| /* |
| * Copyright (c) 2001-2003 The FFmpeg project |
| * |
| * first version by Francois Revol (revol@free.fr) |
| * fringe ADPCM codecs (e.g., DK3, DK4, Westwood) |
| * by Mike Melanson (melanson@pcisys.net) |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/opt.h" |
| |
| #include "avcodec.h" |
| #include "put_bits.h" |
| #include "bytestream.h" |
| #include "adpcm.h" |
| #include "adpcm_data.h" |
| #include "internal.h" |
| |
| /** |
| * @file |
| * ADPCM encoders |
| * See ADPCM decoder reference documents for codec information. |
| */ |
| |
| typedef struct TrellisPath { |
| int nibble; |
| int prev; |
| } TrellisPath; |
| |
| typedef struct TrellisNode { |
| uint32_t ssd; |
| int path; |
| int sample1; |
| int sample2; |
| int step; |
| } TrellisNode; |
| |
| typedef struct ADPCMEncodeContext { |
| AVClass *class; |
| int block_size; |
| |
| ADPCMChannelStatus status[6]; |
| TrellisPath *paths; |
| TrellisNode *node_buf; |
| TrellisNode **nodep_buf; |
| uint8_t *trellis_hash; |
| } ADPCMEncodeContext; |
| |
| #define FREEZE_INTERVAL 128 |
| |
| static av_cold int adpcm_encode_init(AVCodecContext *avctx) |
| { |
| ADPCMEncodeContext *s = avctx->priv_data; |
| uint8_t *extradata; |
| int i; |
| |
| if (avctx->channels > 2) { |
| av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| /* |
| * AMV's block size has to match that of the corresponding video |
| * stream. Relax the POT requirement. |
| */ |
| if (avctx->codec->id != AV_CODEC_ID_ADPCM_IMA_AMV && |
| (s->block_size & (s->block_size - 1))) { |
| av_log(avctx, AV_LOG_ERROR, "block size must be power of 2\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (avctx->trellis) { |
| int frontier, max_paths; |
| |
| if ((unsigned)avctx->trellis > 16U) { |
| av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_SSI || |
| avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_APM || |
| avctx->codec->id == AV_CODEC_ID_ADPCM_ARGO) { |
| /* |
| * The current trellis implementation doesn't work for extended |
| * runs of samples without periodic resets. Disallow it. |
| */ |
| av_log(avctx, AV_LOG_ERROR, "trellis not supported\n"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| frontier = 1 << avctx->trellis; |
| max_paths = frontier * FREEZE_INTERVAL; |
| if (!FF_ALLOC_TYPED_ARRAY(s->paths, max_paths) || |
| !FF_ALLOC_TYPED_ARRAY(s->node_buf, 2 * frontier) || |
| !FF_ALLOC_TYPED_ARRAY(s->nodep_buf, 2 * frontier) || |
| !FF_ALLOC_TYPED_ARRAY(s->trellis_hash, 65536)) |
| return AVERROR(ENOMEM); |
| } |
| |
| avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id); |
| |
| switch (avctx->codec->id) { |
| case AV_CODEC_ID_ADPCM_IMA_WAV: |
| /* each 16 bits sample gives one nibble |
| and we have 4 bytes per channel overhead */ |
| avctx->frame_size = (s->block_size - 4 * avctx->channels) * 8 / |
| (4 * avctx->channels) + 1; |
| /* seems frame_size isn't taken into account... |
| have to buffer the samples :-( */ |
| avctx->block_align = s->block_size; |
| avctx->bits_per_coded_sample = 4; |
| break; |
| case AV_CODEC_ID_ADPCM_IMA_QT: |
| avctx->frame_size = 64; |
| avctx->block_align = 34 * avctx->channels; |
| break; |
| case AV_CODEC_ID_ADPCM_MS: |
| /* each 16 bits sample gives one nibble |
| and we have 7 bytes per channel overhead */ |
| avctx->frame_size = (s->block_size - 7 * avctx->channels) * 2 / avctx->channels + 2; |
| avctx->bits_per_coded_sample = 4; |
| avctx->block_align = s->block_size; |
| if (!(avctx->extradata = av_malloc(32 + AV_INPUT_BUFFER_PADDING_SIZE))) |
| return AVERROR(ENOMEM); |
| avctx->extradata_size = 32; |
| extradata = avctx->extradata; |
| bytestream_put_le16(&extradata, avctx->frame_size); |
| bytestream_put_le16(&extradata, 7); /* wNumCoef */ |
| for (i = 0; i < 7; i++) { |
| bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4); |
| bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4); |
| } |
| break; |
| case AV_CODEC_ID_ADPCM_YAMAHA: |
| avctx->frame_size = s->block_size * 2 / avctx->channels; |
| avctx->block_align = s->block_size; |
| break; |
| case AV_CODEC_ID_ADPCM_SWF: |
| if (avctx->sample_rate != 11025 && |
| avctx->sample_rate != 22050 && |
| avctx->sample_rate != 44100) { |
| av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, " |
| "22050 or 44100\n"); |
| return AVERROR(EINVAL); |
| } |
| avctx->frame_size = 4096; /* Hardcoded according to the SWF spec. */ |
| avctx->block_align = (2 + avctx->channels * (22 + 4 * (avctx->frame_size - 1)) + 7) / 8; |
| break; |
| case AV_CODEC_ID_ADPCM_IMA_SSI: |
| case AV_CODEC_ID_ADPCM_IMA_ALP: |
| avctx->frame_size = s->block_size * 2 / avctx->channels; |
| avctx->block_align = s->block_size; |
| break; |
| case AV_CODEC_ID_ADPCM_IMA_AMV: |
| if (avctx->sample_rate != 22050) { |
| av_log(avctx, AV_LOG_ERROR, "Sample rate must be 22050\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (avctx->channels != 1) { |
| av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| avctx->frame_size = s->block_size; |
| avctx->block_align = 8 + (FFALIGN(avctx->frame_size, 2) / 2); |
| break; |
| case AV_CODEC_ID_ADPCM_IMA_APM: |
| avctx->frame_size = s->block_size * 2 / avctx->channels; |
| avctx->block_align = s->block_size; |
| |
| if (!(avctx->extradata = av_mallocz(28 + AV_INPUT_BUFFER_PADDING_SIZE))) |
| return AVERROR(ENOMEM); |
| avctx->extradata_size = 28; |
| break; |
| case AV_CODEC_ID_ADPCM_ARGO: |
| avctx->frame_size = 32; |
| avctx->block_align = 17 * avctx->channels; |
| break; |
| default: |
| return AVERROR(EINVAL); |
| } |
| |
| return 0; |
| } |
| |
| static av_cold int adpcm_encode_close(AVCodecContext *avctx) |
| { |
| ADPCMEncodeContext *s = avctx->priv_data; |
| av_freep(&s->paths); |
| av_freep(&s->node_buf); |
| av_freep(&s->nodep_buf); |
| av_freep(&s->trellis_hash); |
| |
| return 0; |
| } |
| |
| |
| static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c, |
| int16_t sample) |
| { |
| int delta = sample - c->prev_sample; |
| int nibble = FFMIN(7, abs(delta) * 4 / |
| ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8; |
| c->prev_sample += ((ff_adpcm_step_table[c->step_index] * |
| ff_adpcm_yamaha_difflookup[nibble]) / 8); |
| c->prev_sample = av_clip_int16(c->prev_sample); |
| c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88); |
| return nibble; |
| } |
| |
| static inline uint8_t adpcm_ima_alp_compress_sample(ADPCMChannelStatus *c, int16_t sample) |
| { |
| const int delta = sample - c->prev_sample; |
| const int step = ff_adpcm_step_table[c->step_index]; |
| const int sign = (delta < 0) * 8; |
| |
| int nibble = FFMIN(abs(delta) * 4 / step, 7); |
| int diff = (step * nibble) >> 2; |
| if (sign) |
| diff = -diff; |
| |
| nibble = sign | nibble; |
| |
| c->prev_sample += diff; |
| c->prev_sample = av_clip_int16(c->prev_sample); |
| c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88); |
| return nibble; |
| } |
| |
| static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c, |
| int16_t sample) |
| { |
| int delta = sample - c->prev_sample; |
| int diff, step = ff_adpcm_step_table[c->step_index]; |
| int nibble = 8*(delta < 0); |
| |
| delta= abs(delta); |
| diff = delta + (step >> 3); |
| |
| if (delta >= step) { |
| nibble |= 4; |
| delta -= step; |
| } |
| step >>= 1; |
| if (delta >= step) { |
| nibble |= 2; |
| delta -= step; |
| } |
| step >>= 1; |
| if (delta >= step) { |
| nibble |= 1; |
| delta -= step; |
| } |
| diff -= delta; |
| |
| if (nibble & 8) |
| c->prev_sample -= diff; |
| else |
| c->prev_sample += diff; |
| |
| c->prev_sample = av_clip_int16(c->prev_sample); |
| c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88); |
| |
| return nibble; |
| } |
| |
| static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c, |
| int16_t sample) |
| { |
| int predictor, nibble, bias; |
| |
| predictor = (((c->sample1) * (c->coeff1)) + |
| (( c->sample2) * (c->coeff2))) / 64; |
| |
| nibble = sample - predictor; |
| if (nibble >= 0) |
| bias = c->idelta / 2; |
| else |
| bias = -c->idelta / 2; |
| |
| nibble = (nibble + bias) / c->idelta; |
| nibble = av_clip_intp2(nibble, 3) & 0x0F; |
| |
| predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta; |
| |
| c->sample2 = c->sample1; |
| c->sample1 = av_clip_int16(predictor); |
| |
| c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8; |
| if (c->idelta < 16) |
| c->idelta = 16; |
| |
| return nibble; |
| } |
| |
| static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, |
| int16_t sample) |
| { |
| int nibble, delta; |
| |
| if (!c->step) { |
| c->predictor = 0; |
| c->step = 127; |
| } |
| |
| delta = sample - c->predictor; |
| |
| nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8; |
| |
| c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8); |
| c->predictor = av_clip_int16(c->predictor); |
| c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8; |
| c->step = av_clip(c->step, 127, 24576); |
| |
| return nibble; |
| } |
| |
| static void adpcm_compress_trellis(AVCodecContext *avctx, |
| const int16_t *samples, uint8_t *dst, |
| ADPCMChannelStatus *c, int n, int stride) |
| { |
| //FIXME 6% faster if frontier is a compile-time constant |
| ADPCMEncodeContext *s = avctx->priv_data; |
| const int frontier = 1 << avctx->trellis; |
| const int version = avctx->codec->id; |
| TrellisPath *paths = s->paths, *p; |
| TrellisNode *node_buf = s->node_buf; |
| TrellisNode **nodep_buf = s->nodep_buf; |
| TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd |
| TrellisNode **nodes_next = nodep_buf + frontier; |
| int pathn = 0, froze = -1, i, j, k, generation = 0; |
| uint8_t *hash = s->trellis_hash; |
| memset(hash, 0xff, 65536 * sizeof(*hash)); |
| |
| memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf)); |
| nodes[0] = node_buf + frontier; |
| nodes[0]->ssd = 0; |
| nodes[0]->path = 0; |
| nodes[0]->step = c->step_index; |
| nodes[0]->sample1 = c->sample1; |
| nodes[0]->sample2 = c->sample2; |
| if (version == AV_CODEC_ID_ADPCM_IMA_WAV || |
| version == AV_CODEC_ID_ADPCM_IMA_QT || |
| version == AV_CODEC_ID_ADPCM_IMA_AMV || |
| version == AV_CODEC_ID_ADPCM_SWF) |
| nodes[0]->sample1 = c->prev_sample; |
| if (version == AV_CODEC_ID_ADPCM_MS) |
| nodes[0]->step = c->idelta; |
| if (version == AV_CODEC_ID_ADPCM_YAMAHA) { |
| if (c->step == 0) { |
| nodes[0]->step = 127; |
| nodes[0]->sample1 = 0; |
| } else { |
| nodes[0]->step = c->step; |
| nodes[0]->sample1 = c->predictor; |
| } |
| } |
| |
| for (i = 0; i < n; i++) { |
| TrellisNode *t = node_buf + frontier*(i&1); |
| TrellisNode **u; |
| int sample = samples[i * stride]; |
| int heap_pos = 0; |
| memset(nodes_next, 0, frontier * sizeof(TrellisNode*)); |
| for (j = 0; j < frontier && nodes[j]; j++) { |
| // higher j have higher ssd already, so they're likely |
| // to yield a suboptimal next sample too |
| const int range = (j < frontier / 2) ? 1 : 0; |
| const int step = nodes[j]->step; |
| int nidx; |
| if (version == AV_CODEC_ID_ADPCM_MS) { |
| const int predictor = ((nodes[j]->sample1 * c->coeff1) + |
| (nodes[j]->sample2 * c->coeff2)) / 64; |
| const int div = (sample - predictor) / step; |
| const int nmin = av_clip(div-range, -8, 6); |
| const int nmax = av_clip(div+range, -7, 7); |
| for (nidx = nmin; nidx <= nmax; nidx++) { |
| const int nibble = nidx & 0xf; |
| int dec_sample = predictor + nidx * step; |
| #define STORE_NODE(NAME, STEP_INDEX)\ |
| int d;\ |
| uint32_t ssd;\ |
| int pos;\ |
| TrellisNode *u;\ |
| uint8_t *h;\ |
| dec_sample = av_clip_int16(dec_sample);\ |
| d = sample - dec_sample;\ |
| ssd = nodes[j]->ssd + d*(unsigned)d;\ |
| /* Check for wraparound, skip such samples completely. \ |
| * Note, changing ssd to a 64 bit variable would be \ |
| * simpler, avoiding this check, but it's slower on \ |
| * x86 32 bit at the moment. */\ |
| if (ssd < nodes[j]->ssd)\ |
| goto next_##NAME;\ |
| /* Collapse any two states with the same previous sample value. \ |
| * One could also distinguish states by step and by 2nd to last |
| * sample, but the effects of that are negligible. |
| * Since nodes in the previous generation are iterated |
| * through a heap, they're roughly ordered from better to |
| * worse, but not strictly ordered. Therefore, an earlier |
| * node with the same sample value is better in most cases |
| * (and thus the current is skipped), but not strictly |
| * in all cases. Only skipping samples where ssd >= |
| * ssd of the earlier node with the same sample gives |
| * slightly worse quality, though, for some reason. */ \ |
| h = &hash[(uint16_t) dec_sample];\ |
| if (*h == generation)\ |
| goto next_##NAME;\ |
| if (heap_pos < frontier) {\ |
| pos = heap_pos++;\ |
| } else {\ |
| /* Try to replace one of the leaf nodes with the new \ |
| * one, but try a different slot each time. */\ |
| pos = (frontier >> 1) +\ |
| (heap_pos & ((frontier >> 1) - 1));\ |
| if (ssd > nodes_next[pos]->ssd)\ |
| goto next_##NAME;\ |
| heap_pos++;\ |
| }\ |
| *h = generation;\ |
| u = nodes_next[pos];\ |
| if (!u) {\ |
| av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\ |
| u = t++;\ |
| nodes_next[pos] = u;\ |
| u->path = pathn++;\ |
| }\ |
| u->ssd = ssd;\ |
| u->step = STEP_INDEX;\ |
| u->sample2 = nodes[j]->sample1;\ |
| u->sample1 = dec_sample;\ |
| paths[u->path].nibble = nibble;\ |
| paths[u->path].prev = nodes[j]->path;\ |
| /* Sift the newly inserted node up in the heap to \ |
| * restore the heap property. */\ |
| while (pos > 0) {\ |
| int parent = (pos - 1) >> 1;\ |
| if (nodes_next[parent]->ssd <= ssd)\ |
| break;\ |
| FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\ |
| pos = parent;\ |
| }\ |
| next_##NAME:; |
| STORE_NODE(ms, FFMAX(16, |
| (ff_adpcm_AdaptationTable[nibble] * step) >> 8)); |
| } |
| } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV || |
| version == AV_CODEC_ID_ADPCM_IMA_QT || |
| version == AV_CODEC_ID_ADPCM_IMA_AMV || |
| version == AV_CODEC_ID_ADPCM_SWF) { |
| #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ |
| const int predictor = nodes[j]->sample1;\ |
| const int div = (sample - predictor) * 4 / STEP_TABLE;\ |
| int nmin = av_clip(div - range, -7, 6);\ |
| int nmax = av_clip(div + range, -6, 7);\ |
| if (nmin <= 0)\ |
| nmin--; /* distinguish -0 from +0 */\ |
| if (nmax < 0)\ |
| nmax--;\ |
| for (nidx = nmin; nidx <= nmax; nidx++) {\ |
| const int nibble = nidx < 0 ? 7 - nidx : nidx;\ |
| int dec_sample = predictor +\ |
| (STEP_TABLE *\ |
| ff_adpcm_yamaha_difflookup[nibble]) / 8;\ |
| STORE_NODE(NAME, STEP_INDEX);\ |
| } |
| LOOP_NODES(ima, ff_adpcm_step_table[step], |
| av_clip(step + ff_adpcm_index_table[nibble], 0, 88)); |
| } else { //AV_CODEC_ID_ADPCM_YAMAHA |
| LOOP_NODES(yamaha, step, |
| av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8, |
| 127, 24576)); |
| #undef LOOP_NODES |
| #undef STORE_NODE |
| } |
| } |
| |
| u = nodes; |
| nodes = nodes_next; |
| nodes_next = u; |
| |
| generation++; |
| if (generation == 255) { |
| memset(hash, 0xff, 65536 * sizeof(*hash)); |
| generation = 0; |
| } |
| |
| // prevent overflow |
| if (nodes[0]->ssd > (1 << 28)) { |
| for (j = 1; j < frontier && nodes[j]; j++) |
| nodes[j]->ssd -= nodes[0]->ssd; |
| nodes[0]->ssd = 0; |
| } |
| |
| // merge old paths to save memory |
| if (i == froze + FREEZE_INTERVAL) { |
| p = &paths[nodes[0]->path]; |
| for (k = i; k > froze; k--) { |
| dst[k] = p->nibble; |
| p = &paths[p->prev]; |
| } |
| froze = i; |
| pathn = 0; |
| // other nodes might use paths that don't coincide with the frozen one. |
| // checking which nodes do so is too slow, so just kill them all. |
| // this also slightly improves quality, but I don't know why. |
| memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*)); |
| } |
| } |
| |
| p = &paths[nodes[0]->path]; |
| for (i = n - 1; i > froze; i--) { |
| dst[i] = p->nibble; |
| p = &paths[p->prev]; |
| } |
| |
| c->predictor = nodes[0]->sample1; |
| c->sample1 = nodes[0]->sample1; |
| c->sample2 = nodes[0]->sample2; |
| c->step_index = nodes[0]->step; |
| c->step = nodes[0]->step; |
| c->idelta = nodes[0]->step; |
| } |
| |
| static inline int adpcm_argo_compress_nibble(const ADPCMChannelStatus *cs, int16_t s, |
| int shift, int flag) |
| { |
| int nibble; |
| |
| if (flag) |
| nibble = 4 * s - 8 * cs->sample1 + 4 * cs->sample2; |
| else |
| nibble = 4 * s - 4 * cs->sample1; |
| |
| return (nibble >> shift) & 0x0F; |
| } |
| |
| static int64_t adpcm_argo_compress_block(ADPCMChannelStatus *cs, PutBitContext *pb, |
| const int16_t *samples, int nsamples, |
| int shift, int flag) |
| { |
| int64_t error = 0; |
| |
| if (pb) { |
| put_bits(pb, 4, shift - 2); |
| put_bits(pb, 1, 0); |
| put_bits(pb, 1, !!flag); |
| put_bits(pb, 2, 0); |
| } |
| |
| for (int n = 0; n < nsamples; n++) { |
| /* Compress the nibble, then expand it to see how much precision we've lost. */ |
| int nibble = adpcm_argo_compress_nibble(cs, samples[n], shift, flag); |
| int16_t sample = ff_adpcm_argo_expand_nibble(cs, nibble, shift, flag); |
| |
| error += abs(samples[n] - sample); |
| |
| if (pb) |
| put_bits(pb, 4, nibble); |
| } |
| |
| return error; |
| } |
| |
| static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
| const AVFrame *frame, int *got_packet_ptr) |
| { |
| int n, i, ch, st, pkt_size, ret; |
| const int16_t *samples; |
| int16_t **samples_p; |
| uint8_t *dst; |
| ADPCMEncodeContext *c = avctx->priv_data; |
| uint8_t *buf; |
| |
| samples = (const int16_t *)frame->data[0]; |
| samples_p = (int16_t **)frame->extended_data; |
| st = avctx->channels == 2; |
| |
| if (avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_SSI || |
| avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_ALP || |
| avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_APM) |
| pkt_size = (frame->nb_samples * avctx->channels) / 2; |
| else |
| pkt_size = avctx->block_align; |
| if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size, 0)) < 0) |
| return ret; |
| dst = avpkt->data; |
| |
| switch(avctx->codec->id) { |
| case AV_CODEC_ID_ADPCM_IMA_WAV: |
| { |
| int blocks, j; |
| |
| blocks = (frame->nb_samples - 1) / 8; |
| |
| for (ch = 0; ch < avctx->channels; ch++) { |
| ADPCMChannelStatus *status = &c->status[ch]; |
| status->prev_sample = samples_p[ch][0]; |
| /* status->step_index = 0; |
| XXX: not sure how to init the state machine */ |
| bytestream_put_le16(&dst, status->prev_sample); |
| *dst++ = status->step_index; |
| *dst++ = 0; /* unknown */ |
| } |
| |
| /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */ |
| if (avctx->trellis > 0) { |
| if (!FF_ALLOC_TYPED_ARRAY(buf, avctx->channels * blocks * 8)) |
| return AVERROR(ENOMEM); |
| for (ch = 0; ch < avctx->channels; ch++) { |
| adpcm_compress_trellis(avctx, &samples_p[ch][1], |
| buf + ch * blocks * 8, &c->status[ch], |
| blocks * 8, 1); |
| } |
| for (i = 0; i < blocks; i++) { |
| for (ch = 0; ch < avctx->channels; ch++) { |
| uint8_t *buf1 = buf + ch * blocks * 8 + i * 8; |
| for (j = 0; j < 8; j += 2) |
| *dst++ = buf1[j] | (buf1[j + 1] << 4); |
| } |
| } |
| av_free(buf); |
| } else { |
| for (i = 0; i < blocks; i++) { |
| for (ch = 0; ch < avctx->channels; ch++) { |
| ADPCMChannelStatus *status = &c->status[ch]; |
| const int16_t *smp = &samples_p[ch][1 + i * 8]; |
| for (j = 0; j < 8; j += 2) { |
| uint8_t v = adpcm_ima_compress_sample(status, smp[j ]); |
| v |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4; |
| *dst++ = v; |
| } |
| } |
| } |
| } |
| break; |
| } |
| case AV_CODEC_ID_ADPCM_IMA_QT: |
| { |
| PutBitContext pb; |
| init_put_bits(&pb, dst, pkt_size); |
| |
| for (ch = 0; ch < avctx->channels; ch++) { |
| ADPCMChannelStatus *status = &c->status[ch]; |
| put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7); |
| put_bits(&pb, 7, status->step_index); |
| if (avctx->trellis > 0) { |
| uint8_t buf[64]; |
| adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status, |
| 64, 1); |
| for (i = 0; i < 64; i++) |
| put_bits(&pb, 4, buf[i ^ 1]); |
| status->prev_sample = status->predictor; |
| } else { |
| for (i = 0; i < 64; i += 2) { |
| int t1, t2; |
| t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i ]); |
| t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]); |
| put_bits(&pb, 4, t2); |
| put_bits(&pb, 4, t1); |
| } |
| } |
| } |
| |
| flush_put_bits(&pb); |
| break; |
| } |
| case AV_CODEC_ID_ADPCM_IMA_SSI: |
| { |
| PutBitContext pb; |
| init_put_bits(&pb, dst, pkt_size); |
| |
| av_assert0(avctx->trellis == 0); |
| |
| for (i = 0; i < frame->nb_samples; i++) { |
| for (ch = 0; ch < avctx->channels; ch++) { |
| put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++)); |
| } |
| } |
| |
| flush_put_bits(&pb); |
| break; |
| } |
| case AV_CODEC_ID_ADPCM_IMA_ALP: |
| { |
| PutBitContext pb; |
| init_put_bits(&pb, dst, pkt_size); |
| |
| av_assert0(avctx->trellis == 0); |
| |
| for (n = frame->nb_samples / 2; n > 0; n--) { |
| for (ch = 0; ch < avctx->channels; ch++) { |
| put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, *samples++)); |
| put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, samples[st])); |
| } |
| samples += avctx->channels; |
| } |
| |
| flush_put_bits(&pb); |
| break; |
| } |
| case AV_CODEC_ID_ADPCM_SWF: |
| { |
| PutBitContext pb; |
| init_put_bits(&pb, dst, pkt_size); |
| |
| n = frame->nb_samples - 1; |
| |
| // store AdpcmCodeSize |
| put_bits(&pb, 2, 2); // set 4-bit flash adpcm format |
| |
| // init the encoder state |
| for (i = 0; i < avctx->channels; i++) { |
| // clip step so it fits 6 bits |
| c->status[i].step_index = av_clip_uintp2(c->status[i].step_index, 6); |
| put_sbits(&pb, 16, samples[i]); |
| put_bits(&pb, 6, c->status[i].step_index); |
| c->status[i].prev_sample = samples[i]; |
| } |
| |
| if (avctx->trellis > 0) { |
| if (!(buf = av_malloc(2 * n))) |
| return AVERROR(ENOMEM); |
| adpcm_compress_trellis(avctx, samples + avctx->channels, buf, |
| &c->status[0], n, avctx->channels); |
| if (avctx->channels == 2) |
| adpcm_compress_trellis(avctx, samples + avctx->channels + 1, |
| buf + n, &c->status[1], n, |
| avctx->channels); |
| for (i = 0; i < n; i++) { |
| put_bits(&pb, 4, buf[i]); |
| if (avctx->channels == 2) |
| put_bits(&pb, 4, buf[n + i]); |
| } |
| av_free(buf); |
| } else { |
| for (i = 1; i < frame->nb_samples; i++) { |
| put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], |
| samples[avctx->channels * i])); |
| if (avctx->channels == 2) |
| put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], |
| samples[2 * i + 1])); |
| } |
| } |
| flush_put_bits(&pb); |
| break; |
| } |
| case AV_CODEC_ID_ADPCM_MS: |
| for (i = 0; i < avctx->channels; i++) { |
| int predictor = 0; |
| *dst++ = predictor; |
| c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor]; |
| c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor]; |
| } |
| for (i = 0; i < avctx->channels; i++) { |
| if (c->status[i].idelta < 16) |
| c->status[i].idelta = 16; |
| bytestream_put_le16(&dst, c->status[i].idelta); |
| } |
| for (i = 0; i < avctx->channels; i++) |
| c->status[i].sample2= *samples++; |
| for (i = 0; i < avctx->channels; i++) { |
| c->status[i].sample1 = *samples++; |
| bytestream_put_le16(&dst, c->status[i].sample1); |
| } |
| for (i = 0; i < avctx->channels; i++) |
| bytestream_put_le16(&dst, c->status[i].sample2); |
| |
| if (avctx->trellis > 0) { |
| n = avctx->block_align - 7 * avctx->channels; |
| if (!(buf = av_malloc(2 * n))) |
| return AVERROR(ENOMEM); |
| if (avctx->channels == 1) { |
| adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n, |
| avctx->channels); |
| for (i = 0; i < n; i += 2) |
| *dst++ = (buf[i] << 4) | buf[i + 1]; |
| } else { |
| adpcm_compress_trellis(avctx, samples, buf, |
| &c->status[0], n, avctx->channels); |
| adpcm_compress_trellis(avctx, samples + 1, buf + n, |
| &c->status[1], n, avctx->channels); |
| for (i = 0; i < n; i++) |
| *dst++ = (buf[i] << 4) | buf[n + i]; |
| } |
| av_free(buf); |
| } else { |
| for (i = 7 * avctx->channels; i < avctx->block_align; i++) { |
| int nibble; |
| nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4; |
| nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++); |
| *dst++ = nibble; |
| } |
| } |
| break; |
| case AV_CODEC_ID_ADPCM_YAMAHA: |
| n = frame->nb_samples / 2; |
| if (avctx->trellis > 0) { |
| if (!(buf = av_malloc(2 * n * 2))) |
| return AVERROR(ENOMEM); |
| n *= 2; |
| if (avctx->channels == 1) { |
| adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n, |
| avctx->channels); |
| for (i = 0; i < n; i += 2) |
| *dst++ = buf[i] | (buf[i + 1] << 4); |
| } else { |
| adpcm_compress_trellis(avctx, samples, buf, |
| &c->status[0], n, avctx->channels); |
| adpcm_compress_trellis(avctx, samples + 1, buf + n, |
| &c->status[1], n, avctx->channels); |
| for (i = 0; i < n; i++) |
| *dst++ = buf[i] | (buf[n + i] << 4); |
| } |
| av_free(buf); |
| } else |
| for (n *= avctx->channels; n > 0; n--) { |
| int nibble; |
| nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++); |
| nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4; |
| *dst++ = nibble; |
| } |
| break; |
| case AV_CODEC_ID_ADPCM_IMA_APM: |
| { |
| PutBitContext pb; |
| init_put_bits(&pb, dst, pkt_size); |
| |
| av_assert0(avctx->trellis == 0); |
| |
| for (n = frame->nb_samples / 2; n > 0; n--) { |
| for (ch = 0; ch < avctx->channels; ch++) { |
| put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++)); |
| put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, samples[st])); |
| } |
| samples += avctx->channels; |
| } |
| |
| flush_put_bits(&pb); |
| break; |
| } |
| case AV_CODEC_ID_ADPCM_IMA_AMV: |
| { |
| av_assert0(avctx->channels == 1); |
| |
| c->status[0].prev_sample = *samples; |
| bytestream_put_le16(&dst, c->status[0].prev_sample); |
| bytestream_put_byte(&dst, c->status[0].step_index); |
| bytestream_put_byte(&dst, 0); |
| bytestream_put_le32(&dst, avctx->frame_size); |
| |
| if (avctx->trellis > 0) { |
| n = frame->nb_samples >> 1; |
| |
| if (!(buf = av_malloc(2 * n))) |
| return AVERROR(ENOMEM); |
| |
| adpcm_compress_trellis(avctx, samples, buf, &c->status[0], 2 * n, avctx->channels); |
| for (i = 0; i < n; i++) |
| bytestream_put_byte(&dst, (buf[2 * i] << 4) | buf[2 * i + 1]); |
| |
| samples += 2 * n; |
| av_free(buf); |
| } else for (n = frame->nb_samples >> 1; n > 0; n--) { |
| int nibble; |
| nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4; |
| nibble |= adpcm_ima_compress_sample(&c->status[0], *samples++) & 0x0F; |
| bytestream_put_byte(&dst, nibble); |
| } |
| |
| if (avctx->frame_size & 1) { |
| int nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4; |
| bytestream_put_byte(&dst, nibble); |
| } |
| break; |
| } |
| case AV_CODEC_ID_ADPCM_ARGO: |
| { |
| PutBitContext pb; |
| init_put_bits(&pb, dst, pkt_size); |
| |
| av_assert0(frame->nb_samples == 32); |
| |
| for (ch = 0; ch < avctx->channels; ch++) { |
| int64_t error = INT64_MAX, tmperr = INT64_MAX; |
| int shift = 2, flag = 0; |
| int saved1 = c->status[ch].sample1; |
| int saved2 = c->status[ch].sample2; |
| |
| /* Find the optimal coefficients, bail early if we find a perfect result. */ |
| for (int s = 2; s < 18 && tmperr != 0; s++) { |
| for (int f = 0; f < 2 && tmperr != 0; f++) { |
| c->status[ch].sample1 = saved1; |
| c->status[ch].sample2 = saved2; |
| tmperr = adpcm_argo_compress_block(c->status + ch, NULL, samples_p[ch], |
| frame->nb_samples, s, f); |
| if (tmperr < error) { |
| shift = s; |
| flag = f; |
| error = tmperr; |
| } |
| } |
| } |
| |
| /* Now actually do the encode. */ |
| c->status[ch].sample1 = saved1; |
| c->status[ch].sample2 = saved2; |
| adpcm_argo_compress_block(c->status + ch, &pb, samples_p[ch], |
| frame->nb_samples, shift, flag); |
| } |
| |
| flush_put_bits(&pb); |
| break; |
| } |
| default: |
| return AVERROR(EINVAL); |
| } |
| |
| avpkt->size = pkt_size; |
| *got_packet_ptr = 1; |
| return 0; |
| } |
| |
| static const enum AVSampleFormat sample_fmts[] = { |
| AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE |
| }; |
| |
| static const enum AVSampleFormat sample_fmts_p[] = { |
| AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE |
| }; |
| |
| static const AVOption options[] = { |
| { |
| .name = "block_size", |
| .help = "set the block size", |
| .offset = offsetof(ADPCMEncodeContext, block_size), |
| .type = AV_OPT_TYPE_INT, |
| .default_val = {.i64 = 1024}, |
| .min = 32, |
| .max = 8192, /* Is this a reasonable upper limit? */ |
| .flags = AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
| }, |
| { NULL } |
| }; |
| |
| static const AVClass adpcm_encoder_class = { |
| .class_name = "ADPCM Encoder", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| #define ADPCM_ENCODER(id_, name_, sample_fmts_, capabilities_, long_name_) \ |
| AVCodec ff_ ## name_ ## _encoder = { \ |
| .name = #name_, \ |
| .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ |
| .type = AVMEDIA_TYPE_AUDIO, \ |
| .id = id_, \ |
| .priv_data_size = sizeof(ADPCMEncodeContext), \ |
| .init = adpcm_encode_init, \ |
| .encode2 = adpcm_encode_frame, \ |
| .close = adpcm_encode_close, \ |
| .sample_fmts = sample_fmts_, \ |
| .capabilities = capabilities_, \ |
| .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_INIT_THREADSAFE, \ |
| .priv_class = &adpcm_encoder_class, \ |
| } |
| |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_ARGO, adpcm_argo, sample_fmts_p, 0, "ADPCM Argonaut Games"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, sample_fmts, 0, "ADPCM IMA AMV"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_APM, adpcm_ima_apm, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Ubisoft APM"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_ALP, adpcm_ima_alp, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA High Voltage Software ALP"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, sample_fmts_p, 0, "ADPCM IMA QuickTime"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_SSI, adpcm_ima_ssi, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Simon & Schuster Interactive"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, 0, "ADPCM IMA WAV"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS, adpcm_ms, sample_fmts, 0, "ADPCM Microsoft"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF, adpcm_swf, sample_fmts, 0, "ADPCM Shockwave Flash"); |
| ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, sample_fmts, 0, "ADPCM Yamaha"); |