blob: 7be5e796e653cfae3cf7a5e247ca93e3c4481a7f [file] [log] [blame]
/*
* Copyright (c) 2021 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
typedef struct ColorTemperatureContext {
const AVClass *class;
float temperature;
float mix;
float preserve;
float color[3];
int step;
int depth;
uint8_t rgba_map[4];
int (*do_slice)(AVFilterContext *s, void *arg,
int jobnr, int nb_jobs);
} ColorTemperatureContext;
static float saturate(float input)
{
return av_clipf(input, 0.f, 1.f);
}
static void kelvin2rgb(float k, float *rgb)
{
float kelvin = k / 100.0f;
if (kelvin <= 66.0f) {
rgb[0] = 1.0f;
rgb[1] = saturate(0.39008157876901960784f * logf(kelvin) - 0.63184144378862745098f);
} else {
const float t = fmaxf(kelvin - 60.0f, 0.0f);
rgb[0] = saturate(1.29293618606274509804f * powf(t, -0.1332047592f));
rgb[1] = saturate(1.12989086089529411765f * powf(t, -0.0755148492f));
}
if (kelvin >= 66.0f)
rgb[2] = 1.0f;
else if (kelvin <= 19.0f)
rgb[2] = 0.0f;
else
rgb[2] = saturate(0.54320678911019607843f * logf(kelvin - 10.0f) - 1.19625408914f);
}
static float lerpf(float v0, float v1, float f)
{
return v0 + (v1 - v0) * f;
}
#define PROCESS() \
nr = r * color[0]; \
ng = g * color[1]; \
nb = b * color[2]; \
\
nr = lerpf(r, nr, mix); \
ng = lerpf(g, ng, mix); \
nb = lerpf(b, nb, mix); \
\
l0 = (FFMAX3(r, g, b) + FFMIN3(r, g, b)) + FLT_EPSILON; \
l1 = (FFMAX3(nr, ng, nb) + FFMIN3(nr, ng, nb)) + FLT_EPSILON; \
l = l0 / l1; \
\
r = nr * l; \
g = ng * l; \
b = nb * l; \
\
nr = lerpf(nr, r, preserve); \
ng = lerpf(ng, g, preserve); \
nb = lerpf(nb, b, preserve);
static int temperature_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ColorTemperatureContext *s = ctx->priv;
AVFrame *frame = arg;
const int width = frame->width;
const int height = frame->height;
const float mix = s->mix;
const float preserve = s->preserve;
const float *color = s->color;
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int glinesize = frame->linesize[0];
const int blinesize = frame->linesize[1];
const int rlinesize = frame->linesize[2];
uint8_t *gptr = frame->data[0] + slice_start * glinesize;
uint8_t *bptr = frame->data[1] + slice_start * blinesize;
uint8_t *rptr = frame->data[2] + slice_start * rlinesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = gptr[x];
float b = bptr[x];
float r = rptr[x];
float nr, ng, nb;
float l0, l1, l;
PROCESS()
gptr[x] = av_clip_uint8(ng);
bptr[x] = av_clip_uint8(nb);
rptr[x] = av_clip_uint8(nr);
}
gptr += glinesize;
bptr += blinesize;
rptr += rlinesize;
}
return 0;
}
static int temperature_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ColorTemperatureContext *s = ctx->priv;
AVFrame *frame = arg;
const int depth = s->depth;
const int width = frame->width;
const int height = frame->height;
const float preserve = s->preserve;
const float mix = s->mix;
const float *color = s->color;
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int glinesize = frame->linesize[0] / sizeof(uint16_t);
const int blinesize = frame->linesize[1] / sizeof(uint16_t);
const int rlinesize = frame->linesize[2] / sizeof(uint16_t);
uint16_t *gptr = (uint16_t *)frame->data[0] + slice_start * glinesize;
uint16_t *bptr = (uint16_t *)frame->data[1] + slice_start * blinesize;
uint16_t *rptr = (uint16_t *)frame->data[2] + slice_start * rlinesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = gptr[x];
float b = bptr[x];
float r = rptr[x];
float nr, ng, nb;
float l0, l1, l;
PROCESS()
gptr[x] = av_clip_uintp2_c(ng, depth);
bptr[x] = av_clip_uintp2_c(nb, depth);
rptr[x] = av_clip_uintp2_c(nr, depth);
}
gptr += glinesize;
bptr += blinesize;
rptr += rlinesize;
}
return 0;
}
static int temperature_slice8p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ColorTemperatureContext *s = ctx->priv;
AVFrame *frame = arg;
const int step = s->step;
const int width = frame->width;
const int height = frame->height;
const float mix = s->mix;
const float preserve = s->preserve;
const float *color = s->color;
const uint8_t roffset = s->rgba_map[R];
const uint8_t goffset = s->rgba_map[G];
const uint8_t boffset = s->rgba_map[B];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int linesize = frame->linesize[0];
uint8_t *ptr = frame->data[0] + slice_start * linesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = ptr[x * step + goffset];
float b = ptr[x * step + boffset];
float r = ptr[x * step + roffset];
float nr, ng, nb;
float l0, l1, l;
PROCESS()
ptr[x * step + goffset] = av_clip_uint8(ng);
ptr[x * step + boffset] = av_clip_uint8(nb);
ptr[x * step + roffset] = av_clip_uint8(nr);
}
ptr += linesize;
}
return 0;
}
static int temperature_slice16p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ColorTemperatureContext *s = ctx->priv;
AVFrame *frame = arg;
const int step = s->step;
const int depth = s->depth;
const int width = frame->width;
const int height = frame->height;
const float preserve = s->preserve;
const float mix = s->mix;
const float *color = s->color;
const uint8_t roffset = s->rgba_map[R];
const uint8_t goffset = s->rgba_map[G];
const uint8_t boffset = s->rgba_map[B];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int linesize = frame->linesize[0] / sizeof(uint16_t);
uint16_t *ptr = (uint16_t *)frame->data[0] + slice_start * linesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = ptr[x * step + goffset];
float b = ptr[x * step + boffset];
float r = ptr[x * step + roffset];
float nr, ng, nb;
float l0, l1, l;
PROCESS()
ptr[x * step + goffset] = av_clip_uintp2_c(ng, depth);
ptr[x * step + boffset] = av_clip_uintp2_c(nb, depth);
ptr[x * step + roffset] = av_clip_uintp2_c(nr, depth);
}
ptr += linesize;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
ColorTemperatureContext *s = ctx->priv;
kelvin2rgb(s->temperature, s->color);
ctx->internal->execute(ctx, s->do_slice, frame, NULL,
FFMIN(frame->height, ff_filter_get_nb_threads(ctx)));
return ff_filter_frame(ctx->outputs[0], frame);
}
static av_cold int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_NONE
};
AVFilterFormats *formats = NULL;
formats = ff_make_format_list(pixel_fmts);
if (!formats)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, formats);
}
static av_cold int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
ColorTemperatureContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
s->step = desc->nb_components;
if (inlink->format == AV_PIX_FMT_RGB0 ||
inlink->format == AV_PIX_FMT_0RGB ||
inlink->format == AV_PIX_FMT_BGR0 ||
inlink->format == AV_PIX_FMT_0BGR)
s->step = 4;
s->depth = desc->comp[0].depth;
s->do_slice = s->depth <= 8 ? temperature_slice8 : temperature_slice16;
if (!planar)
s->do_slice = s->depth <= 8 ? temperature_slice8p : temperature_slice16p;
ff_fill_rgba_map(s->rgba_map, inlink->format);
return 0;
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
.needs_writable = 1,
},
{ NULL }
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
#define OFFSET(x) offsetof(ColorTemperatureContext, x)
#define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption colortemperature_options[] = {
{ "temperature", "set the temperature in Kelvin", OFFSET(temperature), AV_OPT_TYPE_FLOAT, {.dbl=6500}, 1000, 40000, VF },
{ "mix", "set the mix with filtered output", OFFSET(mix), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, VF },
{ "pl", "set the amount of preserving lightness", OFFSET(preserve), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 1, VF },
{ NULL }
};
AVFILTER_DEFINE_CLASS(colortemperature);
AVFilter ff_vf_colortemperature = {
.name = "colortemperature",
.description = NULL_IF_CONFIG_SMALL("Adjust color temperature of video."),
.priv_size = sizeof(ColorTemperatureContext),
.priv_class = &colortemperature_class,
.query_formats = query_formats,
.inputs = inputs,
.outputs = outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};