCM_P, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X, _BCM_L|_BCM_X,
_BCM_L|_BCM_X, _BCM_L, /* 96-103 */
_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 104-111 */
_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L,_BCM_L, /* 112-119 */
_BCM_L,_BCM_L,_BCM_L,_BCM_P,_BCM_P,_BCM_P,_BCM_P,_BCM_C, /* 120-127 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 128-143 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 144-159 */
_BCM_S|_BCM_SP, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P,
_BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 160-175 */
_BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P,
_BCM_P, _BCM_P, _BCM_P, _BCM_P, _BCM_P, /* 176-191 */
_BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U,
_BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, /* 192-207 */
_BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_P, _BCM_U, _BCM_U, _BCM_U,
_BCM_U, _BCM_U, _BCM_U, _BCM_U, _BCM_L, /* 208-223 */
_BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L,
_BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, /* 224-239 */
_BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_P, _BCM_L, _BCM_L, _BCM_L,
_BCM_L, _BCM_L, _BCM_L, _BCM_L, _BCM_L /* 240-255 */
};
uint64
bcm_strtoull(const char *cp, char **endp, uint base)
{
uint64 result, last_result = 0, value;
bool minus;
minus = FALSE;
while (bcm_isspace(*cp))
cp++;
if (cp[0] == '+')
cp++;
else if (cp[0] == '-') {
minus = TRUE;
cp++;
}
if (base == 0) {
if (cp[0] == '0') {
if ((cp[1] == 'x') || (cp[1] == 'X')) {
base = 16;
cp = &cp[2];
} else {
base = 8;
cp = &cp[1];
}
} else
base = 10;
} else if (base == 16 && (cp[0] == '0') && ((cp[1] == 'x') || (cp[1] == 'X'))) {
cp = &cp[2];
}
result = 0;
while (bcm_isxdigit(*cp) &&
(value = bcm_isdigit(*cp) ? *cp-'0' : bcm_toupper(*cp)-'A'+10) < base) {
result = result*base + value;
/* Detected overflow */
if (result < last_result && !minus) {
if (endp) {
/* Go to the end of current number */
while (bcm_isxdigit(*cp)) {
cp++;
}
*endp = DISCARD_QUAL(cp, char);
}
return (ulong)-1;
}
last_result = result;
cp++;
}
if (minus)
result = (ulong)(-(long)result);
if (endp)
*endp = DISCARD_QUAL(cp, char);
return (result);
}
ulong
bcm_strtoul(const char *cp, char **endp, uint base)
{
return (ulong) bcm_strtoull(cp, endp, base);
}
int
bcm_atoi(const char *s)
{
return (int)bcm_strtoul(s, NULL, 10);
}
/* return pointer to location of substring 'needle' in 'haystack' */
char *
bcmstrstr(const char *haystack, const char *needle)
{
uint len, nlen;
uint i;
if ((haystack == NULL) || (needle == NULL))
return DISCARD_QUAL(haystack, char);
nlen = (uint)strlen(needle);
if (strlen(haystack) < nlen) {
return NULL;
}
len = (uint)strlen(haystack) - nlen + 1u;
for (i = 0u; i < len; i++)
if (memcmp(needle, &haystack[i], nlen) == 0)
return DISCARD_QUAL(&haystack[i], char);
return (NULL);
}
char *
bcmstrnstr(const char *s, uint s_len, const char *substr, uint substr_len)
{
for (; s_len >= substr_len; s++, s_len--)
if (strncmp(s, substr, substr_len) == 0)
return DISCARD_QUAL(s, char);
return NULL;
}
char *
bcmstrcat(char *dest, const char *src)
{
char *p;
p = dest + strlen(dest);
while ((*p++ = *src++) != '\0')
;
return (dest);
}
char *
bcmstrncat(char *dest, const char *src, uint size)
{
char *endp;
char *p;
p = dest + strlen(dest);
endp = p + size;
while (p != endp && (*p++ = *src++) != '\0')
;
return (dest);
}
/****************************************************************************
* Function: bcmstrtok
*
* Purpose:
* Tokenizes a string. This function is conceptually similiar to ANSI C strtok(),
* but allows strToken() to be used by different strings or callers at the same
* time. Each call modifies '*string' by substituting a NULL character for the
* first delimiter that is encountered, and updates 'string' to point to the char
* after the delimiter. Leading delimiters are skipped.
*
* Parameters:
* string (mod) Ptr to string ptr, updated by token.
* delimiters (in) Set of delimiter characters.
* tokdelim (out) Character that delimits the returned token. (May
* be set to NULL if token delimiter is not required).
*
* Returns: Pointer to the next token found. NULL when no more tokens are found.
*****************************************************************************
*/
char *
bcmstrtok(char **string, const char *delimiters, char *tokdelim)
{
unsigned char *str;
unsigned long map[8];
int count;
char *nextoken;
if (tokdelim != NULL) {
/* Prime the token delimiter */
*tokdelim = '\0';
}
/* Clear control map */
for (count = 0; count < 8; count++) {
map[count] = 0;
}
/* Set bits in delimiter table */
do {
map[*delimiters >> 5] |= (1 << (*delimiters & 31));
}
while (*delimiters++);
str = (unsigned char*)*string;
/* Find beginning of token (skip over leading delimiters). Note that
* there is no token iff this loop sets str to point to the terminal
* null (*str == '\0')
*/
while (((map[*str >> 5] & (1 << (*str & 31))) && *str) || (*str == ' ')) {
str++;
}
nextoken = (char*)str;
/* Find the end of the token. If it is not the end of the string,
* put a null there.
*/
for (; *str; str++) {
if (map[*str >> 5] & (1 << (*str & 31))) {
if (tokdelim != NULL) {
*tokdelim = *str;
}
*str++ = '\0';
break;
}
}
*string = (char*)str;
/* Determine if a token has been found. */
if (nextoken == (char *) str) {
return NULL;
}
else {
return nextoken;
}
}
#define xToLower(C) \
((C >= 'A' && C <= 'Z') ? (char)((int)C - (int)'A' + (int)'a') : C)
/****************************************************************************
* Function: bcmstricmp
*
* Purpose: Compare to strings case insensitively.
*
* Parameters: s1 (in) First string to compare.
* s2 (in) Second string to compare.
*
* Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if
* t1 > t2, when ignoring case sensitivity.
*****************************************************************************
*/
int
bcmstricmp(const char *s1, const char *s2)
{
char dc, sc;
while (*s2 && *s1) {
dc = xToLower(*s1);
sc = xToLower(*s2);
if (dc < sc) return -1;
if (dc > sc) return 1;
s1++;
s2++;
}
if (*s1 && !*s2) return 1;
if (!*s1 && *s2) return -1;
return 0;
}
/****************************************************************************
* Function: bcmstrnicmp
*
* Purpose: Compare to strings case insensitively, upto a max of 'cnt'
* characters.
*
* Parameters: s1 (in) First string to compare.
* s2 (in) Second string to compare.
* cnt (in) Max characters to compare.
*
* Returns: Return 0 if the two strings are equal, -1 if t1 < t2 and 1 if
* t1 > t2, when ignoring case sensitivity.
*****************************************************************************
*/
int
bcmstrnicmp(const char* s1, const char* s2, int cnt)
{
char dc, sc;
while (*s2 && *s1 && cnt) {
dc = xToLower(*s1);
sc = xToLower(*s2);
if (dc < sc) return -1;
if (dc > sc) return 1;
s1++;
s2++;
cnt--;
}
if (!cnt) return 0;
if (*s1 && !*s2) return 1;
if (!*s1 && *s2) return -1;
return 0;
}
/* parse a xx:xx:xx:xx:xx:xx format ethernet address */
int
bcm_ether_atoe(const char *p, struct ether_addr *ea)
{
int i = 0;
char *ep;
for (;;) {
ea->octet[i++] = (char) bcm_strtoul(p, &ep, 16);
p = ep;
if (!*p++ || i == 6)
break;
}
return (i == 6);
}
/* parse a nnn.nnn.nnn.nnn format IPV4 address */
int
bcm_atoipv4(const char *p, struct ipv4_addr *ip)
{
int i = 0;
char *c;
for (;;) {
ip->addr[i++] = (uint8)bcm_strtoul(p, &c, 0);
if (*c++ != '.' || i == IPV4_ADDR_LEN)
break;
p = c;
}
return (i == IPV4_ADDR_LEN);
}
#endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */
const struct ether_addr ether_bcast = {{255, 255, 255, 255, 255, 255}};
const struct ether_addr ether_null = {{0, 0, 0, 0, 0, 0}};
const struct ether_addr ether_ipv6_mcast = {{0x33, 0x33, 0x00, 0x00, 0x00, 0x01}};
int
ether_isbcast(const void *ea)
{
return (memcmp(ea, &ether_bcast, sizeof(struct ether_addr)) == 0);
}
int
BCMPOSTTRAPFN(ether_isnulladdr)(const void *ea)
{
const uint8 *ea8 = (const uint8 *)ea;
return !(ea8[5] || ea8[4] || ea8[3] || ea8[2] || ea8[1] || ea8[0]);
}
#if defined(CONFIG_USBRNDIS_RETAIL) || defined(NDIS_MINIPORT_DRIVER)
/* registry routine buffer preparation utility functions:
* parameter order is like strlcpy, but returns count
* of bytes copied. Minimum bytes copied is null char(1)/wchar(2)
*/
ulong
wchar2ascii(char *abuf, ushort *wbuf, ushort wbuflen, ulong abuflen)
{
ulong copyct = 1;
ushort i;
if (abuflen == 0)
return 0;
/* wbuflen is in bytes */
wbuflen /= sizeof(ushort);
for (i = 0; i < wbuflen; ++i) {
if (--abuflen == 0)
break;
*abuf++ = (char) *wbuf++;
++copyct;
}
*abuf = '\0';
return copyct;
}
#endif /* CONFIG_USBRNDIS_RETAIL || NDIS_MINIPORT_DRIVER */
#ifdef BCM_OBJECT_TRACE
#define BCM_OBJECT_MERGE_SAME_OBJ 0
/* some place may add / remove the object to trace list for Linux: */
/* add: osl_alloc_skb dev_alloc_skb skb_realloc_headroom dhd_start_xmit */
/* remove: osl_pktfree dev_kfree_skb netif_rx */
#if defined(__linux__)
#define BCM_OBJDBG_COUNT (1024 * 100)
static spinlock_t dbgobj_lock;
#define BCM_OBJDBG_LOCK_INIT() spin_lock_init(&dbgobj_lock)
#define BCM_OBJDBG_LOCK_DESTROY()
#define BCM_OBJDBG_LOCK spin_lock_irqsave
#define BCM_OBJDBG_UNLOCK spin_unlock_irqrestore
#else
#define BCM_OBJDBG_COUNT (256)
#define BCM_OBJDBG_LOCK_INIT()
#define BCM_OBJDBG_LOCK_DESTROY()
#define BCM_OBJDBG_LOCK(x, y)
#define BCM_OBJDBG_UNLOCK(x, y)
#endif /* else OS */
#define BCM_OBJDBG_ADDTOHEAD 0
#define BCM_OBJDBG_ADDTOTAIL 1
#define BCM_OBJDBG_CALLER_LEN 32
struct bcm_dbgobj {
struct bcm_dbgobj *prior;
struct bcm_dbgobj *next;
uint32 flag;
void *obj;
uint32 obj_sn;
uint32 obj_state;
uint32 line;
char caller[BCM_OBJDBG_CALLER_LEN];
};
static struct bcm_dbgobj *dbgobj_freehead = NULL;
static struct bcm_dbgobj *dbgobj_freetail = NULL;
static struct bcm_dbgobj *dbgobj_objhead = NULL;
static struct bcm_dbgobj *dbgobj_objtail = NULL;
static uint32 dbgobj_sn = 0;
static int dbgobj_count = 0;
static struct bcm_dbgobj bcm_dbg_objs[BCM_OBJDBG_COUNT];
void
bcm_object_trace_init(void)
{
int i = 0;
BCM_OBJDBG_LOCK_INIT();
memset(&bcm_dbg_objs, 0x00, sizeof(struct bcm_dbgobj) * BCM_OBJDBG_COUNT);
dbgobj_freehead = &bcm_dbg_objs[0];
dbgobj_freetail = &bcm_dbg_objs[BCM_OBJDBG_COUNT - 1];
for (i = 0; i < BCM_OBJDBG_COUNT; ++i) {
bcm_dbg_objs[i].next = (i == (BCM_OBJDBG_COUNT - 1)) ?
dbgobj_freehead : &bcm_dbg_objs[i + 1];
bcm_dbg_objs[i].prior = (i == 0) ?
dbgobj_freetail : &bcm_dbg_objs[i - 1];
}
}
void
bcm_object_trace_deinit(void)
{
if (dbgobj_objhead || dbgobj_objtail) {
printf("bcm_object_trace_deinit: not all objects are released\n");
ASSERT(0);
}
BCM_OBJDBG_LOCK_DESTROY();
}
static void
bcm_object_rm_list(struct bcm_dbgobj **head, struct bcm_dbgobj **tail,
struct bcm_dbgobj *dbgobj)
{
if ((dbgobj == *head) && (dbgobj == *tail)) {
*head = NULL;
*tail = NULL;
} else if (dbgobj == *head) {
*head = (*head)->next;
} else if (dbgobj == *tail) {
*tail = (*tail)->prior;
}
dbgobj->next->prior = dbgobj->prior;
dbgobj->prior->next = dbgobj->next;
}
static void
bcm_object_add_list(struct bcm_dbgobj **head, struct bcm_dbgobj **tail,
struct bcm_dbgobj *dbgobj, int addtotail)
{
if (!(*head) && !(*tail)) {
*head = dbgobj;
*tail = dbgobj;
dbgobj->next = dbgobj;
dbgobj->prior = dbgobj;
} else if ((*head) && (*tail)) {
(*tail)->next = dbgobj;
(*head)->prior = dbgobj;
dbgobj->next = *head;
dbgobj->prior = *tail;
if (addtotail == BCM_OBJDBG_ADDTOTAIL)
*tail = dbgobj;
else
*head = dbgobj;
} else {
ASSERT(0); /* can't be this case */
}
}
static INLINE void
bcm_object_movetoend(struct bcm_dbgobj **head, struct bcm_dbgobj **tail,
struct bcm_dbgobj *dbgobj, int movetotail)
{
if ((*head) && (*tail)) {
if (movetotail == BCM_OBJDBG_ADDTOTAIL) {
if (dbgobj != (*tail)) {
bcm_object_rm_list(head, tail, dbgobj);
bcm_object_add_list(head, tail, dbgobj, movetotail);
}
} else {
if (dbgobj != (*head)) {
bcm_object_rm_list(head, tail, dbgobj);
bcm_object_add_list(head, tail, dbgobj, movetotail);
}
}
} else {
ASSERT(0); /* can't be this case */
}
}
void
bcm_object_trace_opr(void *obj, uint32 opt, const char *caller, int line)
{
struct bcm_dbgobj *dbgobj;
unsigned long flags;
BCM_REFERENCE(flags);
BCM_OBJDBG_LOCK(&dbgobj_lock, flags);
if (opt == BCM_OBJDBG_ADD_PKT ||
opt == BCM_OBJDBG_ADD) {
dbgobj = dbgobj_objtail;
while (dbgobj) {
if (dbgobj->obj == obj) {
printf("bcm_object_trace_opr: obj %p allocated from %s(%d),"
" allocate again from %s(%d)\n",
dbgobj->obj,
dbgobj->caller, dbgobj->line,
caller, line);
ASSERT(0);
goto EXIT;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_objtail)
break;
}
#if BCM_OBJECT_MERGE_SAME_OBJ
dbgobj = dbgobj_freetail;
while (dbgobj) {
if (dbgobj->obj == obj) {
goto FREED_ENTRY_FOUND;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_freetail)
break;
}
#endif /* BCM_OBJECT_MERGE_SAME_OBJ */
dbgobj = dbgobj_freehead;
#if BCM_OBJECT_MERGE_SAME_OBJ
FREED_ENTRY_FOUND:
#endif /* BCM_OBJECT_MERGE_SAME_OBJ */
if (!dbgobj) {
printf("bcm_object_trace_opr: already got %d objects ?????????????????\n",
BCM_OBJDBG_COUNT);
ASSERT(0);
goto EXIT;
}
bcm_object_rm_list(&dbgobj_freehead, &dbgobj_freetail, dbgobj);
dbgobj->obj = obj;
strlcpy(dbgobj->caller, caller, sizeof(dbgobj->caller));
dbgobj->line = line;
dbgobj->flag = 0;
if (opt == BCM_OBJDBG_ADD_PKT) {
dbgobj->obj_sn = dbgobj_sn++;
dbgobj->obj_state = 0;
/* first 4 bytes is pkt sn */
if (((unsigned long)PKTTAG(obj)) & 0x3)
printf("pkt tag address not aligned by 4: %p\n", PKTTAG(obj));
*(uint32*)PKTTAG(obj) = dbgobj->obj_sn;
}
bcm_object_add_list(&dbgobj_objhead, &dbgobj_objtail, dbgobj,
BCM_OBJDBG_ADDTOTAIL);
dbgobj_count++;
} else if (opt == BCM_OBJDBG_REMOVE) {
dbgobj = dbgobj_objtail;
while (dbgobj) {
if (dbgobj->obj == obj) {
if (dbgobj->flag) {
printf("bcm_object_trace_opr: rm flagged obj %p"
" flag 0x%08x from %s(%d)\n",
obj, dbgobj->flag, caller, line);
}
bcm_object_rm_list(&dbgobj_objhead, &dbgobj_objtail, dbgobj);
bzero(dbgobj->caller, sizeof(dbgobj->caller));
strlcpy(dbgobj->caller, caller, sizeof(dbgobj->caller));
dbgobj->line = line;
bcm_object_add_list(&dbgobj_freehead, &dbgobj_freetail, dbgobj,
BCM_OBJDBG_ADDTOTAIL);
dbgobj_count--;
goto EXIT;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_objtail)
break;
}
dbgobj = dbgobj_freetail;
while (dbgobj && dbgobj->obj) {
if (dbgobj->obj == obj) {
printf("bcm_object_trace_opr: obj %p already freed"
" from from %s(%d),"
" try free again from %s(%d)\n",
obj,
dbgobj->caller, dbgobj->line,
caller, line);
//ASSERT(0); /* release same obj more than one time? */
goto EXIT;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_freetail)
break;
}
printf("bcm_object_trace_opr: ################### release none-existing"
" obj %p from %s(%d)\n",
obj, caller, line);
//ASSERT(0); /* release same obj more than one time? */
}
EXIT:
BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags);
return;
}
void
bcm_object_trace_upd(void *obj, void *obj_new)
{
struct bcm_dbgobj *dbgobj;
unsigned long flags;
BCM_REFERENCE(flags);
BCM_OBJDBG_LOCK(&dbgobj_lock, flags);
dbgobj = dbgobj_objtail;
while (dbgobj) {
if (dbgobj->obj == obj) {
dbgobj->obj = obj_new;
if (dbgobj != dbgobj_objtail) {
bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail,
dbgobj, BCM_OBJDBG_ADDTOTAIL);
}
goto EXIT;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_objtail)
break;
}
EXIT:
BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags);
return;
}
void
bcm_object_trace_chk(void *obj, uint32 chksn, uint32 sn,
const char *caller, int line)
{
struct bcm_dbgobj *dbgobj;
unsigned long flags;
BCM_REFERENCE(flags);
BCM_OBJDBG_LOCK(&dbgobj_lock, flags);
dbgobj = dbgobj_objtail;
while (dbgobj) {
if ((dbgobj->obj == obj) &&
((!chksn) || (dbgobj->obj_sn == sn))) {
#if 0
printf("bcm_object_trace_chk: (%s:%d) obj %p was allocated from %s(%d)\n",
caller, line,
dbgobj->obj, dbgobj->caller, dbgobj->line);
#endif /* #if 0 */
if (dbgobj != dbgobj_objtail) {
bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail,
dbgobj, BCM_OBJDBG_ADDTOTAIL);
}
goto EXIT;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_objtail)
break;
}
dbgobj = dbgobj_freetail;
while (dbgobj) {
if ((dbgobj->obj == obj) &&
((!chksn) || (dbgobj->obj_sn == sn))) {
printf("bcm_object_trace_chk: (%s:%d) obj %p (sn %d state %d)"
" was freed from %s(%d)\n",
caller, line,
dbgobj->obj, dbgobj->obj_sn, dbgobj->obj_state,
dbgobj->caller, dbgobj->line);
goto EXIT;
}
else if (dbgobj->obj == NULL) {
break;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_freetail)
break;
}
printf("bcm_object_trace_chk: obj %p not found, check from %s(%d), chksn %s, sn %d\n",
obj, caller, line, chksn ? "yes" : "no", sn);
dbgobj = dbgobj_objtail;
while (dbgobj) {
printf("bcm_object_trace_chk: (%s:%d) obj %p sn %d was allocated from %s(%d)\n",
caller, line,
dbgobj->obj, dbgobj->obj_sn, dbgobj->caller, dbgobj->line);
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_objtail)
break;
}
EXIT:
BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags);
return;
}
void
bcm_object_feature_set(void *obj, uint32 type, uint32 value)
{
struct bcm_dbgobj *dbgobj;
unsigned long flags;
BCM_REFERENCE(flags);
BCM_OBJDBG_LOCK(&dbgobj_lock, flags);
dbgobj = dbgobj_objtail;
while (dbgobj) {
if (dbgobj->obj == obj) {
if (type == BCM_OBJECT_FEATURE_FLAG) {
if (value & BCM_OBJECT_FEATURE_CLEAR)
dbgobj->flag &= ~(value);
else
dbgobj->flag |= (value);
} else if (type == BCM_OBJECT_FEATURE_PKT_STATE) {
dbgobj->obj_state = value;
}
if (dbgobj != dbgobj_objtail) {
bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail,
dbgobj, BCM_OBJDBG_ADDTOTAIL);
}
goto EXIT;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_objtail)
break;
}
printf("bcm_object_feature_set: obj %p not found in active list\n", obj);
ASSERT(0);
EXIT:
BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags);
return;
}
int
bcm_object_feature_get(void *obj, uint32 type, uint32 value)
{
int rtn = 0;
struct bcm_dbgobj *dbgobj;
unsigned long flags;
BCM_REFERENCE(flags);
BCM_OBJDBG_LOCK(&dbgobj_lock, flags);
dbgobj = dbgobj_objtail;
while (dbgobj) {
if (dbgobj->obj == obj) {
if (type == BCM_OBJECT_FEATURE_FLAG) {
rtn = (dbgobj->flag & value) & (~BCM_OBJECT_FEATURE_CLEAR);
}
if (dbgobj != dbgobj_objtail) {
bcm_object_movetoend(&dbgobj_objhead, &dbgobj_objtail,
dbgobj, BCM_OBJDBG_ADDTOTAIL);
}
goto EXIT;
}
dbgobj = dbgobj->prior;
if (dbgobj == dbgobj_objtail)
break;
}
printf("bcm_object_feature_get: obj %p not found in active list\n", obj);
ASSERT(0);
EXIT:
BCM_OBJDBG_UNLOCK(&dbgobj_lock, flags);
return rtn;
}
#endif /* BCM_OBJECT_TRACE */
uint8 *
BCMPOSTTRAPFN(bcm_write_tlv)(int type, const void *data, uint datalen, uint8 *dst)
{
uint8 *new_dst = dst;
bcm_tlv_t *dst_tlv = (bcm_tlv_t *)dst;
/* dst buffer should always be valid */
ASSERT(dst);
/* data len must be within valid range */
ASSERT((datalen <= BCM_TLV_MAX_DATA_SIZE));
/* source data buffer pointer should be valid, unless datalen is 0
* meaning no data with this TLV
*/
ASSERT((data != NULL) || (datalen == 0));
/* only do work if the inputs are valid
* - must have a dst to write to AND
* - datalen must be within range AND
* - the source data pointer must be non-NULL if datalen is non-zero
* (this last condition detects datalen > 0 with a NULL data pointer)
*/
if ((dst != NULL) &&
((datalen <= BCM_TLV_MAX_DATA_SIZE)) &&
((data != NULL) || (datalen == 0u))) {
/* write type, len fields */
dst_tlv->id = (uint8)type;
dst_tlv->len = (uint8)datalen;
/* if data is present, copy to the output buffer and update
* pointer to output buffer
*/
if (datalen > 0u) {
memcpy(dst_tlv->data, data, datalen);
}
/* update the output destination poitner to point past
* the TLV written
*/
new_dst = dst + BCM_TLV_HDR_SIZE + datalen;
}
return (new_dst);
}
uint8 *
bcm_write_tlv_ext(uint8 type, uint8 ext, const void *data, uint8 datalen, uint8 *dst)
{
uint8 *new_dst = dst;
bcm_tlv_ext_t *dst_tlv = (bcm_tlv_ext_t *)dst;
/* dst buffer should always be valid */
ASSERT(dst);
/* data len must be within valid range */
ASSERT(datalen <= BCM_TLV_EXT_MAX_DATA_SIZE);
/* source data buffer pointer should be valid, unless datalen is 0
* meaning no data with this TLV
*/
ASSERT((data != NULL) || (datalen == 0));
/* only do work if the inputs are valid
* - must have a dst to write to AND
* - datalen must be within range AND
* - the source data pointer must be non-NULL if datalen is non-zero
* (this last condition detects datalen > 0 with a NULL data pointer)
*/
if ((dst != NULL) &&
(datalen <= BCM_TLV_EXT_MAX_DATA_SIZE) &&
((data != NULL) || (datalen == 0))) {
/* write type, len fields */
dst_tlv->id = (uint8)type;
dst_tlv->ext = ext;
dst_tlv->len = 1 + (uint8)datalen;
/* if data is present, copy to the output buffer and update
* pointer to output buffer
*/
if (datalen > 0) {
memcpy(dst_tlv->data, data, datalen);
}
/* update the output destination poitner to point past
* the TLV written
*/
new_dst = dst + BCM_TLV_EXT_HDR_SIZE + datalen;
}
return (new_dst);
}
uint8 *
BCMPOSTTRAPFN(bcm_write_tlv_safe)(int type, const void *data, uint datalen, uint8 *dst,
uint dst_maxlen)
{
uint8 *new_dst = dst;
if ((datalen <= BCM_TLV_MAX_DATA_SIZE)) {
/* if len + tlv hdr len is more than destlen, don't do anything
* just return the buffer untouched
*/
if ((datalen + BCM_TLV_HDR_SIZE) <= dst_maxlen) {
new_dst = bcm_write_tlv(type, data, datalen, dst);
}
}
return (new_dst);
}
uint8 *
bcm_copy_tlv(const void *src, uint8 *dst)
{
uint8 *new_dst = dst;
const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src;
uint totlen;
ASSERT(dst && src);
if (dst && src) {
totlen = BCM_TLV_HDR_SIZE + src_tlv->len;
memcpy(dst, src_tlv, totlen);
new_dst = dst + totlen;
}
return (new_dst);
}
uint8 *
bcm_copy_tlv_safe(const void *src, uint8 *dst, uint dst_maxlen)
{
uint8 *new_dst = dst;
const bcm_tlv_t *src_tlv = (const bcm_tlv_t *)src;
ASSERT(src);
if (bcm_valid_tlv(src_tlv, dst_maxlen)) {
new_dst = bcm_copy_tlv(src, dst);
}
return (new_dst);
}
#if !defined(BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS)
/*******************************************************************************
* crc8
*
* Computes a crc8 over the input data using the polynomial:
*
* x^8 + x^7 +x^6 + x^4 + x^2 + 1
*
* The caller provides the initial value (either CRC8_INIT_VALUE
* or the previous returned value) to allow for processing of
* discontiguous blocks of data. When generating the CRC the
* caller is responsible for complementing the final return value
* and inserting it into the byte stream. When checking, a final
* return value of CRC8_GOOD_VALUE indicates a valid CRC.
*
* Reference: Dallas Semiconductor Application Note 27
* Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms",
* ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd.,
* ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt
*
* ****************************************************************************
*/
static const uint8 crc8_table[256] = {
0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F
};
#define CRC_INNER_LOOP(n, c, x) \
(c) = ((c) >> 8) ^ crc##n##_table[((c) ^ (x)) & 0xff]
uint8
hndcrc8(
const uint8 *pdata, /* pointer to array of data to process */
uint nbytes, /* number of input data bytes to process */
uint8 crc /* either CRC8_INIT_VALUE or previous return value */
)
{
/* hard code the crc loop instead of using CRC_INNER_LOOP macro
* to avoid the undefined and unnecessary (uint8 >> 8) operation.
*/
while (nbytes-- > 0)
crc = crc8_table[(crc ^ *pdata++) & 0xff];
return crc;
}
/*******************************************************************************
* crc16
*
* Computes a crc16 over the input data using the polynomial:
*
* x^16 + x^12 +x^5 + 1
*
* The caller provides the initial value (either CRC16_INIT_VALUE
* or the previous returned value) to allow for processing of
* discontiguous blocks of data. When generating the CRC the
* caller is responsible for complementing the final return value
* and inserting it into the byte stream. When checking, a final
* return value of CRC16_GOOD_VALUE indicates a valid CRC.
*
* Reference: Dallas Semiconductor Application Note 27
* Williams, Ross N., "A Painless Guide to CRC Error Detection Algorithms",
* ver 3, Aug 1993, ross@guest.adelaide.edu.au, Rocksoft Pty Ltd.,
* ftp://ftp.rocksoft.com/clients/rocksoft/papers/crc_v3.txt
*
* ****************************************************************************
*/
static const uint16 crc16_table[256] = {
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7,
0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E,
0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876,
0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD,
0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5,
0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C,
0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974,
0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB,
0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3,
0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A,
0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72,
0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9,
0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1,
0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738,
0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70,
0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7,
0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF,
0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036,
0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E,
0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5,
0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD,
0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134,
0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C,
0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3,
0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB,
0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232,
0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A,
0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1,
0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9,
0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330,
0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78
};
uint16
hndcrc16(
const uint8 *pdata, /* pointer to array of data to process */
uint nbytes, /* number of input data bytes to process */
uint16 crc /* either CRC16_INIT_VALUE or previous return value */
)
{
while (nbytes-- > 0)
CRC_INNER_LOOP(16, crc, *pdata++);
return crc;
}
static const uint32 crc32_table[256] = {
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};
/*
* crc input is CRC32_INIT_VALUE for a fresh start, or previous return value if
* accumulating over multiple pieces.
*/
uint32
hndcrc32(const uint8 *pdata, uint nbytes, uint32 crc)
{
const uint8 *pend;
pend = pdata + nbytes;
while (pdata < pend)
CRC_INNER_LOOP(32, crc, *pdata++);
return crc;
}
#ifdef NOT_YET
#define CLEN 1499 /* CRC Length */
#define CBUFSIZ (CLEN+4)
#define CNBUFS 5 /* # of bufs */
void
testcrc32(void)
{
uint j, k, l;
uint8 *buf;
uint len[CNBUFS];
uint32 crcr;
uint32 crc32tv[CNBUFS] =
{0xd2cb1faa, 0xd385c8fa, 0xf5b4f3f3, 0x55789e20, 0x00343110};
ASSERT((buf = MALLOC(CBUFSIZ*CNBUFS)) != NULL);
/* step through all possible alignments */
for (l = 0; l <= 4; l++) {
for (j = 0; j < CNBUFS; j++) {
len[j] = CLEN;
for (k = 0; k < len[j]; k++)
*(buf + j*CBUFSIZ + (k+l)) = (j+k) & 0xff;
}
for (j = 0; j < CNBUFS; j++) {
crcr = crc32(buf + j*CBUFSIZ + l, len[j], CRC32_INIT_VALUE);
ASSERT(crcr == crc32tv[j]);
}
}
MFREE(buf, CBUFSIZ*CNBUFS);
return;
}
#endif /* NOT_YET */
/*
* Advance from the current 1-byte tag/1-byte length/variable-length value
* triple, to the next, returning a pointer to the next.
* If the current or next TLV is invalid (does not fit in given buffer length),
* NULL is returned.
* *buflen is not modified if the TLV elt parameter is invalid, or is decremented
* by the TLV parameter's length if it is valid.
*/
bcm_tlv_t *
bcm_next_tlv(const bcm_tlv_t *elt, uint *buflen)
{
uint len;
COV_TAINTED_DATA_SINK(buflen);
COV_NEG_SINK(buflen);
/* validate current elt */
if (!bcm_valid_tlv(elt, *buflen)) {
return NULL;
}
/* advance to next elt */
len = TLV_HDR_LEN + elt->len;
elt = (const bcm_tlv_t*)((const uint8 *)elt + len);
#if defined(__COVERITY__)
/* The 'len' value is tainted in Coverity because it is read from the tainted data pointed
* to by 'elt'. However, bcm_valid_tlv() verifies that the elt pointer is a valid element,
* so its length, len = (TLV_HDR_LEN + elt->len), is in the bounds of the buffer.
* Clearing the tainted attribute of 'len' for Coverity.
*/
__coverity_tainted_data_sanitize__(len);
if (len > *buflen) {
return NULL;
}
#endif /* __COVERITY__ */
*buflen -= len;
/* validate next elt */
if (!bcm_valid_tlv(elt, *buflen)) {
return NULL;
}
COV_TAINTED_DATA_ARG(elt);
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
return (bcm_tlv_t *)(elt);
GCC_DIAGNOSTIC_POP();
}
/**
* Advance a const tlv buffer pointer and length up to the given tlv element pointer
* 'elt'. The function checks that elt is a valid tlv; the elt pointer and data
* are all in the range of the buffer/length.
*
* @param elt pointer to a valid bcm_tlv_t in the buffer
* @param buffer pointer to a tlv buffer
* @param buflen length of the buffer in bytes
*
* On return, if elt is not a tlv in the buffer bounds, the *buffer parameter
* will be set to NULL and *buflen parameter will be set to zero. Otherwise,
* *buffer will point to elt, and *buflen will have been adjusted by the the
* difference between *buffer and elt.
*/
void
bcm_tlv_buffer_advance_to(const bcm_tlv_t *elt, const uint8 **buffer, uint *buflen)
{
uint new_buflen;
const uint8 *new_buffer;
/* model the input length value as a tainted and negative sink so
* Coverity will complain about unvalidated or possibly length values
*/
COV_TAINTED_DATA_SINK(*buflen);
COV_NEG_SINK(*buflen);
new_buffer = (const uint8*)elt;
/* make sure the input buffer pointer is non-null, that (buffer + buflen) does not wrap,
* and that the elt pointer is in the range of [buffer, buffer + buflen]
*/
if ((*buffer != NULL) &&
((uintptr)*buffer < ((uintptr)*buffer + *buflen)) &&
(new_buffer >= *buffer) &&
(new_buffer < (*buffer + *buflen))) {
/* delta between buffer and new_buffer is <= *buflen, so truncating cast to uint
* from ptrdiff is ok
*/
uint delta = (uint)(new_buffer - *buffer);
/* New buffer length is old len minus the delta from the buffer start to elt.
* The check just above guarantees that the subtractions does not underflow.
*/
new_buflen = *buflen - delta;
/* validate current elt */
if (bcm_valid_tlv(elt, new_buflen)) {
/* All good, so update the input/output parameters */
*buffer = new_buffer;
*buflen = new_buflen;
return;
}
}
/* something did not check out, clear out the buffer info */
*buffer = NULL;
*buflen = 0;
return;
}
/**
* Advance a const tlv buffer pointer and length past the given tlv element pointer
* 'elt'. The function checks that elt is a valid tlv; the elt pointer and data
* are all in the range of the buffer/length. The function also checks that the
* remaining buffer starts with a valid tlv.
*
* @param elt pointer to a valid bcm_tlv_t in the buffer
* @param buffer pointer to a tlv buffer
* @param buflen length of the buffer in bytes
*
* On return, if elt is not a tlv in the buffer bounds, or the remaining buffer
* following the elt does not begin with a tlv in the buffer bounds, the *buffer
* parameter will be set to NULL and *buflen parameter will be set to zero.
* Otherwise, *buffer will point to the first byte past elt, and *buflen will
* have the remaining buffer length.
*/
void
bcm_tlv_buffer_advance_past(const bcm_tlv_t *elt, const uint8 **buffer, uint *buflen)
{
/* Start by advancing the buffer up to the given elt */
bcm_tlv_buffer_advance_to(elt, buffer, buflen);
/* if that did not work, bail out */
if (*buflen == 0) {
return;
}
#if defined(__COVERITY__)
/* The elt has been verified by bcm_tlv_buffer_advance_to() to be a valid element,
* so its elt->len is in the bounds of the buffer. The following check prevents
* Coverity from flagging the (elt->data + elt->len) statement below as using a
* tainted elt->len to index into array 'elt->data'.
*/
if (elt->len > *buflen) {
return;
}
#endif /* __COVERITY__ */
/* We know we are advanced up to a good tlv.
* Now just advance to the following tlv.
*/
elt = (const bcm_tlv_t*)(elt->data + elt->len);
bcm_tlv_buffer_advance_to(elt, buffer, buflen);
return;
}
/*
* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag
*/
bcm_tlv_t *
bcm_parse_tlvs(const void *buf, uint buflen, uint key)
{
const bcm_tlv_t *elt;
uint totlen;
COV_TAINTED_DATA_SINK(buflen);
COV_NEG_SINK(buflen);
if ((elt = (const bcm_tlv_t*)buf) == NULL) {
return NULL;
}
totlen = buflen;
/* find tagged parameter */
while (totlen >= TLV_HDR_LEN) {
uint len = elt->len;
/* check if elt overruns buffer */
if (totlen < (len + TLV_HDR_LEN)) {
break;
}
/* did we find the ID? */
if ((elt->id == key)) {
COV_TAINTED_DATA_ARG(elt);
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
return (bcm_tlv_t *)(elt);
GCC_DIAGNOSTIC_POP();
}
elt = (const bcm_tlv_t*)((const uint8*)elt + (len + TLV_HDR_LEN));
totlen -= (len + TLV_HDR_LEN);
}
return NULL;
}
/*
* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag.
* The 'advance' parmeter specifies what to do to the parse buf/buflen values if a
* matching tlv is found:
* BCM_TLV_ADVANCE_NONE - do nothing
* BCM_TLV_ADVANCE_TO - move the buf up to the discovered tlv, and adjust buflen.
* BCM_TLV_ADVANCE_PAST - move the buf past the discovered tlb, and adjust buflen.
* If a tlv is not found, no changes are made to buf/buflen
*
*/
const bcm_tlv_t *
bcm_parse_tlvs_advance(const uint8 **buf, uint *buflen, uint key, bcm_tlv_advance_mode_t advance)
{
const bcm_tlv_t *elt;
elt = bcm_parse_tlvs(*buf, *buflen, key);
if (elt == NULL) {
return elt;
}
if (advance == BCM_TLV_ADVANCE_TO) {
bcm_tlv_buffer_advance_to(elt, buf, buflen);
} else if (advance == BCM_TLV_ADVANCE_PAST) {
bcm_tlv_buffer_advance_past(elt, buf, buflen);
} else if (advance == BCM_TLV_ADVANCE_NONE) {
/* nothing to do */
} else {
/* there are only 3 modes, but just in case, zero the parse buffer pointer and
* length to prevent infinite loops in callers that expect progress.
*/
ASSERT(0);
*buf = NULL;
*buflen = 0;
}
return elt;
}
bcm_tlv_t *
bcm_parse_tlvs_dot11(const void *buf, uint buflen, uint key, bool id_ext)
{
bcm_tlv_t *elt;
uint totlen;
COV_TAINTED_DATA_SINK(buflen);
COV_NEG_SINK(buflen);
/*
ideally, we don't want to do that, but returning a const pointer
from these parse function spreads casting everywhere in the code
*/
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
elt = (bcm_tlv_t*)buf;
GCC_DIAGNOSTIC_POP();
totlen = buflen;
/* find tagged parameter */
while (totlen >= TLV_HDR_LEN) {
uint len = elt->len;
/* validate remaining totlen */
if (totlen < (len + TLV_HDR_LEN)) {
break;
}
do {
if (id_ext) {
if (!DOT11_MNG_IE_ID_EXT_MATCH(elt, key))
break;
} else if (elt->id != key) {
break;
}
COV_TAINTED_DATA_ARG(elt);
return (bcm_tlv_t *)(elt); /* a match */
} while (0);
elt = (bcm_tlv_t*)((uint8*)elt + (len + TLV_HDR_LEN));
totlen -= (len + TLV_HDR_LEN);
}
return NULL;
}
/*
* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag
* return NULL if not found or length field < min_varlen
*/
bcm_tlv_t *
bcm_parse_tlvs_min_bodylen(const void *buf, uint buflen, uint key, uint min_bodylen)
{
bcm_tlv_t * ret;
ret = bcm_parse_tlvs(buf, buflen, key);
if (ret == NULL || ret->len < min_bodylen) {
return NULL;
}
return ret;
}
/*
* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag
* return NULL if not found or tlv size > max_len or < min_len
*/
bcm_tlv_t *
bcm_parse_tlvs_minmax_len(const void *buf, uint buflen, uint key,
uint min_len, uint max_len)
{
bcm_tlv_t * ret;
ret = bcm_parse_tlvs(buf, buflen, key);
if (ret == NULL ||
(BCM_TLV_SIZE(ret) > max_len) ||
(BCM_TLV_SIZE(ret) < min_len)) {
return NULL;
}
return ret;
}
/*
* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag. Stop parsing when we see an element whose ID is greater
* than the target key.
*/
const bcm_tlv_t *
bcm_parse_ordered_tlvs(const void *buf, uint buflen, uint key)
{
const bcm_tlv_t *elt;
uint totlen;
COV_TAINTED_DATA_SINK(buflen);
COV_NEG_SINK(buflen);
elt = (const bcm_tlv_t*)buf;
totlen = buflen;
/* find tagged parameter */
while (totlen >= TLV_HDR_LEN) {
uint id = elt->id;
uint len = elt->len;
/* Punt if we start seeing IDs > than target key */
if (id > key) {
return (NULL);
}
/* validate remaining totlen */
if (totlen < (len + TLV_HDR_LEN)) {
break;
}
if (id == key) {
COV_TAINTED_DATA_ARG(elt);
return (elt);
}
elt = (const bcm_tlv_t*)((const uint8*)elt + (len + TLV_HDR_LEN));
totlen -= (len + TLV_HDR_LEN);
}
return NULL;
}
#endif /* !BCMROMOFFLOAD_EXCLUDE_BCMUTILS_FUNCS */
uint
bcm_format_field(const bcm_bit_desc_ex_t *bd, uint32 flags, char* buf, uint len)
{
uint i, slen = 0;
uint32 bit, mask;
const char *name;
mask = bd->mask;
if (len < 2 || !buf)
return 0;
buf[0] = '\0';
for (i = 0; (name = bd->bitfield[i].name) != NULL; i++) {
bit = bd->bitfield[i].bit;
if ((flags & mask) == bit) {
slen = (int)strlen(name);
if (memcpy_s(buf, len, name, slen + 1) != BCME_OK) {
slen = 0;
}
break;
}
}
return slen;
}
int
bcm_format_flags(const bcm_bit_desc_t *bd, uint32 flags, char* buf, uint len)
{
uint i;
char *p = buf;
char *end = (buf + len);
char hexstr[16];
uint32 bit;
const char* name;
bool err = FALSE;
if (len < 2 || !buf)
return 0;
buf[0] = '\0';
for (i = 0; flags != 0; i++) {
bit = bd[i].bit;
name = bd[i].name;
if (bit == 0 && flags != 0) {
/* print any unnamed bits */
snprintf(hexstr, sizeof(hexstr), "0x%X", flags);
name = hexstr;
flags = 0; /* exit loop */
} else if ((flags & bit) == 0) {
continue;
}
flags &= ~bit;
/* Print named bit. */
p += strlcpy(p, name, (end - p));
if (p == end) {
/* Truncation error. */
err = TRUE;
break;
}
/* Add space delimiter if there are more bits. */
if (flags != 0) {
p += strlcpy(p, " ", (end - p));
if (p == end) {
/* Truncation error. */
err = TRUE;
break;
}
}
}
/* indicate the str was too short */
if (err) {
ASSERT(len >= 2u);
buf[len - 2u] = '>';
}
return (int)(p - buf);
}
/* print out whcih bits in octet array 'addr' are set. bcm_bit_desc_t:bit is a bit offset. */
int
bcm_format_octets(const bcm_bit_desc_t *bd, uint bdsz,
const uint8 *addr, uint size, char *buf, uint len)
{
uint i;
char *p = buf;
uint slen = 0, nlen = 0;
uint32 bit;
const char* name;
bool more = FALSE;
BCM_REFERENCE(size);
if (len < 2 || !buf)
return 0;
buf[0] = '\0';
for (i = 0; i < bdsz; i++) {
bit = bd[i].bit;
name = bd[i].name;
if (isset(addr, bit)) {
nlen = (int)strlen(name);
slen += nlen;
/* need SPACE - for simplicity */
slen += 1;
/* need NULL as well */
if (len < slen + 1) {
more = TRUE;
break;
}
memcpy(p, name, nlen);
p += nlen;
p[0] = ' ';
p += 1;
p[0] = '\0';
}
}
if (more) {
p[0] = '>';
p += 1;
p[0] = '\0';
}
return (int)(p - buf);
}
/* Transform an hexadecimal string into binary.
* Output is limited to 64K.
* hex : string
* hex_len : string length
* buf : allocated output buffer
* buf_len : allocated size
* return : copied length, if successfull, 0 if error.
*/
uint16
bcmhex2bin(const uint8* hex, uint hex_len, uint8 *buf, uint buf_len)
{
uint i = 0;
uint16 out_len;
char tmp[] = "XX";
if (hex_len % 2) {
/* hex_len not even */
return 0;
}
/* check for hex radix */
if ((hex[0] == '0') && ((hex[1] == 'x') || (hex[1] == 'X'))) {
hex += 2;
hex_len -= 2;
}
if (hex_len/2 > 0xFFFF) {
/* exceed 64K buffer capacity */
return 0;
}
if ((out_len = hex_len/2) > buf_len) {
/* buf too short */
return 0;
}
do {
tmp[0] = *hex++;
tmp[1] = *hex++;
if (!bcm_isxdigit(tmp[0]) || !bcm_isxdigit(tmp[1])) {
/* char is not a 256-bit hex number */
return 0;
}
/* okay so far; make this piece a number */
buf[i] = (uint8) bcm_strtoul(tmp, NULL, 16);
} while (++i < out_len);
return out_len;
}
/* print bytes formatted as hex to a string. return the resulting string length */
int
bcm_format_hex(char *str, const void *bytes, uint len)
{
uint i;
char *p = str;
const uint8 *src = (const uint8*)bytes;
for (i = 0; i < len; i++) {
p += snprintf(p, 3, "%02X", *src);
src++;
}
return (int)(p - str);
}
/* pretty hex print a contiguous buffer */
void
prhex(const char *msg, const uchar *buf, uint nbytes)
{
char line[128], *p;
uint len = sizeof(line);
int nchar;
uint i;
if (msg && (msg[0] != '\0'))
printf("%s:\n", msg);
p = line;
for (i = 0; i < nbytes; i++) {
if (i % 16 == 0) {
nchar = snprintf(p, len, " %04x: ", i); /* line prefix */
p += nchar;
len -= nchar;
}
if (len > 0) {
nchar = snprintf(p, len, "%02x ", buf[i]);
p += nchar;
len -= nchar;
}
if (i % 16 == 15) {
printf("%s\n", line); /* flush line */
p = line;
len = sizeof(line);
}
}
/* flush last partial line */
if (p != line)
printf("%s\n", line);
}
static const char *crypto_algo_names[] = {
"NONE",
"WEP1",
"TKIP",
"WEP128",
"AES_CCM",
"AES_OCB_MSDU",
"AES_OCB_MPDU",
"NALG",
"UNDEF",
"UNDEF",
"UNDEF",
#ifdef BCMWAPI_WAI
"WAPI",
#endif /* BCMWAPI_WAI */
#ifndef BCMWAPI_WAI
"UNDEF",
#endif
"PMK",
"BIP",
"AES_GCM",
"AES_CCM256",
"AES_GCM256",
"BIP_CMAC256",
"BIP_GMAC",
"BIP_GMAC256",
"UNDEF"
};
const char *
bcm_crypto_algo_name(uint algo)
{
return (algo < ARRAYSIZE(crypto_algo_names)) ? crypto_algo_names[algo] : "ERR";
}
#ifdef BCMDBG
void
deadbeef(void *p, uint len)
{
static uint8 meat[] = { 0xde, 0xad, 0xbe, 0xef };
while (len-- > 0) {
*(uint8*)p = meat[((uintptr)p) & 3];
p = (uint8*)p + 1;
}
}
#endif /* BCMDBG */
char *
bcm_chipname(uint chipid, char *buf, uint len)
{
const char *fmt;
fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
snprintf(buf, len, fmt, chipid);
return buf;
}
/* Produce a human-readable string for boardrev */
char *
bcm_brev_str(uint32 brev, char *buf)
{
if (brev < 0x100)
snprintf(buf, 8, "%d.%d", (brev & 0xf0) >> 4, brev & 0xf);
else
snprintf(buf, 8, "%c%03x", ((brev & 0xf000) == 0x1000) ? 'P' : 'A', brev & 0xfff);
return (buf);
}
#define BUFSIZE_TODUMP_ATONCE 128 /* Buffer size */
/* dump large strings to console */
void
printbig(char *buf)
{
uint len, max_len;
char c;
len = (uint)strlen(buf);
max_len = BUFSIZE_TODUMP_ATONCE;
while (len > max_len) {
c = buf[max_len];
buf[max_len] = '\0';
printf("%s", buf);
buf[max_len] = c;
buf += max_len;
len -= max_len;
}
/* print the remaining string */
printf("%s\n", buf);
return;
}
/* routine to dump fields in a fileddesc structure */
uint
bcmdumpfields(bcmutl_rdreg_rtn read_rtn, void *arg0, uint arg1, struct fielddesc *fielddesc_array,
char *buf, uint32 bufsize)
{
uint filled_len;
int len;
struct fielddesc *cur_ptr;
filled_len = 0;
cur_ptr = fielddesc_array;
while (bufsize > 1) {
if (cur_ptr->nameandfmt == NULL)
break;
len = snprintf(buf, bufsize, cur_ptr->nameandfmt,
read_rtn(arg0, arg1, cur_ptr->offset));
/* check for snprintf overflow or error */
if (len < 0 || (uint32)len >= bufsize)
len = bufsize - 1;
buf += len;
bufsize -= len;
filled_len += len;
cur_ptr++;
}
return filled_len;
}
uint
bcm_mkiovar(const char *name, const char *data, uint datalen, char *buf, uint buflen)
{
uint len;
len = (uint)strlen(name) + 1;
if ((len + datalen) > buflen)
return 0;
strlcpy(buf, name, buflen);
/* append data onto the end of the name string */
if (data && datalen != 0) {
memcpy(&buf[len], data, datalen);
len += datalen;
}
return len;
}
/* Quarter dBm units to mW
* Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153
* Table is offset so the last entry is largest mW value that fits in
* a uint16.
*/
#define QDBM_OFFSET 153 /* Offset for first entry */
#define QDBM_TABLE_LEN 40 /* Table size */
/* Smallest mW value that will round up to the first table entry, QDBM_OFFSET.
* Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2
*/
#define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */
/* Largest mW value that will round down to the last table entry,
* QDBM_OFFSET + QDBM_TABLE_LEN-1.
* Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) + mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2.
*/
#define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */
static const uint16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = {
/* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */
/* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000,
/* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849,
/* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119,
/* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811,
/* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096
};
uint16
bcm_qdbm_to_mw(uint8 qdbm)
{
uint factor = 1;
int idx = qdbm - QDBM_OFFSET;
if (idx >= QDBM_TABLE_LEN) {
/* clamp to max uint16 mW value */
return 0xFFFF;
}
/* scale the qdBm index up to the range of the table 0-40
* where an offset of 40 qdBm equals a factor of 10 mW.
*/
while (idx < 0) {
idx += 40;
factor *= 10;
}
/* return the mW value scaled down to the correct factor of 10,
* adding in factor/2 to get proper rounding.
*/
return ((nqdBm_to_mW_map[idx] + factor/2) / factor);
}
uint8
bcm_mw_to_qdbm(uint16 mw)
{
uint8 qdbm;
int offset;
uint mw_uint = mw;
uint boundary;
/* handle boundary case */
if (mw_uint <= 1)
return 0;
offset = QDBM_OFFSET;
/* move mw into the range of the table */
while (mw_uint < QDBM_TABLE_LOW_BOUND) {
mw_uint *= 10;
offset -= 40;
}
for (qdbm = 0; qdbm < QDBM_TABLE_LEN-1; qdbm++) {
boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm+1] -
nqdBm_to_mW_map[qdbm])/2;
if (mw_uint < boundary) break;
}
qdbm += (uint8)offset;
return (qdbm);
}
uint
BCMPOSTTRAPFN(bcm_bitcount)(const uint8 *bitmap, uint length)
{
uint bitcount = 0, i;
uint8 tmp;
for (i = 0; i < length; i++) {
tmp = bitmap[i];
while (tmp) {
bitcount++;
tmp &= (tmp - 1);
}
}
return bitcount;
}
/*
* ProcessVars:Takes a buffer of "<var>=<value>\n" lines read from a file and ending in a NUL.
* also accepts nvram files which are already in the format of <var1>=<value>\0\<var2>=<value2>\0
* Removes carriage returns, empty lines, comment lines, and converts newlines to NULs.
* Shortens buffer as needed and pads with NULs. End of buffer is marked by two NULs.
*/
unsigned int
process_nvram_vars(char *varbuf, unsigned int len)
{
char *dp;
bool findNewline;
int column;
unsigned int buf_len, n;
unsigned int pad = 0;
char nv_ver[128];
dp = varbuf;
findNewline = FALSE;
column = 0;
// terence 20130914: print out NVRAM version
if (varbuf[0] == '#') {
memset(nv_ver, 0x00, sizeof(nv_ver));
for (n=1; n<len && n<(sizeof(nv_ver)-1); n++) {
if (varbuf[n] == '\n')
break;
nv_ver[n-1] = varbuf[n];
}
printf("NVRAM version: %s\n", nv_ver);
}
for (n = 0; n < len; n++) {
if (varbuf[n] == '\r')
continue;
if (findNewline && varbuf[n] != '\n')
continue;
findNewline = FALSE;
if (varbuf[n] == '#') {
findNewline = TRUE;
continue;
}
if (varbuf[n] == '\n') {
if (column == 0)
continue;
*dp++ = 0;
column = 0;
continue;
}
*dp++ = varbuf[n];
column++;
}
buf_len = (unsigned int)(dp - varbuf);
if (buf_len % 4) {
pad = 4 - buf_len % 4;
if (pad && (buf_len + pad <= len)) {
buf_len += pad;
}
}
while (dp < varbuf + n)
*dp++ = 0;
return buf_len;
}
#ifndef setbit /* As in the header file */
#ifdef BCMUTILS_BIT_MACROS_USE_FUNCS
/* Set bit in byte array. */
void
setbit(void *array, uint bit)
{
((uint8 *)array)[bit / NBBY] |= 1 << (bit % NBBY);
}
/* Clear bit in byte array. */
void
clrbit(void *array, uint bit)
{
((uint8 *)array)[bit / NBBY] &= ~(1 << (bit % NBBY));
}
/* Test if bit is set in byte array. */
bool
isset(const void *array, uint bit)
{
return (((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY)));
}
/* Test if bit is clear in byte array. */
bool
isclr(const void *array, uint bit)
{
return ((((const uint8 *)array)[bit / NBBY] & (1 << (bit % NBBY))) == 0);
}
#endif /* BCMUTILS_BIT_MACROS_USE_FUNCS */
#endif /* setbit */
void
BCMPOSTTRAPFN(set_bitrange)(void *array, uint start, uint end, uint maxbit)
{
uint startbyte = start/NBBY;
uint endbyte = end/NBBY;
uint i, startbytelastbit, endbytestartbit;
if (end >= start) {
if (endbyte - startbyte > 1) {
startbytelastbit = ((startbyte + 1) * NBBY) - 1;
endbytestartbit = endbyte * NBBY;
for (i = startbyte + 1; i < endbyte; i++)
((uint8 *)array)[i] = 0xFF;
for (i = start; i <= startbytelastbit; i++)
setbit(array, i);
for (i = endbytestartbit; i <= end; i++)
setbit(array, i);
} else {
for (i = start; i <= end; i++)
setbit(array, i);
}
} else {
set_bitrange(array, start, maxbit, maxbit);
set_bitrange(array, 0, end, maxbit);
}
}
void
clr_bitrange(void *array, uint start, uint end, uint maxbit)
{
uint startbyte = start/NBBY;
uint endbyte = end/NBBY;
uint i, startbytelastbit, endbytestartbit;
if (end >= start) {
if (endbyte - startbyte > 1) {
startbytelastbit = ((startbyte + 1) * NBBY) - 1;
endbytestartbit = endbyte * NBBY;
for (i = startbyte + 1; i < endbyte; i++)
((uint8 *)array)[i] = 0x0;
for (i = start; i <= startbytelastbit; i++)
clrbit(array, i);
for (i = endbytestartbit; i <= end; i++)
clrbit(array, i);
} else {
for (i = start; i <= end; i++)
clrbit(array, i);
}
} else {
clr_bitrange(array, start, maxbit, maxbit);
clr_bitrange(array, 0, end, maxbit);
}
}
/*
* This api (set_bitrange_int_access) as same as set_bitrange but uses int32 operation
* This api can be used in the place of set_bitrange but array should be word (32bit) alligned.
* This api has to be used when the memory being accessed has restrictions of
* not using them in 8bit (byte) mode and needing 32bit (word) mode.
*/
void
set_bitrange_u32(void *array, uint start, uint end, uint maxbit)
{
uint startword = start/SIZE_BITS32(uint32);
uint endword = end/SIZE_BITS32(uint32);
uint startwordstartbit = start % SIZE_BITS32(uint32);
uint endwordlastbit = end % SIZE_BITS32(uint32);
/* Used to caluculate bit number from MSB */
uint u32msbnum = SIZE_BITS32(uint32) - 1U;
uint i;
uint32 setbitsword;
uint32 u32max = ~0U;
ASSERT(ISALIGNED(array, sizeof(uint32))); /* array should be alligned for this API */
if (start > end) {
set_bitrange_u32(array, start, maxbit, maxbit);
set_bitrange_u32(array, 0U, end, maxbit);
return;
}
if (endword - startword) {
/* Setting MSB bits including startwordstartbit */
setbitsword = u32max << startwordstartbit;
((uint32 *)array)[startword] |= setbitsword;
/* Setting all bits in 'startword + 1' to 'endword - 1' */
for (i = startword + 1U; i <= endword - 1U; i++) {
((uint32 *)array)[i] = u32max;
}
/* Setting LSB bits including endwordlastbit */
setbitsword = u32max >> (u32msbnum - endwordlastbit);
((uint32 *)array)[endword] |= setbitsword;
} else { /* start and end are in same word */
/* Setting start bit to end bit including start and end bits */
setbitsword =
(u32max << startwordstartbit) & (u32max >> (u32msbnum - endwordlastbit));
((uint32 *)array)[startword] |= setbitsword;
}
}
/*
* This api (clr_bitrange_u32) as same as clr_bitrange but uses int32 operation
* This api can be used in the place of clr_bitrange but array should be word (32bit) alligned.
* This api has to be used when the memory being accessed has restrictions of
* not using them in 8bit (byte) mode and needing 32bit (word) mode.
*/
void
clr_bitrange_u32(void *array, uint start, uint end, uint maxbit)
{
uint startword = start/SIZE_BITS32(uint32);
uint endword = end/SIZE_BITS32(uint32);
uint startwordstartbit = start % SIZE_BITS32(uint32);
uint endwordlastbit = end % SIZE_BITS32(uint32);
/* Used to caluculate bit number from MSB */
uint u32msbnum = SIZE_BITS32(uint32) - 1U;
uint i;
uint32 clrbitsword;
uint32 u32max = ~0U;
ASSERT(ISALIGNED(array, sizeof(uint32))); /* array should be alligned for this API */
if (start > end) {
clr_bitrange_u32(array, start, maxbit, maxbit);
clr_bitrange_u32(array, 0U, end, maxbit);
return;
}
if (endword - startword) {
/* Clearing MSB bits including startwordstartbit */
clrbitsword = ~(u32max << startwordstartbit);
((uint32 *)array)[startword] &= clrbitsword;
/* Clearing all bits in 'startword + 1' to 'endword - 1' */
for (i = startword + 1U; i <= endword - 1U; i++) {
((uint32 *)array)[i] = 0U;
}
/* Clearing LSB bits including endwordlastbit */
clrbitsword = ~(u32max >> (u32msbnum - endwordlastbit));
((uint32 *)array)[endword] &= clrbitsword;
} else { /* start and end are in same word */
/* Clearing start bit to end bit including start and end bits */
clrbitsword =
~(u32max << startwordstartbit) | ~(u32max >> (u32msbnum - endwordlastbit));
((uint32 *)array)[startword] &= clrbitsword;
}
}
void
bcm_bitprint32(const uint32 u32arg)
{
int i;
for (i = NBITS(uint32) - 1; i >= 0; i--) {
if (isbitset(u32arg, i)) {
printf("1");
} else {
printf("0");
}
if ((i % NBBY) == 0) printf(" ");
}
printf("\n");
}
/* calculate checksum for ip header, tcp / udp header / data */
uint16
bcm_ip_cksum(uint8 *buf, uint32 len, uint32 sum)
{
while (len > 1) {
sum += (buf[0] << 8) | buf[1];
buf += 2;
len -= 2;
}
if (len > 0) {
sum += (*buf) << 8;
}
while (sum >> 16) {
sum = (sum & 0xffff) + (sum >> 16);
}
return ((uint16)~sum);
}
/* calculate a + b where a is a 64 bit number and b is a 32 bit number */
void
bcm_add_64(uint32* r_hi, uint32* r_lo, uint32 offset)
{
uint32 r1_lo = *r_lo;
(*r_lo) += offset;
if (*r_lo < r1_lo)
(*r_hi) ++;
}
/* calculate a - b where a is a 64 bit number and b is a 32 bit number */
void
bcm_sub_64(uint32* r_hi, uint32* r_lo, uint32 offset)
{
uint32 r1_lo = *r_lo;
(*r_lo) -= offset;
if (*r_lo > r1_lo)
(*r_hi) --;
}
int
BCMRAMFN(valid_bcmerror)(int e)
{
return ((e <= 0) && (e >= BCME_LAST));
}
#ifdef DEBUG_COUNTER
#if (OSL_SYSUPTIME_SUPPORT == TRUE)
void counter_printlog(counter_tbl_t *ctr_tbl)
{
uint32 now;
if (!ctr_tbl->enabled)
return;
now = OSL_SYSUPTIME();
if (now - ctr_tbl->prev_log_print > ctr_tbl->log_print_interval) {
uint8 i = 0;
printf("counter_print(%s %d):", ctr_tbl->name, now - ctr_tbl->prev_log_print);
for (i = 0; i < ctr_tbl->needed_cnt; i++) {
printf(" %u", ctr_tbl->cnt[i]);
}
printf("\n");
ctr_tbl->prev_log_print = now;
bzero(ctr_tbl->cnt, CNTR_TBL_MAX * sizeof(uint));
}
}
#else
/* OSL_SYSUPTIME is not supported so no way to get time */
#define counter_printlog(a) do {} while (0)
#endif /* OSL_SYSUPTIME_SUPPORT == TRUE */
#endif /* DEBUG_COUNTER */
/* calculate partial checksum */
static uint32
ip_cksum_partial(uint32 sum, uint8 *val8, uint32 count)
{
uint32 i;
uint16 *val16 = (uint16 *)val8;
ASSERT(val8 != NULL);
/* partial chksum calculated on 16-bit values */
ASSERT((count % 2) == 0);
count /= 2;
for (i = 0; i < count; i++) {
sum += *val16++;
}
return sum;
}
/* calculate IP checksum */
static uint16
ip_cksum(uint32 sum, uint8 *val8, uint32 count)
{
uint16 *val16 = (uint16 *)val8;
ASSERT(val8 != NULL);
while (count > 1) {
sum += *val16++;
count -= 2;
}
/* add left-over byte, if any */
if (count > 0) {
sum += (*(uint8 *)val16);
}
/* fold 32-bit sum to 16 bits */
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
return ((uint16)~sum);
}
/* calculate IPv4 header checksum
* - input ip points to IP header in network order
* - output cksum is in network order
*/
uint16
ipv4_hdr_cksum(uint8 *ip, uint ip_len)
{
uint32 sum = 0;
uint8 *ptr = ip;
ASSERT(ip != NULL);
ASSERT(ip_len >= IPV4_MIN_HEADER_LEN);
if (ip_len < IPV4_MIN_HEADER_LEN) {
return 0;
}
/* partial cksum skipping the hdr_chksum field */
sum = ip_cksum_partial(sum, ptr, OFFSETOF(struct ipv4_hdr, hdr_chksum));
ptr += OFFSETOF(struct ipv4_hdr, hdr_chksum) + 2;
/* return calculated chksum */
return ip_cksum(sum, ptr, ip_len - OFFSETOF(struct ipv4_hdr, src_ip));
}
/* calculate TCP header checksum using partial sum */
static uint16
tcp_hdr_chksum(uint32 sum, uint8 *tcp_hdr, uint16 tcp_len)
{
uint8 *ptr = tcp_hdr;
ASSERT(tcp_hdr != NULL);
ASSERT(tcp_len >= TCP_MIN_HEADER_LEN);
/* partial TCP cksum skipping the chksum field */
sum = ip_cksum_partial(sum, ptr, OFFSETOF(struct bcmtcp_hdr, chksum));
ptr += OFFSETOF(struct bcmtcp_hdr, chksum) + 2;
/* return calculated chksum */
return ip_cksum(sum, ptr, tcp_len - OFFSETOF(struct bcmtcp_hdr, urg_ptr));
}
struct tcp_pseudo_hdr {
uint8 src_ip[IPV4_ADDR_LEN]; /* Source IP Address */
uint8 dst_ip[IPV4_ADDR_LEN]; /* Destination IP Address */
uint8 zero;
uint8 prot;
uint16 tcp_size;
};
/* calculate IPv4 TCP header checksum
* - input ip and tcp points to IP and TCP header in network order
* - output cksum is in network order
*/
uint16
ipv4_tcp_hdr_cksum(uint8 *ip, uint8 *tcp, uint16 tcp_len)
{
struct ipv4_hdr *ip_hdr = (struct ipv4_hdr *)ip;
struct tcp_pseudo_hdr tcp_ps;
uint32 sum = 0;
ASSERT(ip != NULL);
ASSERT(tcp != NULL);
ASSERT(tcp_len >= TCP_MIN_HEADER_LEN);
/* pseudo header cksum */
memset(&tcp_ps, 0, sizeof(tcp_ps));
memcpy(&tcp_ps.dst_ip, ip_hdr->dst_ip, IPV4_ADDR_LEN);
memcpy(&tcp_ps.src_ip, ip_hdr->src_ip, IPV4_ADDR_LEN);
tcp_ps.zero = 0;
tcp_ps.prot = ip_hdr->prot;
tcp_ps.tcp_size = hton16(tcp_len);
sum = ip_cksum_partial(sum, (uint8 *)&tcp_ps, sizeof(tcp_ps));
/* return calculated TCP header chksum */
return tcp_hdr_chksum(sum, tcp, tcp_len);
}
struct ipv6_pseudo_hdr {
uint8 saddr[IPV6_ADDR_LEN];
uint8 daddr[IPV6_ADDR_LEN];
uint16 payload_len;
uint8 zero;
uint8 next_hdr;
};
/* calculate IPv6 TCP header checksum
* - input ipv6 and tcp points to IPv6 and TCP header in network order
* - output cksum is in network order
*/
uint16
ipv6_tcp_hdr_cksum(uint8 *ipv6, uint8 *tcp, uint16 tcp_len)
{
struct ipv6_hdr *ipv6_hdr = (struct ipv6_hdr *)ipv6;
struct ipv6_pseudo_hdr ipv6_pseudo;
uint32 sum = 0;
ASSERT(ipv6 != NULL);
ASSERT(tcp != NULL);
ASSERT(tcp_len >= TCP_MIN_HEADER_LEN);
/* pseudo header cksum */
memset((char *)&ipv6_pseudo, 0, sizeof(ipv6_pseudo));
memcpy((char *)ipv6_pseudo.saddr, (char *)ipv6_hdr->saddr.addr,
sizeof(ipv6_pseudo.saddr));
memcpy((char *)ipv6_pseudo.daddr, (char *)ipv6_hdr->daddr.addr,
sizeof(ipv6_pseudo.daddr));
ipv6_pseudo.payload_len = ipv6_hdr->payload_len;
ipv6_pseudo.next_hdr = ipv6_hdr->nexthdr;
sum = ip_cksum_partial(sum, (uint8 *)&ipv6_pseudo, sizeof(ipv6_pseudo));
/* return calculated TCP header chksum */
return tcp_hdr_chksum(sum, tcp, tcp_len);
}
void *_bcmutils_dummy_fn = NULL;
/* GROUP 1 --- start
* These function under GROUP 1 are general purpose functions to do complex number
* calculations and square root calculation.
*/
uint32 sqrt_int(uint32 value)
{
uint32 root = 0, shift = 0;
/* Compute integer nearest to square root of input integer value */
for (shift = 0; shift < 32; shift += 2) {
if (((0x40000000 >> shift) + root) <= value) {
value -= ((0x40000000 >> shift) + root);
root = (root >> 1) | (0x40000000 >> shift);
}
else {
root = root >> 1;
}
}
/* round to the nearest integer */
if (root < value) ++root;
return root;
}
/* GROUP 1 --- end */
/* read/write field in a consecutive bits in an octet array.
* 'addr' is the octet array's start byte address
* 'size' is the octet array's byte size
* 'stbit' is the value's start bit offset
* 'nbits' is the value's bit size
* This set of utilities are for convenience. Don't use them
* in time critical/data path as there's a great overhead in them.
*/
void
setbits(uint8 *addr, uint size, uint stbit, uint nbits, uint32 val)
{
uint fbyte = stbit >> 3; /* first byte */
uint lbyte = (stbit + nbits - 1) >> 3; /* last byte */
uint fbit = stbit & 7; /* first bit in the first byte */
uint rbits = (nbits > 8 - fbit ?
nbits - (8 - fbit) :
0) & 7; /* remaining bits of the last byte when not 0 */
uint8 mask;
uint byte;
BCM_REFERENCE(size);
ASSERT(fbyte < size);
ASSERT(lbyte < size);
ASSERT(nbits <= (sizeof(val) << 3));
/* all bits are in the same byte */
if (fbyte == lbyte) {
mask = ((1 << nbits) - 1) << fbit;
addr[fbyte] &= ~mask;
addr[fbyte] |= (uint8)(val << fbit);
return;
}
/* first partial byte */
if (fbit > 0) {
mask = (0xff << fbit);
addr[fbyte] &= ~mask;
addr[fbyte] |= (uint8)(val << fbit);
val >>= (8 - fbit);
nbits -= (8 - fbit);
fbyte ++; /* first full byte */
}
/* last partial byte */
if (rbits > 0) {
mask = (1 << rbits) - 1;
addr[lbyte] &= ~mask;
addr[lbyte] |= (uint8)(val >> (nbits - rbits));
lbyte --; /* last full byte */
}
/* remaining full byte(s) */
for (byte = fbyte; byte <= lbyte; byte ++) {
addr[byte] = (uint8)val;
val >>= 8;
}
}
uint32
getbits(const uint8 *addr, uint size, uint stbit, uint nbits)
{
uint fbyte = stbit >> 3; /* first byte */
uint lbyte = (stbit + nbits - 1) >> 3; /* last byte */
uint fbit = stbit & 7; /* first bit in the first byte */
uint rbits = (nbits > 8 - fbit ?
nbits - (8 - fbit) :
0) & 7; /* remaining bits of the last byte when not 0 */
uint32 val = 0;
uint bits = 0; /* bits in first partial byte */
uint8 mask;
uint byte;
BCM_REFERENCE(size);
ASSERT(fbyte < size);
ASSERT(lbyte < size);
ASSERT(nbits <= (sizeof(val) << 3));
/* all bits are in the same byte */
if (fbyte == lbyte) {
mask = ((1 << nbits) - 1) << fbit;
val = (addr[fbyte] & mask) >> fbit;
return val;
}
/* first partial byte */
if (fbit > 0) {
bits = 8 - fbit;
mask = (0xff << fbit);
val |= (addr[fbyte] & mask) >> fbit;
fbyte ++; /* first full byte */
}
/* last partial byte */
if (rbits > 0) {
mask = (1 << rbits) - 1;
val |= (addr[lbyte] & mask) << (nbits - rbits);
lbyte --; /* last full byte */
}
/* remaining full byte(s) */
for (byte = fbyte; byte <= lbyte; byte ++) {
val |= (addr[byte] << (((byte - fbyte) << 3) + bits));
}
return val;
}
#if defined(BCMDBG) || defined(WLMSG_ASSOC)
/* support for getting 802.11 frame type/name based on frame kind */
#define FK_NAME_DECL(x) {FC_##x, #x}
static const struct {
uint fk;
const char *name;
} bcm_80211_fk_names[] = {
FK_NAME_DECL(ASSOC_REQ),
FK_NAME_DECL(ASSOC_RESP),
FK_NAME_DECL(REASSOC_REQ),
FK_NAME_DECL(REASSOC_RESP),
FK_NAME_DECL(PROBE_REQ),
FK_NAME_DECL(PROBE_RESP),
FK_NAME_DECL(BEACON),
FK_NAME_DECL(ATIM),
FK_NAME_DECL(DISASSOC),
FK_NAME_DECL(AUTH),
FK_NAME_DECL(DEAUTH),
FK_NAME_DECL(ACTION),
FK_NAME_DECL(ACTION_NOACK),
FK_NAME_DECL(CTL_TRIGGER),
FK_NAME_DECL(CTL_WRAPPER),
FK_NAME_DECL(BLOCKACK_REQ),
FK_NAME_DECL(BLOCKACK),
FK_NAME_DECL(PS_POLL),
FK_NAME_DECL(RTS),
FK_NAME_DECL(CTS),
FK_NAME_DECL(ACK),
FK_NAME_DECL(CF_END),
FK_NAME_DECL(CF_END_ACK),
FK_NAME_DECL(DATA),
FK_NAME_DECL(NULL_DATA),
FK_NAME_DECL(DATA_CF_ACK),
FK_NAME_DECL(QOS_DATA),
FK_NAME_DECL(QOS_NULL)
};
static const uint n_bcm_80211_fk_names = ARRAYSIZE(bcm_80211_fk_names);
const char *bcm_80211_fk_name(uint fk)
{
uint i;
for (i = 0; i < n_bcm_80211_fk_names; ++i) {
if (bcm_80211_fk_names[i].fk == fk) {
return bcm_80211_fk_names[i].name;
}
}
return "unknown";
}
#endif /* BCMDBG || WLMSG_ASSOC */
#ifdef BCMDRIVER
/** allocate variable sized data with 'size' bytes. note: vld should NOT be null.
*/
int
bcm_vdata_alloc(osl_t *osh, var_len_data_t *vld, uint32 size)
{
int ret = BCME_ERROR;
uint8 *dat = NULL;
if (vld == NULL) {
ASSERT(0);
goto done;
}
/* trying to allocate twice? */
if (vld->vdata != NULL) {
ASSERT(0);
goto done;
}
/* trying to allocate 0 size? */
if (size == 0) {
ASSERT(0);
ret = BCME_BADARG;
goto done;
}
dat = MALLOCZ(osh, size);
if (dat == NULL) {
ret = BCME_NOMEM;
goto done;
}
vld->vlen = size;
vld->vdata = dat;
ret = BCME_OK;
done:
return ret;
}
/** free memory associated with variable sized data. note: vld should NOT be null.
*/
int
bcm_vdata_free(osl_t *osh, var_len_data_t *vld)
{
int ret = BCME_ERROR;
if (vld == NULL) {
ASSERT(0);
goto done;
}
if (vld->vdata) {
MFREE(osh, vld->vdata, vld->vlen);
vld->vlen = 0;
ret = BCME_OK;
}
done:
return ret;
}
/* return TRUE if :
* - both buffers are of length 0
* OR
* - both buffers are NULL
* OR
* lengths and contents are the same.
*/
bool
bcm_match_buffers(const uint8 *b1, uint b1_len, const uint8 *b2, uint b2_len)
{
if (b1_len == 0 && b2_len == 0) {
return TRUE;
}
if (b1 == NULL && b2 == NULL) {
return TRUE;
}
/* If they are not both NULL, neither can be */
if (b1 == NULL || b2 == NULL) {
return FALSE;
}
if ((b1_len == b2_len) && !memcmp(b1, b2, b1_len)) {
return TRUE;
}
return FALSE;
}
#ifdef PRIVACY_MASK
/* applies privacy mask on the input address itself */
void
BCMRAMFN(bcm_ether_privacy_mask)(struct ether_addr *addr)
{
struct ether_addr *privacy = privacy_addrmask_get();
if (addr && !ETHER_ISMULTI(addr)) {
*(uint32*)(&(addr->octet[0])) &= *((uint32*)&privacy->octet[0]);
*(uint16*)(&(addr->octet[4])) &= *((uint16*)&privacy->octet[4]);
}
}
#endif /* PRIVACY_MASK */
#endif /* BCMDRIVER */
/* Count the number of elements not matching a given value in a null terminated array */
int
BCMATTACHFN(array_value_mismatch_count)(uint8 value, uint8 *array, int array_size)
{
int i;
int count = 0;
for (i = 0; i < array_size; i++) {
/* exit if a null terminator is found */
if (array[i] == 0) {
break;
}
if (array[i] != value) {
count++;
}
}
return count;
}
/* Count the number of non-zero elements in an uint8 array */
int
BCMATTACHFN(array_nonzero_count)(uint8 *array, int array_size)
{
return array_value_mismatch_count(0, array, array_size);
}
/* Count the number of non-zero elements in an int16 array */
int
BCMATTACHFN(array_nonzero_count_int16)(int16 *array, int array_size)
{
int i;
int count = 0;
for (i = 0; i < array_size; i++) {
if (array[i] != 0) {
count++;
}
}
return count;
}
/* Count the number of zero elements in an uint8 array */
int
BCMATTACHFN(array_zero_count)(uint8 *array, int array_size)
{
int i;
int count = 0;
for (i = 0; i < array_size; i++) {
if (array[i] == 0) {
count++;
}
}
return count;
}
/* Validate an array that can be 1 of 2 data types.
* One of array1 or array2 should be non-NULL. The other should be NULL.
*/
static int
BCMATTACHFN(verify_ordered_array)(uint8 *array1, int16 *array2, int array_size,
int range_lo, int range_hi, bool err_if_no_zero_term, bool is_ordered)
{
int ret;
int i;
int val = 0;
int prev_val = 0;
ret = err_if_no_zero_term ? BCME_NOTFOUND : BCME_OK;
/* Check that:
* - values are in descending order.
* - values are within the valid range.
*/
for (i = 0; i < array_size; i++) {
if (array1) {
val = (int)array1[i];
} else if (array2) {
val = (int)array2[i];
} else {
/* both array parameters are NULL */
return BCME_NOTFOUND;
}
if (val == 0) {
/* array is zero-terminated */
ret = BCME_OK;
break;
}
if (is_ordered && i > 0 && val > prev_val) {
/* array is not in descending order */
ret = BCME_BADOPTION;
break;
}
prev_val = val;
if (val < range_lo || val > range_hi) {
/* array value out of range */
ret = BCME_RANGE;
break;
}
}
return ret;
}
/* Validate an ordered uint8 configuration array */
int
BCMATTACHFN(verify_ordered_array_uint8)(uint8 *array, int array_size,
uint8 range_lo, uint8 range_hi)
{
return verify_ordered_array(array, NULL, array_size, (int)range_lo, (int)range_hi,
TRUE, TRUE);
}
/* Validate an ordered int16 non-zero-terminated configuration array */
int
BCMATTACHFN(verify_ordered_array_int16)(int16 *array, int array_size,
int16 range_lo, int16 range_hi)
{
return verify_ordered_array(NULL, array, array_size, (int)range_lo, (int)range_hi,
FALSE, TRUE);
}
/* Validate all values in an array are in range */
int
BCMATTACHFN(verify_array_values)(uint8 *array, int array_size,
int range_lo, int range_hi, bool zero_terminated)
{
int ret = BCME_OK;
int i;
int val = 0;
/* Check that:
* - values are in strict descending order.
* - values are within the valid range.
*/
for (i = 0; i < array_size; i++) {
val = (int)array[i];
if (val == 0 && zero_terminated) {
ret = BCME_OK;
break;
}
if (val < range_lo || val > range_hi) {
/* array value out of range */
ret = BCME_RANGE;
break;
}
}
return ret;
}
/* Adds/replaces NVRAM variable with given value
* varbuf[in,out] - Buffer with NVRAM variables (sequence of zero-terminated 'name=value' records,
* terminated with additional zero)
* buflen[in] - Length of buffer (may, even should, have some unused space)
* variable[in] - Variable to add/replace in 'name=value' form
* datalen[out,opt] - Optional output parameter - resulting length of data in buffer
* Returns TRUE on success, FALSE if buffer too short or variable specified incorrectly
*/
bool
replace_nvram_variable(char *varbuf, unsigned int buflen, const char *variable,
unsigned int *datalen)
{
char *p;
int variable_heading_len, record_len, variable_record_len = (int)strlen(variable) + 1;
char *buf_end = varbuf + buflen;
p = strchr(variable, '=');
if (!p) {
return FALSE;
}
/* Length of given variable name, followed by '=' */
variable_heading_len = (int)((const char *)(p + 1) - variable);
/* Scanning NVRAM, record by record up to trailing 0 */
for (p = varbuf; *p; p += strlen(p) + 1) {
/* If given variable found - remove it */
if (!strncmp(p, variable, variable_heading_len)) {
record_len = (int)strlen(p) + 1;
memmove_s(p, buf_end - p, p + record_len, buf_end - (p + record_len));
}
}
/* If buffer does not have space for given variable - return FALSE */
if ((p + variable_record_len + 1) > buf_end) {
return FALSE;
}
/* Copy given variable to end of buffer */
memmove_s(p, buf_end - p, variable, variable_record_len);
/* Adding trailing 0 */
p[variable_record_len] = 0;
/* Setting optional output parameter - length of data in buffer */
if (datalen) {
*datalen = (unsigned int)(p + variable_record_len + 1 - varbuf);
}
return TRUE;
}
/*
* Gets the ceil bit set to the nearest power of 2
* val[in] - value for which nearest power of 2 bit set to be returned
* bitpos[out] - the position of the nearest power of 2 bit set
*/
uint8
bcm_get_ceil_pow_2(uint val)
{
uint8 bitpos = 0;
ASSERT(val);
if (val & (val-1)) {
/* val is not powers of 2.
* pad it, so that allocation will be aligned to
* next immediate powers of 2.
*/
bitpos = 1;
}
while (val >>= 1) {
bitpos ++;
}
return (bitpos);
}
#if !defined(BCMDONGLEHOST)
/** Initialization of varbuf structure */
void
BCMATTACHFN(varbuf_init)(varbuf_t *b, char *buf, uint size)
{
b->size = size;
b->base = b->buf = buf;
}
/** append a null terminated var=value string */
int
BCMATTACHFN(varbuf_append)(varbuf_t *b, const char *fmt, ...)
{
va_list ap;
int r;
size_t len;
char *s;
if (b->size < 2)
return 0;
va_start(ap, fmt);
r = vsnprintf(b->buf, b->size, fmt, ap);
va_end(ap);
/* C99 snprintf behavior returns r >= size on overflow,
* others return -1 on overflow.
* All return -1 on format error.
* We need to leave room for 2 null terminations, one for the current var
* string, and one for final null of the var table. So check that the
* strlen written, r, leaves room for 2 chars.
*/
if ((r == -1) || (r > (int)(b->size - 2))) {
b->size = 0;
return 0;
}
/* Remove any earlier occurrence of the same variable */
if ((s = strchr(b->buf, '=')) != NULL) {
len = (size_t)(s - b->buf);
for (s = b->base; s < b->buf;) {
if ((memcmp(s, b->buf, len) == 0) && s[len] == '=') {
len = strlen(s) + 1;
memmove(s, (s + len), ((b->buf + r + 1) - (s + len)));
b->buf -= len;
b->size += (unsigned int)len;
break;
}
while (*s++)
;
}
}
/* skip over this string's null termination */
r++;
b->size -= r;
b->buf += r;
return r;
}
#if defined(BCMDRIVER)
/**
* Create variable table from memory.
* Return 0 on success, nonzero on error.
*/
int
BCMATTACHFN(initvars_table)(osl_t *osh, char *start, char *end, char **vars,
uint *count)
{
int c = (int)(end - start);
/* do it only when there is more than just the null string */
if (c > 1) {
char *vp = MALLOC(osh, c);
ASSERT(vp != NULL);
if (!vp)
return BCME_NOMEM;
bcopy(start, vp, c);
*vars = vp;
*count = c;
}
else {
*vars = NULL;
*count = 0;
}
return 0;
}
#endif /* BCMDRIVER */
#endif /* !BCMDONGLEHOST */
/* bit shift operation in serialized buffer taking input bits % 8 */
int buf_shift_right(uint8 *buf, uint16 len, uint8 bits)
{
uint16 i;
if (len == 0 || (bits == 0) || (bits >= NBBY)) {
return BCME_BADARG;
}
for (i = len - 1u; i > 0; i--) {
buf[i] = (buf[i - 1u] << (NBBY - bits)) | (buf[i] >> bits);
}
buf[0] >>= bits;
return BCME_OK;
}
/* print the content of the 'buf' in hex string format */
void
prhexstr(const char *prefix, const uint8 *buf, uint len, bool newline)
{
if (len > 0) {
uint i;
if (prefix != NULL) {
printf("%s", prefix);
}
for (i = 0; i < len; i ++) {
printf("%02X", buf[i]);
}
if (newline) {
printf("\n");
}
}
}
/* Add to adjust the 802.1x priority */
void
pktset8021xprio(void *pkt, int prio)
{
struct ether_header *eh;
uint8 *pktdata;
if(prio == PKTPRIO(pkt))
return;
pktdata = (uint8 *)PKTDATA(OSH_NULL, pkt);
ASSERT(ISALIGNED((uintptr)pktdata, sizeof(uint16)));
eh = (struct ether_header *) pktdata;
if (eh->ether_type == hton16(ETHER_TYPE_802_1X)) {
ASSERT(prio >= 0 && prio <= MAXPRIO);
PKTSETPRIO(pkt, prio);
}
}