blob: 69b3081d1d5abf6e7913ad3b84a5db654b77c364 [file] [log] [blame]
/*
* Broadcom Dongle Host Driver (DHD), Linux-specific network interface
* Basically selected code segments from usb-cdc.c and usb-rndis.c
*
* Copyright (C) 2020, Broadcom.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id$
*/
#include <dhd_linux_priv.h>
extern dhd_pub_t* g_dhd_pub;
#if defined(DHD_LB)
#ifdef DHD_LB_STATS
#define DHD_NUM_NAPI_LATENCY_ROWS (17u)
#define DHD_NAPI_LATENCY_SIZE (sizeof(uint64) * DHD_NUM_NAPI_LATENCY_ROWS)
#endif /* DHD_LB_STATS */
#ifdef DHD_REPLACE_LOG_INFO_TO_TRACE
#define DHD_LB_INFO DHD_TRACE
#else
#define DHD_LB_INFO DHD_INFO
#endif /* DHD_REPLACE_LOG_INFO_TO_TRACE */
void
dhd_lb_set_default_cpus(dhd_info_t *dhd)
{
/* Default CPU allocation for the jobs */
atomic_set(&dhd->rx_napi_cpu, 1);
atomic_set(&dhd->tx_cpu, 2);
atomic_set(&dhd->net_tx_cpu, 0);
atomic_set(&dhd->dpc_cpu, 0);
}
void
dhd_cpumasks_deinit(dhd_info_t *dhd)
{
free_cpumask_var(dhd->cpumask_curr_avail);
free_cpumask_var(dhd->cpumask_primary);
free_cpumask_var(dhd->cpumask_primary_new);
free_cpumask_var(dhd->cpumask_secondary);
free_cpumask_var(dhd->cpumask_secondary_new);
}
int
dhd_cpumasks_init(dhd_info_t *dhd)
{
int id;
uint32 cpus, num_cpus = num_possible_cpus();
int ret = 0;
DHD_ERROR(("%s CPU masks primary(big)=0x%x secondary(little)=0x%x\n", __FUNCTION__,
DHD_LB_PRIMARY_CPUS, DHD_LB_SECONDARY_CPUS));
/* FIXME: If one alloc fails we must free_cpumask_var the previous */
if (!alloc_cpumask_var(&dhd->cpumask_curr_avail, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_primary, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_primary_new, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_secondary, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_secondary_new, GFP_KERNEL)) {
DHD_ERROR(("%s Failed to init cpumasks\n", __FUNCTION__));
ret = -ENOMEM;
goto fail;
}
cpumask_copy(dhd->cpumask_curr_avail, cpu_online_mask);
cpumask_clear(dhd->cpumask_primary);
cpumask_clear(dhd->cpumask_secondary);
if (num_cpus > 32) {
DHD_ERROR(("%s max cpus must be 32, %d too big\n", __FUNCTION__, num_cpus));
ASSERT(0);
}
cpus = DHD_LB_PRIMARY_CPUS;
for (id = 0; id < num_cpus; id++) {
if (isset(&cpus, id))
cpumask_set_cpu(id, dhd->cpumask_primary);
}
cpus = DHD_LB_SECONDARY_CPUS;
for (id = 0; id < num_cpus; id++) {
if (isset(&cpus, id))
cpumask_set_cpu(id, dhd->cpumask_secondary);
}
return ret;
fail:
dhd_cpumasks_deinit(dhd);
return ret;
}
/*
* The CPU Candidacy Algorithm
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~
* The available CPUs for selection are divided into two groups
* Primary Set - A CPU mask that carries the First Choice CPUs
* Secondary Set - A CPU mask that carries the Second Choice CPUs.
*
* There are two types of Job, that needs to be assigned to
* the CPUs, from one of the above mentioned CPU group. The Jobs are
* 1) Rx Packet Processing - napi_cpu
*
* To begin with napi_cpu is on CPU0. Whenever a CPU goes
* on-line/off-line the CPU candidacy algorithm is triggerd. The candidacy
* algo tries to pickup the first available non boot CPU (CPU0) for napi_cpu.
*
*/
void dhd_select_cpu_candidacy(dhd_info_t *dhd)
{
uint32 primary_available_cpus; /* count of primary available cpus */
uint32 secondary_available_cpus; /* count of secondary available cpus */
uint32 napi_cpu = 0; /* cpu selected for napi rx processing */
uint32 tx_cpu = 0; /* cpu selected for tx processing job */
uint32 dpc_cpu = atomic_read(&dhd->dpc_cpu);
uint32 net_tx_cpu = atomic_read(&dhd->net_tx_cpu);
cpumask_clear(dhd->cpumask_primary_new);
cpumask_clear(dhd->cpumask_secondary_new);
/*
* Now select from the primary mask. Even if a Job is
* already running on a CPU in secondary group, we still move
* to primary CPU. So no conditional checks.
*/
cpumask_and(dhd->cpumask_primary_new, dhd->cpumask_primary,
dhd->cpumask_curr_avail);
cpumask_and(dhd->cpumask_secondary_new, dhd->cpumask_secondary,
dhd->cpumask_curr_avail);
/* Clear DPC cpu from new masks so that dpc cpu is not chosen for LB */
cpumask_clear_cpu(dpc_cpu, dhd->cpumask_primary_new);
cpumask_clear_cpu(dpc_cpu, dhd->cpumask_secondary_new);
/* Clear net_tx_cpu from new masks so that same is not chosen for LB */
cpumask_clear_cpu(net_tx_cpu, dhd->cpumask_primary_new);
cpumask_clear_cpu(net_tx_cpu, dhd->cpumask_secondary_new);
primary_available_cpus = cpumask_weight(dhd->cpumask_primary_new);
#if defined(DHD_LB_HOST_CTRL)
/* Does not use promary cpus if DHD received affinity off cmd
* from framework
*/
if (primary_available_cpus > 0 && dhd->permitted_primary_cpu)
#else
if (primary_available_cpus > 0)
#endif /* DHD_LB_HOST_CTRL */
{
napi_cpu = cpumask_first(dhd->cpumask_primary_new);
/* If no further CPU is available,
* cpumask_next returns >= nr_cpu_ids
*/
tx_cpu = cpumask_next(napi_cpu, dhd->cpumask_primary_new);
if (tx_cpu >= nr_cpu_ids)
tx_cpu = 0;
}
DHD_INFO(("%s After primary CPU check napi_cpu %d tx_cpu %d\n",
__FUNCTION__, napi_cpu, tx_cpu));
/* -- Now check for the CPUs from the secondary mask -- */
secondary_available_cpus = cpumask_weight(dhd->cpumask_secondary_new);
DHD_INFO(("%s Available secondary cpus %d nr_cpu_ids %d\n",
__FUNCTION__, secondary_available_cpus, nr_cpu_ids));
if (secondary_available_cpus > 0) {
/* At this point if napi_cpu is unassigned it means no CPU
* is online from Primary Group
*/
#if defined(DHD_LB_TXP_LITTLE_CORE_CTRL)
/* Clear tx_cpu, so that it can be picked from little core */
tx_cpu = 0;
#endif /* DHD_LB_TXP_LITTLE_CORE_CTRL */
if (napi_cpu == 0) {
napi_cpu = cpumask_first(dhd->cpumask_secondary_new);
tx_cpu = cpumask_next(napi_cpu, dhd->cpumask_secondary_new);
} else if (tx_cpu == 0) {
tx_cpu = cpumask_first(dhd->cpumask_secondary_new);
}
/* If no CPU was available for tx processing, choose CPU 0 */
if (tx_cpu >= nr_cpu_ids)
tx_cpu = 0;
}
if ((primary_available_cpus == 0) &&
(secondary_available_cpus == 0)) {
/* No CPUs available from primary or secondary mask */
napi_cpu = 1;
tx_cpu = 2;
}
DHD_INFO(("%s After secondary CPU check napi_cpu %d tx_cpu %d\n",
__FUNCTION__, napi_cpu, tx_cpu));
ASSERT(napi_cpu < nr_cpu_ids);
ASSERT(tx_cpu < nr_cpu_ids);
atomic_set(&dhd->rx_napi_cpu, napi_cpu);
atomic_set(&dhd->tx_cpu, tx_cpu);
return;
}
/*
* Function to handle CPU Hotplug notifications.
* One of the task it does is to trigger the CPU Candidacy algorithm
* for load balancing.
*/
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0))
int dhd_cpu_startup_callback(unsigned int cpu)
{
dhd_info_t *dhd = g_dhd_pub->info;
DHD_INFO(("%s(): \r\n cpu:%d", __FUNCTION__, cpu));
DHD_LB_STATS_INCR(dhd->cpu_online_cnt[cpu]);
cpumask_set_cpu(cpu, dhd->cpumask_curr_avail);
dhd_select_cpu_candidacy(dhd);
return 0;
}
int dhd_cpu_teardown_callback(unsigned int cpu)
{
dhd_info_t *dhd = g_dhd_pub->info;
DHD_INFO(("%s(): \r\n cpu:%d", __FUNCTION__, cpu));
DHD_LB_STATS_INCR(dhd->cpu_offline_cnt[cpu]);
cpumask_clear_cpu(cpu, dhd->cpumask_curr_avail);
dhd_select_cpu_candidacy(dhd);
return 0;
}
#else
int
dhd_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
unsigned long int cpu = (unsigned long int)hcpu;
dhd_info_t *dhd;
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
dhd = container_of(nfb, dhd_info_t, cpu_notifier);
GCC_DIAGNOSTIC_POP();
if (!dhd || !(dhd->dhd_state & DHD_ATTACH_STATE_LB_ATTACH_DONE)) {
DHD_INFO(("%s(): LB data is not initialized yet.\n",
__FUNCTION__));
return NOTIFY_BAD;
}
/* XXX: Do we need other action types ? */
switch (action)
{
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
DHD_LB_STATS_INCR(dhd->cpu_online_cnt[cpu]);
cpumask_set_cpu(cpu, dhd->cpumask_curr_avail);
dhd_select_cpu_candidacy(dhd);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
DHD_LB_STATS_INCR(dhd->cpu_offline_cnt[cpu]);
cpumask_clear_cpu(cpu, dhd->cpumask_curr_avail);
dhd_select_cpu_candidacy(dhd);
break;
default:
break;
}
return NOTIFY_OK;
}
#endif /* LINUX_VERSION_CODE < 4.10.0 */
int dhd_register_cpuhp_callback(dhd_info_t *dhd)
{
int cpuhp_ret = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0))
cpuhp_ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dhd",
dhd_cpu_startup_callback, dhd_cpu_teardown_callback);
if (cpuhp_ret < 0) {
DHD_ERROR(("%s(): cpuhp_setup_state failed %d RX LB won't happen \r\n",
__FUNCTION__, cpuhp_ret));
}
#else
/*
* If we are able to initialize CPU masks, lets register to the
* CPU Hotplug framework to change the CPU for each job dynamically
* using candidacy algorithm.
*/
dhd->cpu_notifier.notifier_call = dhd_cpu_callback;
register_hotcpu_notifier(&dhd->cpu_notifier); /* Register a callback */
#endif /* LINUX_VERSION_CODE < 4.10.0 */
return cpuhp_ret;
}
int dhd_unregister_cpuhp_callback(dhd_info_t *dhd)
{
int ret = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0))
/* Don't want to call tear down while unregistering */
cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
#else
if (dhd->cpu_notifier.notifier_call != NULL) {
unregister_cpu_notifier(&dhd->cpu_notifier);
}
#endif
return ret;
}
#if defined(DHD_LB_STATS)
void dhd_lb_stats_reset(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
int i, j, num_cpus = num_possible_cpus();
if (dhdp == NULL) {
DHD_ERROR(("%s dhd pub pointer is NULL \n",
__FUNCTION__));
return;
}
dhd = dhdp->info;
if (dhd == NULL) {
DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__));
return;
}
DHD_LB_STATS_CLR(dhd->dhd_dpc_cnt);
DHD_LB_STATS_CLR(dhd->napi_sched_cnt);
/* reset NAPI latency stats */
if (dhd->napi_latency) {
bzero(dhd->napi_latency, DHD_NAPI_LATENCY_SIZE);
}
/* reset NAPI per cpu stats */
if (dhd->napi_percpu_run_cnt) {
for (i = 0; i < num_cpus; i++) {
DHD_LB_STATS_CLR(dhd->napi_percpu_run_cnt[i]);
}
}
DHD_LB_STATS_CLR(dhd->rxc_sched_cnt);
if (dhd->rxc_percpu_run_cnt) {
for (i = 0; i < num_cpus; i++) {
DHD_LB_STATS_CLR(dhd->rxc_percpu_run_cnt[i]);
}
}
DHD_LB_STATS_CLR(dhd->txc_sched_cnt);
if (dhd->txc_percpu_run_cnt) {
for (i = 0; i < num_cpus; i++) {
DHD_LB_STATS_CLR(dhd->txc_percpu_run_cnt[i]);
}
}
if (dhd->txp_percpu_run_cnt) {
for (i = 0; i < num_cpus; i++) {
DHD_LB_STATS_CLR(dhd->txp_percpu_run_cnt[i]);
}
}
if (dhd->tx_start_percpu_run_cnt) {
for (i = 0; i < num_cpus; i++) {
DHD_LB_STATS_CLR(dhd->tx_start_percpu_run_cnt[i]);
}
}
for (j = 0; j < HIST_BIN_SIZE; j++) {
for (i = 0; i < num_cpus; i++) {
DHD_LB_STATS_CLR(dhd->napi_rx_hist[j][i]);
}
}
dhd->pub.lb_rxp_strt_thr_hitcnt = 0;
dhd->pub.lb_rxp_stop_thr_hitcnt = 0;
dhd->pub.lb_rxp_napi_sched_cnt = 0;
dhd->pub.lb_rxp_napi_complete_cnt = 0;
return;
}
void dhd_lb_stats_init(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
int i, j, num_cpus = num_possible_cpus();
int alloc_size = sizeof(uint32) * num_cpus;
if (dhdp == NULL) {
DHD_ERROR(("%s(): Invalid argument dhd pubb pointer is NULL \n",
__FUNCTION__));
return;
}
dhd = dhdp->info;
if (dhd == NULL) {
DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__));
return;
}
DHD_LB_STATS_CLR(dhd->dhd_dpc_cnt);
DHD_LB_STATS_CLR(dhd->napi_sched_cnt);
/* NAPI latency stats */
dhd->napi_latency = (uint64 *)MALLOCZ(dhdp->osh, DHD_NAPI_LATENCY_SIZE);
/* NAPI per cpu stats */
dhd->napi_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->napi_percpu_run_cnt) {
DHD_ERROR(("%s(): napi_percpu_run_cnt malloc failed \n",
__FUNCTION__));
return;
}
for (i = 0; i < num_cpus; i++)
DHD_LB_STATS_CLR(dhd->napi_percpu_run_cnt[i]);
DHD_LB_STATS_CLR(dhd->rxc_sched_cnt);
dhd->rxc_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->rxc_percpu_run_cnt) {
DHD_ERROR(("%s(): rxc_percpu_run_cnt malloc failed \n",
__FUNCTION__));
return;
}
for (i = 0; i < num_cpus; i++)
DHD_LB_STATS_CLR(dhd->rxc_percpu_run_cnt[i]);
DHD_LB_STATS_CLR(dhd->txc_sched_cnt);
dhd->txc_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->txc_percpu_run_cnt) {
DHD_ERROR(("%s(): txc_percpu_run_cnt malloc failed \n",
__FUNCTION__));
return;
}
for (i = 0; i < num_cpus; i++)
DHD_LB_STATS_CLR(dhd->txc_percpu_run_cnt[i]);
dhd->cpu_online_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->cpu_online_cnt) {
DHD_ERROR(("%s(): cpu_online_cnt malloc failed \n",
__FUNCTION__));
return;
}
for (i = 0; i < num_cpus; i++)
DHD_LB_STATS_CLR(dhd->cpu_online_cnt[i]);
dhd->cpu_offline_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->cpu_offline_cnt) {
DHD_ERROR(("%s(): cpu_offline_cnt malloc failed \n",
__FUNCTION__));
return;
}
for (i = 0; i < num_cpus; i++)
DHD_LB_STATS_CLR(dhd->cpu_offline_cnt[i]);
dhd->txp_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->txp_percpu_run_cnt) {
DHD_ERROR(("%s(): txp_percpu_run_cnt malloc failed \n",
__FUNCTION__));
return;
}
for (i = 0; i < num_cpus; i++)
DHD_LB_STATS_CLR(dhd->txp_percpu_run_cnt[i]);
dhd->tx_start_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->tx_start_percpu_run_cnt) {
DHD_ERROR(("%s(): tx_start_percpu_run_cnt malloc failed \n",
__FUNCTION__));
return;
}
for (i = 0; i < num_cpus; i++)
DHD_LB_STATS_CLR(dhd->tx_start_percpu_run_cnt[i]);
for (j = 0; j < HIST_BIN_SIZE; j++) {
dhd->napi_rx_hist[j] = (uint32 *)MALLOC(dhdp->osh, alloc_size);
if (!dhd->napi_rx_hist[j]) {
DHD_ERROR(("%s(): dhd->napi_rx_hist[%d] malloc failed \n",
__FUNCTION__, j));
return;
}
for (i = 0; i < num_cpus; i++) {
DHD_LB_STATS_CLR(dhd->napi_rx_hist[j][i]);
}
}
dhd->pub.lb_rxp_strt_thr_hitcnt = 0;
dhd->pub.lb_rxp_stop_thr_hitcnt = 0;
dhd->pub.lb_rxp_napi_sched_cnt = 0;
dhd->pub.lb_rxp_napi_complete_cnt = 0;
return;
}
void dhd_lb_stats_deinit(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
int j, num_cpus = num_possible_cpus();
int alloc_size = sizeof(uint32) * num_cpus;
if (dhdp == NULL) {
DHD_ERROR(("%s(): Invalid argument dhd pubb pointer is NULL \n",
__FUNCTION__));
return;
}
dhd = dhdp->info;
if (dhd == NULL) {
DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__));
return;
}
if (dhd->napi_percpu_run_cnt) {
MFREE(dhdp->osh, dhd->napi_percpu_run_cnt, alloc_size);
}
if (dhd->rxc_percpu_run_cnt) {
MFREE(dhdp->osh, dhd->rxc_percpu_run_cnt, alloc_size);
}
if (dhd->txc_percpu_run_cnt) {
MFREE(dhdp->osh, dhd->txc_percpu_run_cnt, alloc_size);
}
if (dhd->cpu_online_cnt) {
MFREE(dhdp->osh, dhd->cpu_online_cnt, alloc_size);
}
if (dhd->cpu_offline_cnt) {
MFREE(dhdp->osh, dhd->cpu_offline_cnt, alloc_size);
}
if (dhd->txp_percpu_run_cnt) {
MFREE(dhdp->osh, dhd->txp_percpu_run_cnt, alloc_size);
}
if (dhd->tx_start_percpu_run_cnt) {
MFREE(dhdp->osh, dhd->tx_start_percpu_run_cnt, alloc_size);
}
if (dhd->napi_latency) {
MFREE(dhdp->osh, dhd->napi_latency, DHD_NAPI_LATENCY_SIZE);
}
for (j = 0; j < HIST_BIN_SIZE; j++) {
if (dhd->napi_rx_hist[j]) {
MFREE(dhdp->osh, dhd->napi_rx_hist[j], alloc_size);
}
}
return;
}
void dhd_lb_stats_dump_napi_latency(dhd_pub_t *dhdp,
struct bcmstrbuf *strbuf, uint64 *napi_latency)
{
uint32 i;
bcm_bprintf(strbuf, "napi-latency(us): \t count\n");
for (i = 0; i < DHD_NUM_NAPI_LATENCY_ROWS; i++) {
bcm_bprintf(strbuf, "%16u: \t %llu\n", 1U<<i, napi_latency[i]);
}
}
void dhd_lb_stats_dump_histo(dhd_pub_t *dhdp,
struct bcmstrbuf *strbuf, uint32 **hist)
{
int i, j;
uint32 *per_cpu_total;
uint32 total = 0;
uint32 num_cpus = num_possible_cpus();
per_cpu_total = (uint32 *)MALLOC(dhdp->osh, sizeof(uint32) * num_cpus);
if (!per_cpu_total) {
DHD_ERROR(("%s(): dhd->per_cpu_total malloc failed \n", __FUNCTION__));
return;
}
bzero(per_cpu_total, sizeof(uint32) * num_cpus);
bcm_bprintf(strbuf, "CPU: \t\t");
for (i = 0; i < num_cpus; i++)
bcm_bprintf(strbuf, "%d\t", i);
bcm_bprintf(strbuf, "\nBin\n");
for (i = 0; i < HIST_BIN_SIZE; i++) {
bcm_bprintf(strbuf, "%d:\t\t", 1<<i);
for (j = 0; j < num_cpus; j++) {
bcm_bprintf(strbuf, "%d\t", hist[i][j]);
}
bcm_bprintf(strbuf, "\n");
}
bcm_bprintf(strbuf, "Per CPU Total \t");
total = 0;
for (i = 0; i < num_cpus; i++) {
for (j = 0; j < HIST_BIN_SIZE; j++) {
per_cpu_total[i] += (hist[j][i] * (1<<j));
}
bcm_bprintf(strbuf, "%d\t", per_cpu_total[i]);
total += per_cpu_total[i];
}
bcm_bprintf(strbuf, "\nTotal\t\t%d \n", total);
if (per_cpu_total) {
MFREE(dhdp->osh, per_cpu_total, sizeof(uint32) * num_cpus);
}
return;
}
void dhd_lb_stats_dump_cpu_array(struct bcmstrbuf *strbuf, uint32 *p)
{
int i, num_cpus = num_possible_cpus();
bcm_bprintf(strbuf, "CPU: \t\t");
for (i = 0; i < num_cpus; i++)
bcm_bprintf(strbuf, "%d\t", i);
bcm_bprintf(strbuf, "\n");
bcm_bprintf(strbuf, "Val: \t\t");
for (i = 0; i < num_cpus; i++)
bcm_bprintf(strbuf, "%u\t", *(p+i));
bcm_bprintf(strbuf, "\n");
return;
}
#ifdef DHD_MEM_STATS
uint64 dhd_lb_mem_usage(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf)
{
dhd_info_t *dhd;
uint16 rxbufpost_sz;
uint16 rx_post_active = 0;
uint16 rx_cmpl_active = 0;
uint64 rx_path_memory_usage = 0;
if (dhdp == NULL || strbuf == NULL) {
DHD_ERROR(("%s(): Invalid argument dhdp %p strbuf %p \n",
__FUNCTION__, dhdp, strbuf));
return 0;
}
dhd = dhdp->info;
if (dhd == NULL) {
DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__));
return 0;
}
rxbufpost_sz = dhd_prot_get_rxbufpost_sz(dhdp);
if (rxbufpost_sz == 0) {
rxbufpost_sz = DHD_FLOWRING_RX_BUFPOST_PKTSZ;
}
rx_path_memory_usage = rxbufpost_sz * (skb_queue_len(&dhd->rx_pend_queue) +
skb_queue_len(&dhd->rx_napi_queue) +
skb_queue_len(&dhd->rx_process_queue));
rx_post_active = dhd_prot_get_h2d_rx_post_active(dhdp);
if (rx_post_active != 0) {
rx_path_memory_usage += (rxbufpost_sz * rx_post_active);
}
rx_cmpl_active = dhd_prot_get_d2h_rx_cpln_active(dhdp);
if (rx_cmpl_active != 0) {
rx_path_memory_usage += (rxbufpost_sz * rx_cmpl_active);
}
dhdp->rxpath_mem = rx_path_memory_usage;
bcm_bprintf(strbuf, "\nrxbufpost_sz: %d rx_post_active: %d rx_cmpl_active: %d "
"pend_queue_len: %d napi_queue_len: %d process_queue_len: %d\n",
rxbufpost_sz, rx_post_active, rx_cmpl_active,
skb_queue_len(&dhd->rx_pend_queue),
skb_queue_len(&dhd->rx_napi_queue), skb_queue_len(&dhd->rx_process_queue));
bcm_bprintf(strbuf, "DHD rx-path memory_usage: %llubytes %lluKB \n",
rx_path_memory_usage, (rx_path_memory_usage/ 1024));
return rx_path_memory_usage;
}
#endif /* DHD_MEM_STATS */
void dhd_lb_stats_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf)
{
dhd_info_t *dhd;
if (dhdp == NULL || strbuf == NULL) {
DHD_ERROR(("%s(): Invalid argument dhdp %p strbuf %p \n",
__FUNCTION__, dhdp, strbuf));
return;
}
dhd = dhdp->info;
if (dhd == NULL) {
DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__));
return;
}
bcm_bprintf(strbuf, "\ncpu_online_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_online_cnt);
bcm_bprintf(strbuf, "\ncpu_offline_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_offline_cnt);
bcm_bprintf(strbuf, "\nsched_cnt: dhd_dpc %u napi %u rxc %u txc %u\n",
dhd->dhd_dpc_cnt, dhd->napi_sched_cnt, dhd->rxc_sched_cnt,
dhd->txc_sched_cnt);
bcm_bprintf(strbuf, "\nCPUs: dpc_cpu %u napi_cpu %u net_tx_cpu %u tx_cpu %u\n",
atomic_read(&dhd->dpc_cpu),
atomic_read(&dhd->rx_napi_cpu),
atomic_read(&dhd->net_tx_cpu),
atomic_read(&dhd->tx_cpu));
#ifdef DHD_LB_RXP
bcm_bprintf(strbuf, "\nnapi_percpu_run_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->napi_percpu_run_cnt);
bcm_bprintf(strbuf, "\nNAPI Packets Received Histogram:\n");
dhd_lb_stats_dump_histo(dhdp, strbuf, dhd->napi_rx_hist);
bcm_bprintf(strbuf, "\nNAPI poll latency stats ie from napi schedule to napi execution\n");
dhd_lb_stats_dump_napi_latency(dhdp, strbuf, dhd->napi_latency);
#endif /* DHD_LB_RXP */
#ifdef DHD_LB_TXP
bcm_bprintf(strbuf, "\ntxp_percpu_run_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->txp_percpu_run_cnt);
bcm_bprintf(strbuf, "\ntx_start_percpu_run_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->tx_start_percpu_run_cnt);
#endif /* DHD_LB_TXP */
}
void dhd_lb_stats_update_napi_latency(uint64 *bin, uint32 latency)
{
uint64 *p;
uint32 bin_power;
bin_power = next_larger_power2(latency);
switch (bin_power) {
case 1: p = bin + 0; break;
case 2: p = bin + 1; break;
case 4: p = bin + 2; break;
case 8: p = bin + 3; break;
case 16: p = bin + 4; break;
case 32: p = bin + 5; break;
case 64: p = bin + 6; break;
case 128: p = bin + 7; break;
case 256: p = bin + 8; break;
case 512: p = bin + 9; break;
case 1024: p = bin + 10; break;
case 2048: p = bin + 11; break;
case 4096: p = bin + 12; break;
case 8192: p = bin + 13; break;
case 16384: p = bin + 14; break;
case 32768: p = bin + 15; break;
default : p = bin + 16; break;
}
ASSERT((p - bin) < DHD_NUM_NAPI_LATENCY_ROWS);
*p = *p + 1;
return;
}
void dhd_lb_stats_update_histo(uint32 **bin, uint32 count, uint32 cpu)
{
uint32 bin_power;
uint32 *p;
bin_power = next_larger_power2(count);
switch (bin_power) {
case 1: p = bin[0] + cpu; break;
case 2: p = bin[1] + cpu; break;
case 4: p = bin[2] + cpu; break;
case 8: p = bin[3] + cpu; break;
case 16: p = bin[4] + cpu; break;
case 32: p = bin[5] + cpu; break;
case 64: p = bin[6] + cpu; break;
case 128: p = bin[7] + cpu; break;
default : p = bin[8] + cpu; break;
}
*p = *p + 1;
return;
}
void dhd_lb_stats_update_napi_histo(dhd_pub_t *dhdp, uint32 count)
{
int cpu;
dhd_info_t *dhd = dhdp->info;
cpu = get_cpu();
put_cpu();
dhd_lb_stats_update_histo(dhd->napi_rx_hist, count, cpu);
return;
}
void dhd_lb_stats_update_txc_histo(dhd_pub_t *dhdp, uint32 count)
{
int cpu;
dhd_info_t *dhd = dhdp->info;
cpu = get_cpu();
put_cpu();
dhd_lb_stats_update_histo(dhd->txc_hist, count, cpu);
return;
}
void dhd_lb_stats_update_rxc_histo(dhd_pub_t *dhdp, uint32 count)
{
int cpu;
dhd_info_t *dhd = dhdp->info;
cpu = get_cpu();
put_cpu();
dhd_lb_stats_update_histo(dhd->rxc_hist, count, cpu);
return;
}
void dhd_lb_stats_txc_percpu_cnt_incr(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txc_percpu_run_cnt);
}
void dhd_lb_stats_rxc_percpu_cnt_incr(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->rxc_percpu_run_cnt);
}
#endif /* DHD_LB_STATS */
/**
* dhd_tasklet_schedule - Function that runs in IPI context of the destination
* CPU and schedules a tasklet.
* @tasklet: opaque pointer to the tasklet
*/
INLINE void
dhd_tasklet_schedule(void *tasklet)
{
tasklet_schedule((struct tasklet_struct *)tasklet);
}
/**
* dhd_work_schedule_on - Executes the passed work in a given CPU
* @work: work to be scheduled
* @on_cpu: cpu core id
*
* If the requested cpu is online, then an IPI is sent to this cpu via the
* schedule_work_on and the work function
* will be invoked to schedule the specified work on the requested CPU.
*/
INLINE void
dhd_work_schedule_on(struct work_struct *work, int on_cpu)
{
schedule_work_on(on_cpu, work);
}
INLINE void
dhd_delayed_work_schedule_on(struct delayed_work *dwork, int on_cpu, ulong delay)
{
schedule_delayed_work_on(on_cpu, dwork, delay);
}
#if defined(DHD_LB_TXP)
void dhd_tx_dispatcher_work(struct work_struct * work)
{
struct dhd_info *dhd;
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
dhd = container_of(work, struct dhd_info, tx_dispatcher_work);
GCC_DIAGNOSTIC_POP();
dhd_tasklet_schedule(&dhd->tx_tasklet);
}
/**
* dhd_lb_tx_dispatch - load balance by dispatching the tx_tasklet
* on another cpu. The tx_tasklet will take care of actually putting
* the skbs into appropriate flow ring and ringing H2D interrupt
*
* @dhdp: pointer to dhd_pub object
*/
void
dhd_lb_tx_dispatch(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
int curr_cpu;
int tx_cpu;
int prev_net_tx_cpu;
/*
* Get cpu will disable pre-ermption and will not allow any cpu to go offline
* and call put_cpu() only after scheduling rx_napi_dispatcher_work.
*/
curr_cpu = get_cpu();
/* Record the CPU in which the TX request from Network stack came */
prev_net_tx_cpu = atomic_read(&dhd->net_tx_cpu);
atomic_set(&dhd->net_tx_cpu, curr_cpu);
tx_cpu = atomic_read(&dhd->tx_cpu);
/*
* Avoid cpu candidacy, if override is set via sysfs for changing cpu mannually
*/
if (dhd->dhd_lb_candidacy_override) {
if (!cpu_online(tx_cpu)) {
tx_cpu = curr_cpu;
}
} else {
/*
* Now if the NET TX has scheduled in the same CPU
* that is chosen for Tx processing
* OR scheduled on different cpu than previously it was scheduled,
* OR if tx_cpu is offline,
* Call cpu candidacy algorithm to recompute tx_cpu.
*/
if ((curr_cpu == tx_cpu) || (curr_cpu != prev_net_tx_cpu) ||
!cpu_online(tx_cpu)) {
/* Re compute LB CPUs */
dhd_select_cpu_candidacy(dhd);
/* Use updated tx cpu */
tx_cpu = atomic_read(&dhd->tx_cpu);
}
}
/*
* Schedule tx_dispatcher_work to on the cpu which
* in turn will schedule tx_tasklet.
*/
dhd_work_schedule_on(&dhd->tx_dispatcher_work, tx_cpu);
put_cpu();
}
#endif /* DHD_LB_TXP */
#if defined(DHD_LB_RXP)
/**
* dhd_napi_poll - Load balance napi poll function to process received
* packets and send up the network stack using netif_receive_skb()
*
* @napi: napi object in which context this poll function is invoked
* @budget: number of packets to be processed.
*
* Fetch the dhd_info given the rx_napi_struct. Move all packets from the
* rx_napi_queue into a local rx_process_queue (lock and queue move and unlock).
* Dequeue each packet from head of rx_process_queue, fetch the ifid from the
* packet tag and sendup.
*/
int
dhd_napi_poll(struct napi_struct *napi, int budget)
{
int ifid;
const int pkt_count = 1;
const int chan = 0;
struct sk_buff * skb;
unsigned long flags;
struct dhd_info *dhd;
int processed = 0;
int dpc_cpu;
#ifdef DHD_LB_STATS
uint32 napi_latency;
#endif /* DHD_LB_STATS */
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
dhd = container_of(napi, struct dhd_info, rx_napi_struct);
GCC_DIAGNOSTIC_POP();
#ifdef DHD_LB_STATS
napi_latency = (uint32)(OSL_SYSUPTIME_US() - dhd->napi_schedule_time);
dhd_lb_stats_update_napi_latency(dhd->napi_latency, napi_latency);
#endif /* DHD_LB_STATS */
DHD_LB_INFO(("%s napi_queue<%d> budget<%d>\n",
__FUNCTION__, skb_queue_len(&dhd->rx_napi_queue), budget));
/*
* Extract the entire rx_napi_queue into another rx_process_queue
* and process only 'budget' number of skbs from rx_process_queue.
* If there are more items to be processed, napi poll will be rescheduled
* During the next iteration, next set of skbs from
* rx_napi_queue will be extracted and attached to the tail of rx_process_queue.
* Again budget number of skbs will be processed from rx_process_queue.
* If there are less than budget number of skbs in rx_process_queue,
* call napi_complete to stop rescheduling napi poll.
*/
DHD_RX_NAPI_QUEUE_LOCK(&dhd->rx_napi_queue.lock, flags);
skb_queue_splice_tail_init(&dhd->rx_napi_queue, &dhd->rx_process_queue);
DHD_RX_NAPI_QUEUE_UNLOCK(&dhd->rx_napi_queue.lock, flags);
while ((processed < budget) && (skb = __skb_dequeue(&dhd->rx_process_queue)) != NULL) {
OSL_PREFETCH(skb->data);
ifid = DHD_PKTTAG_IFID((dhd_pkttag_fr_t *)PKTTAG(skb));
DHD_LB_INFO(("%s dhd_rx_frame pkt<%p> ifid<%d>\n",
__FUNCTION__, skb, ifid));
dhd_rx_frame(&dhd->pub, ifid, skb, pkt_count, chan);
processed++;
}
if (atomic_read(&dhd->pub.lb_rxp_flow_ctrl) &&
(dhd_lb_rxp_process_qlen(&dhd->pub) <= dhd->pub.lb_rxp_strt_thr)) {
/*
* If the dpc CPU is online Schedule dhd_dpc_dispatcher_work on the dpc cpu which
* in turn will schedule dpc tasklet. Else schedule dpc takslet.
*/
get_cpu();
dpc_cpu = atomic_read(&dhd->dpc_cpu);
if (!cpu_online(dpc_cpu)) {
dhd_tasklet_schedule(&dhd->tasklet);
} else {
dhd_delayed_work_schedule_on(&dhd->dhd_dpc_dispatcher_work, dpc_cpu, 0);
}
put_cpu();
}
DHD_LB_STATS_UPDATE_NAPI_HISTO(&dhd->pub, processed);
DHD_LB_INFO(("%s processed %d\n", __FUNCTION__, processed));
/*
* Signal napi complete only when no more packets are processed and
* none are left in the enqueued queue.
*/
if ((processed == 0) && (skb_queue_len(&dhd->rx_napi_queue) == 0)) {
napi_complete(napi);
#ifdef DHD_LB_STATS
dhd->pub.lb_rxp_napi_complete_cnt++;
#endif /* DHD_LB_STATS */
DHD_GENERAL_LOCK(&dhd->pub, flags);
DHD_BUS_BUSY_CLEAR_IN_NAPI(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
return 0;
}
#ifdef DHD_LB_STATS
dhd->napi_schedule_time = OSL_SYSUPTIME_US();
#endif /* DHD_LB_STATS */
/* Return budget so that it gets rescheduled immediately */
return budget;
}
/**
* dhd_napi_schedule - Place the napi struct into the current cpus softnet napi
* poll list. This function may be invoked via the smp_call_function_single
* from a remote CPU.
*
* This function will essentially invoke __raise_softirq_irqoff(NET_RX_SOFTIRQ)
* after the napi_struct is added to the softnet data's poll_list
*
* @info: pointer to a dhd_info struct
*/
static void
dhd_napi_schedule(void *info)
{
dhd_info_t *dhd = (dhd_info_t *)info;
unsigned long flags;
DHD_INFO(("%s rx_napi_struct<%p> on cpu<%d>\n",
__FUNCTION__, &dhd->rx_napi_struct, atomic_read(&dhd->rx_napi_cpu)));
/* add napi_struct to softnet data poll list and raise NET_RX_SOFTIRQ */
if (napi_schedule_prep(&dhd->rx_napi_struct)) {
/*
* Set busbusystate in NAPI, which will be cleared after
* napi_complete from napi_poll context
*/
DHD_GENERAL_LOCK(&dhd->pub, flags);
DHD_BUS_BUSY_SET_IN_NAPI(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#ifdef DHD_LB_STATS
dhd->napi_schedule_time = OSL_SYSUPTIME_US();
dhd->pub.lb_rxp_napi_sched_cnt++;
#endif /* DHD_LB_STATS */
__napi_schedule(&dhd->rx_napi_struct);
#ifdef WAKEUP_KSOFTIRQD_POST_NAPI_SCHEDULE
raise_softirq(NET_RX_SOFTIRQ);
#endif /* WAKEUP_KSOFTIRQD_POST_NAPI_SCHEDULE */
}
/*
* If the rx_napi_struct was already running, then we let it complete
* processing all its packets. The rx_napi_struct may only run on one
* core at a time, to avoid out-of-order handling.
*/
}
/**
* dhd_napi_schedule_on - API to schedule on a desired CPU core a NET_RX_SOFTIRQ
* action after placing the dhd's rx_process napi object in the the remote CPU's
* softnet data's poll_list.
*
* @dhd: dhd_info which has the rx_process napi object
* @on_cpu: desired remote CPU id
*/
static INLINE int
dhd_napi_schedule_on(dhd_info_t *dhd, int on_cpu)
{
int wait = 0; /* asynchronous IPI */
DHD_INFO(("%s dhd<%p> napi<%p> on_cpu<%d>\n",
__FUNCTION__, dhd, &dhd->rx_napi_struct, on_cpu));
if (smp_call_function_single(on_cpu, dhd_napi_schedule, dhd, wait)) {
DHD_ERROR(("%s smp_call_function_single on_cpu<%d> failed\n",
__FUNCTION__, on_cpu));
}
DHD_LB_STATS_INCR(dhd->napi_sched_cnt);
return 0;
}
/*
* Call get_online_cpus/put_online_cpus around dhd_napi_schedule_on
* Why should we do this?
* The candidacy algorithm is run from the call back function
* registered to CPU hotplug notifier. This call back happens from Worker
* context. The dhd_napi_schedule_on is also from worker context.
* Note that both of this can run on two different CPUs at the same time.
* So we can possibly have a window where a given CPUn is being brought
* down from CPUm while we try to run a function on CPUn.
* To prevent this its better have the whole code to execute an SMP
* function under get_online_cpus.
* This function call ensures that hotplug mechanism does not kick-in
* until we are done dealing with online CPUs
* If the hotplug worker is already running, no worries because the
* candidacy algo would then reflect the same in dhd->rx_napi_cpu.
*
* The below mentioned code structure is proposed in
* https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
* for the question
* Q: I need to ensure that a particular cpu is not removed when there is some
* work specific to this cpu is in progress
*
* According to the documentation calling get_online_cpus is NOT required, if
* we are running from tasklet context. Since dhd_rx_napi_dispatcher_work can
* run from Work Queue context we have to call these functions
*/
void dhd_rx_napi_dispatcher_work(struct work_struct * work)
{
struct dhd_info *dhd;
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
dhd = container_of(work, struct dhd_info, rx_napi_dispatcher_work);
GCC_DIAGNOSTIC_POP();
dhd_napi_schedule(dhd);
}
/**
* dhd_lb_rx_napi_dispatch - load balance by dispatching the rx_napi_struct
* to run on another CPU. The rx_napi_struct's poll function will retrieve all
* the packets enqueued into the rx_napi_queue and sendup.
* The producer's rx packet queue is appended to the rx_napi_queue before
* dispatching the rx_napi_struct.
*/
void
dhd_lb_rx_napi_dispatch(dhd_pub_t *dhdp)
{
unsigned long flags;
dhd_info_t *dhd = dhdp->info;
int curr_cpu;
int rx_napi_cpu;
int prev_dpc_cpu;
if (dhd->rx_napi_netdev == NULL) {
DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__));
return;
}
DHD_LB_INFO(("%s append napi_queue<%d> pend_queue<%d>\n", __FUNCTION__,
skb_queue_len(&dhd->rx_napi_queue), skb_queue_len(&dhd->rx_pend_queue)));
/* append the producer's queue of packets to the napi's rx process queue */
DHD_RX_NAPI_QUEUE_LOCK(&dhd->rx_napi_queue.lock, flags);
skb_queue_splice_tail_init(&dhd->rx_pend_queue, &dhd->rx_napi_queue);
DHD_RX_NAPI_QUEUE_UNLOCK(&dhd->rx_napi_queue.lock, flags);
/* If sysfs lb_rxp_active is not set, schedule on current cpu */
if (!atomic_read(&dhd->lb_rxp_active))
{
dhd_napi_schedule(dhd);
return;
}
/*
* Get cpu will disable pre-ermption and will not allow any cpu to go offline
* and call put_cpu() only after scheduling rx_napi_dispatcher_work.
*/
curr_cpu = get_cpu();
prev_dpc_cpu = atomic_read(&dhd->prev_dpc_cpu);
rx_napi_cpu = atomic_read(&dhd->rx_napi_cpu);
/*
* Avoid cpu candidacy, if override is set via sysfs for changing cpu mannually
*/
if (dhd->dhd_lb_candidacy_override) {
if (!cpu_online(rx_napi_cpu)) {
rx_napi_cpu = curr_cpu;
}
} else {
/*
* Now if the DPC has scheduled in the same CPU
* that is chosen for Rx napi processing
* OR scheduled on different cpu than previously it was scheduled,
* OR if rx_napi_cpu is offline,
* Call cpu candidacy algorithm to recompute napi_cpu.
*/
if ((curr_cpu == rx_napi_cpu) || (curr_cpu != prev_dpc_cpu) ||
!cpu_online(rx_napi_cpu)) {
/* Re compute LB CPUs */
dhd_select_cpu_candidacy(dhd);
/* Use updated napi cpu */
rx_napi_cpu = atomic_read(&dhd->rx_napi_cpu);
}
}
DHD_LB_INFO(("%s : schedule to curr_cpu : %d, rx_napi_cpu : %d\n",
__FUNCTION__, curr_cpu, rx_napi_cpu));
dhd_work_schedule_on(&dhd->rx_napi_dispatcher_work, rx_napi_cpu);
DHD_LB_STATS_INCR(dhd->napi_sched_cnt);
put_cpu();
}
/**
* dhd_lb_rx_pkt_enqueue - Enqueue the packet into the producer's queue
*/
void
dhd_lb_rx_pkt_enqueue(dhd_pub_t *dhdp, void *pkt, int ifidx)
{
dhd_info_t *dhd = dhdp->info;
DHD_LB_INFO(("%s enqueue pkt<%p> ifidx<%d> pend_queue<%d>\n", __FUNCTION__,
pkt, ifidx, skb_queue_len(&dhd->rx_pend_queue)));
DHD_PKTTAG_SET_IFID((dhd_pkttag_fr_t *)PKTTAG(pkt), ifidx);
__skb_queue_tail(&dhd->rx_pend_queue, pkt);
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->napi_percpu_run_cnt);
}
unsigned long
dhd_read_lb_rxp(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
return atomic_read(&dhd->lb_rxp_active);
}
uint32
dhd_lb_rxp_process_qlen(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
return skb_queue_len(&dhd->rx_process_queue);
}
#endif /* DHD_LB_RXP */
#if defined(DHD_LB_TXP)
int
BCMFASTPATH(dhd_lb_sendpkt)(dhd_info_t *dhd, struct net_device *net,
int ifidx, void *skb)
{
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->tx_start_percpu_run_cnt);
/* If the feature is disabled run-time do TX from here */
if (atomic_read(&dhd->lb_txp_active) == 0) {
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txp_percpu_run_cnt);
return __dhd_sendpkt(&dhd->pub, ifidx, skb);
}
/* Store the address of net device and interface index in the Packet tag */
DHD_LB_TX_PKTTAG_SET_NETDEV((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb), net);
DHD_LB_TX_PKTTAG_SET_IFIDX((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb), ifidx);
/* Enqueue the skb into tx_pend_queue */
skb_queue_tail(&dhd->tx_pend_queue, skb);
DHD_TRACE(("%s(): Added skb %p for netdev %p \r\n", __FUNCTION__, skb, net));
/* Dispatch the Tx job to be processed by the tx_tasklet */
dhd_lb_tx_dispatch(&dhd->pub);
return NETDEV_TX_OK;
}
#endif /* DHD_LB_TXP */
#ifdef DHD_LB_TXP
#define DHD_LB_TXBOUND 64
/*
* Function that performs the TX processing on a given CPU
*/
bool
dhd_lb_tx_process(dhd_info_t *dhd)
{
struct sk_buff *skb;
int cnt = 0;
struct net_device *net;
int ifidx;
bool resched = FALSE;
DHD_TRACE(("%s(): TX Processing \r\n", __FUNCTION__));
if (dhd == NULL) {
DHD_ERROR((" Null pointer DHD \r\n"));
return resched;
}
BCM_REFERENCE(net);
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txp_percpu_run_cnt);
/* Base Loop to perform the actual Tx */
do {
skb = skb_dequeue(&dhd->tx_pend_queue);
if (skb == NULL) {
DHD_TRACE(("Dequeued a Null Packet \r\n"));
break;
}
cnt++;
net = DHD_LB_TX_PKTTAG_NETDEV((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb));
ifidx = DHD_LB_TX_PKTTAG_IFIDX((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb));
DHD_TRACE(("Processing skb %p for net %p index %d \r\n", skb,
net, ifidx));
__dhd_sendpkt(&dhd->pub, ifidx, skb);
if (cnt >= DHD_LB_TXBOUND) {
resched = TRUE;
break;
}
} while (1);
DHD_LB_INFO(("%s(): Processed %d packets \r\n", __FUNCTION__, cnt));
return resched;
}
void
dhd_lb_tx_handler(unsigned long data)
{
dhd_info_t *dhd = (dhd_info_t *)data;
if (dhd_lb_tx_process(dhd)) {
dhd_tasklet_schedule(&dhd->tx_tasklet);
}
}
#endif /* DHD_LB_TXP */
#endif /* DHD_LB */
#if defined(DHD_CONTROL_PCIE_CPUCORE_WIFI_TURNON)
void
dhd_irq_set_affinity(dhd_pub_t *dhdp, const struct cpumask *cpumask)
{
unsigned int irq = (unsigned int)-1;
int err = BCME_OK;
if (!dhdp) {
DHD_ERROR(("%s : dhdp is NULL\n", __FUNCTION__));
return;
}
if (!dhdp->bus) {
DHD_ERROR(("%s : bus is NULL\n", __FUNCTION__));
return;
}
DHD_ERROR(("%s : irq set affinity cpu:0x%lx\n",
__FUNCTION__, *cpumask_bits(cpumask)));
dhdpcie_get_pcieirq(dhdp->bus, &irq);
#ifdef BCMDHD_MODULAR
err = irq_set_affinity_hint(irq, cpumask);
#else
err = irq_set_affinity(irq, cpumask);
#endif /* BCMDHD_MODULAR */
if (err)
DHD_ERROR(("%s : irq set affinity is failed cpu:0x%lx\n",
__FUNCTION__, *cpumask_bits(cpumask)));
}
#endif /* DHD_CONTROL_PCIE_CPUCORE_WIFI_TURNON */