| /* |
| * Copyright (c) 2013, The WebRTC project authors. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * * Neither the name of Google nor the names of its contributors may |
| * be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "avcodec.h" |
| #include "internal.h" |
| #include "get_bits.h" |
| #include "ilbcdata.h" |
| |
| #define LPC_N_20MS 1 |
| #define LPC_N_30MS 2 |
| #define LPC_N_MAX 2 |
| #define LSF_NSPLIT 3 |
| #define NASUB_MAX 4 |
| #define LPC_FILTERORDER 10 |
| #define NSUB_MAX 6 |
| #define SUBL 40 |
| |
| #define ST_MEM_L_TBL 85 |
| #define MEM_LF_TBL 147 |
| #define STATE_SHORT_LEN_20MS 57 |
| #define STATE_SHORT_LEN_30MS 58 |
| |
| #define BLOCKL_MAX 240 |
| #define CB_MEML 147 |
| #define CB_NSTAGES 3 |
| #define CB_HALFFILTERLEN 4 |
| #define CB_FILTERLEN 8 |
| |
| #define ENH_NBLOCKS_TOT 8 |
| #define ENH_BLOCKL 80 |
| #define ENH_BUFL (ENH_NBLOCKS_TOT)*ENH_BLOCKL |
| #define ENH_BUFL_FILTEROVERHEAD 3 |
| #define BLOCKL_MAX 240 |
| #define NSUB_20MS 4 |
| #define NSUB_30MS 6 |
| #define NSUB_MAX 6 |
| #define NASUB_20MS 2 |
| #define NASUB_30MS 4 |
| #define NASUB_MAX 4 |
| #define STATE_LEN 80 |
| #define STATE_SHORT_LEN_30MS 58 |
| #define STATE_SHORT_LEN_20MS 57 |
| |
| #define SPL_MUL_16_16(a, b) ((int32_t) (((int16_t)(a)) * ((int16_t)(b)))) |
| #define SPL_MUL_16_16_RSFT(a, b, c) (SPL_MUL_16_16(a, b) >> (c)) |
| |
| typedef struct ILBCFrame { |
| int16_t lsf[LSF_NSPLIT*LPC_N_MAX]; |
| int16_t cb_index[CB_NSTAGES*(NASUB_MAX + 1)]; |
| int16_t gain_index[CB_NSTAGES*(NASUB_MAX + 1)]; |
| int16_t ifm; |
| int16_t state_first; |
| int16_t idx[STATE_SHORT_LEN_30MS]; |
| int16_t firstbits; |
| int16_t start; |
| } ILBCFrame; |
| |
| typedef struct ILBCContext { |
| AVClass *class; |
| int enhancer; |
| |
| int mode; |
| GetBitContext gb; |
| ILBCFrame frame; |
| |
| int prev_enh_pl; |
| int consPLICount; |
| int last_lag; |
| int state_short_len; |
| int lpc_n; |
| int16_t nasub; |
| int16_t nsub; |
| int block_samples; |
| int16_t no_of_words; |
| int16_t no_of_bytes; |
| int16_t lsfdeq[LPC_FILTERORDER*LPC_N_MAX]; |
| int16_t lsfold[LPC_FILTERORDER]; |
| int16_t syntMem[LPC_FILTERORDER]; |
| int16_t lsfdeqold[LPC_FILTERORDER]; |
| int16_t weightdenum[(LPC_FILTERORDER + 1) * NSUB_MAX]; |
| int16_t syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)]; |
| int16_t old_syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)]; |
| int16_t enh_buf[ENH_BUFL+ENH_BUFL_FILTEROVERHEAD]; |
| int16_t enh_period[ENH_NBLOCKS_TOT]; |
| int16_t prevResidual[NSUB_MAX*SUBL]; |
| int16_t decresidual[BLOCKL_MAX]; |
| int16_t plc_residual[BLOCKL_MAX + LPC_FILTERORDER]; |
| int16_t seed; |
| int16_t prevPLI; |
| int16_t prevScale; |
| int16_t prevLag; |
| int16_t per_square; |
| int16_t prev_lpc[LPC_FILTERORDER + 1]; |
| int16_t plc_lpc[LPC_FILTERORDER + 1]; |
| int16_t hpimemx[2]; |
| int16_t hpimemy[4]; |
| } ILBCContext; |
| |
| static int unpack_frame(ILBCContext *s) |
| { |
| ILBCFrame *frame = &s->frame; |
| GetBitContext *gb = &s->gb; |
| int j; |
| |
| frame->lsf[0] = get_bits(gb, 6); |
| frame->lsf[1] = get_bits(gb, 7); |
| frame->lsf[2] = get_bits(gb, 7); |
| |
| if (s->mode == 20) { |
| frame->start = get_bits(gb, 2); |
| frame->state_first = get_bits1(gb); |
| frame->ifm = get_bits(gb, 6); |
| frame->cb_index[0] = get_bits(gb, 6) << 1; |
| frame->gain_index[0] = get_bits(gb, 2) << 3; |
| frame->gain_index[1] = get_bits1(gb) << 3; |
| frame->cb_index[3] = get_bits(gb, 7) << 1; |
| frame->gain_index[3] = get_bits1(gb) << 4; |
| frame->gain_index[4] = get_bits1(gb) << 3; |
| frame->gain_index[6] = get_bits1(gb) << 4; |
| } else { |
| frame->lsf[3] = get_bits(gb, 6); |
| frame->lsf[4] = get_bits(gb, 7); |
| frame->lsf[5] = get_bits(gb, 7); |
| frame->start = get_bits(gb, 3); |
| frame->state_first = get_bits1(gb); |
| frame->ifm = get_bits(gb, 6); |
| frame->cb_index[0] = get_bits(gb, 4) << 3; |
| frame->gain_index[0] = get_bits1(gb) << 4; |
| frame->gain_index[1] = get_bits1(gb) << 3; |
| frame->cb_index[3] = get_bits(gb, 6) << 2; |
| frame->gain_index[3] = get_bits1(gb) << 4; |
| frame->gain_index[4] = get_bits1(gb) << 3; |
| } |
| |
| for (j = 0; j < 48; j++) |
| frame->idx[j] = get_bits1(gb) << 2; |
| |
| if (s->mode == 20) { |
| for (; j < 57; j++) |
| frame->idx[j] = get_bits1(gb) << 2; |
| |
| frame->gain_index[1] |= get_bits1(gb) << 2; |
| frame->gain_index[3] |= get_bits(gb, 2) << 2; |
| frame->gain_index[4] |= get_bits1(gb) << 2; |
| frame->gain_index[6] |= get_bits1(gb) << 3; |
| frame->gain_index[7] = get_bits(gb, 2) << 2; |
| } else { |
| for (; j < 58; j++) |
| frame->idx[j] = get_bits1(gb) << 2; |
| |
| frame->cb_index[0] |= get_bits(gb, 2) << 1; |
| frame->gain_index[0] |= get_bits1(gb) << 3; |
| frame->gain_index[1] |= get_bits1(gb) << 2; |
| frame->cb_index[3] |= get_bits1(gb) << 1; |
| frame->cb_index[6] = get_bits1(gb) << 7; |
| frame->cb_index[6] |= get_bits(gb, 6) << 1; |
| frame->cb_index[9] = get_bits(gb, 7) << 1; |
| frame->cb_index[12] = get_bits(gb, 3) << 5; |
| frame->cb_index[12] |= get_bits(gb, 4) << 1; |
| frame->gain_index[3] |= get_bits(gb, 2) << 2; |
| frame->gain_index[4] |= get_bits(gb, 2) << 1; |
| frame->gain_index[6] = get_bits(gb, 2) << 3; |
| frame->gain_index[7] = get_bits(gb, 2) << 2; |
| frame->gain_index[9] = get_bits1(gb) << 4; |
| frame->gain_index[10] = get_bits1(gb) << 3; |
| frame->gain_index[12] = get_bits1(gb) << 4; |
| frame->gain_index[13] = get_bits1(gb) << 3; |
| } |
| |
| for (j = 0; j < 56; j++) |
| frame->idx[j] |= get_bits(gb, 2); |
| |
| if (s->mode == 20) { |
| frame->idx[56] |= get_bits(gb, 2); |
| frame->cb_index[0] |= get_bits1(gb); |
| frame->cb_index[1] = get_bits(gb, 7); |
| frame->cb_index[2] = get_bits(gb, 6) << 1; |
| frame->cb_index[2] |= get_bits1(gb); |
| frame->gain_index[0] |= get_bits(gb, 3); |
| frame->gain_index[1] |= get_bits(gb, 2); |
| frame->gain_index[2] = get_bits(gb, 3); |
| frame->cb_index[3] |= get_bits1(gb); |
| frame->cb_index[4] = get_bits(gb, 6) << 1; |
| frame->cb_index[4] |= get_bits1(gb); |
| frame->cb_index[5] = get_bits(gb, 7); |
| frame->cb_index[6] = get_bits(gb, 8); |
| frame->cb_index[7] = get_bits(gb, 8); |
| frame->cb_index[8] = get_bits(gb, 8); |
| frame->gain_index[3] |= get_bits(gb, 2); |
| frame->gain_index[4] |= get_bits(gb, 2); |
| frame->gain_index[5] = get_bits(gb, 3); |
| frame->gain_index[6] |= get_bits(gb, 3); |
| frame->gain_index[7] |= get_bits(gb, 2); |
| frame->gain_index[8] = get_bits(gb, 3); |
| } else { |
| frame->idx[56] |= get_bits(gb, 2); |
| frame->idx[57] |= get_bits(gb, 2); |
| frame->cb_index[0] |= get_bits1(gb); |
| frame->cb_index[1] = get_bits(gb, 7); |
| frame->cb_index[2] = get_bits(gb, 4) << 3; |
| frame->cb_index[2] |= get_bits(gb, 3); |
| frame->gain_index[0] |= get_bits(gb, 3); |
| frame->gain_index[1] |= get_bits(gb, 2); |
| frame->gain_index[2] = get_bits(gb, 3); |
| frame->cb_index[3] |= get_bits1(gb); |
| frame->cb_index[4] = get_bits(gb, 4) << 3; |
| frame->cb_index[4] |= get_bits(gb, 3); |
| frame->cb_index[5] = get_bits(gb, 7); |
| frame->cb_index[6] |= get_bits1(gb); |
| frame->cb_index[7] = get_bits(gb, 5) << 3; |
| frame->cb_index[7] |= get_bits(gb, 3); |
| frame->cb_index[8] = get_bits(gb, 8); |
| frame->cb_index[9] |= get_bits1(gb); |
| frame->cb_index[10] = get_bits(gb, 4) << 4; |
| frame->cb_index[10] |= get_bits(gb, 4); |
| frame->cb_index[11] = get_bits(gb, 8); |
| frame->cb_index[12] |= get_bits1(gb); |
| frame->cb_index[13] = get_bits(gb, 3) << 5; |
| frame->cb_index[13] |= get_bits(gb, 5); |
| frame->cb_index[14] = get_bits(gb, 8); |
| frame->gain_index[3] |= get_bits(gb, 2); |
| frame->gain_index[4] |= get_bits1(gb); |
| frame->gain_index[5] = get_bits(gb, 3); |
| frame->gain_index[6] |= get_bits(gb, 3); |
| frame->gain_index[7] |= get_bits(gb, 2); |
| frame->gain_index[8] = get_bits(gb, 3); |
| frame->gain_index[9] |= get_bits(gb, 4); |
| frame->gain_index[10] |= get_bits1(gb) << 2; |
| frame->gain_index[10] |= get_bits(gb, 2); |
| frame->gain_index[11] = get_bits(gb, 3); |
| frame->gain_index[12] |= get_bits(gb, 4); |
| frame->gain_index[13] |= get_bits(gb, 3); |
| frame->gain_index[14] = get_bits(gb, 3); |
| } |
| |
| return get_bits1(gb); |
| } |
| |
| static void index_conv(int16_t *index) |
| { |
| int k; |
| |
| for (k = 4; k < 6; k++) { |
| if (index[k] >= 44 && index[k] < 108) { |
| index[k] += 64; |
| } else if (index[k] >= 108 && index[k] < 128) { |
| index[k] += 128; |
| } |
| } |
| } |
| |
| static void lsf_dequantization(int16_t *lsfdeq, int16_t *index, int16_t lpc_n) |
| { |
| int i, j, pos = 0, cb_pos = 0; |
| |
| for (i = 0; i < LSF_NSPLIT; i++) { |
| for (j = 0; j < lsf_dim_codebook[i]; j++) { |
| lsfdeq[pos + j] = lsf_codebook[cb_pos + index[i] * lsf_dim_codebook[i] + j]; |
| } |
| |
| pos += lsf_dim_codebook[i]; |
| cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i]; |
| } |
| |
| if (lpc_n > 1) { |
| pos = 0; |
| cb_pos = 0; |
| for (i = 0; i < LSF_NSPLIT; i++) { |
| for (j = 0; j < lsf_dim_codebook[i]; j++) { |
| lsfdeq[LPC_FILTERORDER + pos + j] = lsf_codebook[cb_pos + |
| index[LSF_NSPLIT + i] * lsf_dim_codebook[i] + j]; |
| } |
| |
| pos += lsf_dim_codebook[i]; |
| cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i]; |
| } |
| } |
| } |
| |
| static void lsf_check_stability(int16_t *lsf, int dim, int nb_vectors) |
| { |
| for (int n = 0; n < 2; n++) { |
| for (int m = 0; m < nb_vectors; m++) { |
| for (int k = 0; k < dim - 1; k++) { |
| int i = m * dim + k; |
| |
| if ((lsf[i + 1] - lsf[i]) < 319) { |
| if (lsf[i + 1] < lsf[i]) { |
| lsf[i + 1] = lsf[i] + 160; |
| lsf[i] = lsf[i + 1] - 160; |
| } else { |
| lsf[i] -= 160; |
| lsf[i + 1] += 160; |
| } |
| } |
| |
| lsf[i] = av_clip(lsf[i], 82, 25723); |
| } |
| } |
| } |
| } |
| |
| static void lsf_interpolate(int16_t *out, int16_t *in1, |
| int16_t *in2, int16_t coef, |
| int size) |
| { |
| int invcoef = 16384 - coef, i; |
| |
| for (i = 0; i < size; i++) |
| out[i] = (coef * in1[i] + invcoef * in2[i] + 8192) >> 14; |
| } |
| |
| static void lsf2lsp(int16_t *lsf, int16_t *lsp, int order) |
| { |
| int16_t diff, freq; |
| int32_t tmp; |
| int i, k; |
| |
| for (i = 0; i < order; i++) { |
| freq = (lsf[i] * 20861) >> 15; |
| /* 20861: 1.0/(2.0*PI) in Q17 */ |
| /* |
| Upper 8 bits give the index k and |
| Lower 8 bits give the difference, which needs |
| to be approximated linearly |
| */ |
| k = FFMIN(freq >> 8, 63); |
| diff = freq & 0xFF; |
| |
| /* Calculate linear approximation */ |
| tmp = cos_derivative_tbl[k] * diff; |
| lsp[i] = cos_tbl[k] + (tmp >> 12); |
| } |
| } |
| |
| static void get_lsp_poly(int16_t *lsp, int32_t *f) |
| { |
| int16_t high, low; |
| int i, j, k, l; |
| int32_t tmp; |
| |
| f[0] = 16777216; |
| f[1] = lsp[0] * -1024; |
| |
| for (i = 2, k = 2, l = 2; i <= 5; i++, k += 2) { |
| f[l] = f[l - 2]; |
| |
| for (j = i; j > 1; j--, l--) { |
| high = f[l - 1] >> 16; |
| low = (f[l - 1] - (high * (1 << 16))) >> 1; |
| |
| tmp = ((high * lsp[k]) * 4) + (((low * lsp[k]) >> 15) * 4); |
| |
| f[l] += f[l - 2]; |
| f[l] -= (unsigned)tmp; |
| } |
| |
| f[l] -= lsp[k] * (1 << 10); |
| l += i; |
| } |
| } |
| |
| static void lsf2poly(int16_t *a, int16_t *lsf) |
| { |
| int32_t f[2][6]; |
| int16_t lsp[10]; |
| int32_t tmp; |
| int i; |
| |
| lsf2lsp(lsf, lsp, LPC_FILTERORDER); |
| |
| get_lsp_poly(&lsp[0], f[0]); |
| get_lsp_poly(&lsp[1], f[1]); |
| |
| for (i = 5; i > 0; i--) { |
| f[0][i] += (unsigned)f[0][i - 1]; |
| f[1][i] -= (unsigned)f[1][i - 1]; |
| } |
| |
| a[0] = 4096; |
| for (i = 5; i > 0; i--) { |
| tmp = f[0][6 - i] + (unsigned)f[1][6 - i] + 4096; |
| a[6 - i] = tmp >> 13; |
| |
| tmp = f[0][6 - i] - (unsigned)f[1][6 - i] + 4096; |
| a[5 + i] = tmp >> 13; |
| } |
| } |
| |
| static void lsp_interpolate2polydec(int16_t *a, int16_t *lsf1, |
| int16_t *lsf2, int coef, int length) |
| { |
| int16_t lsftmp[LPC_FILTERORDER]; |
| |
| lsf_interpolate(lsftmp, lsf1, lsf2, coef, length); |
| lsf2poly(a, lsftmp); |
| } |
| |
| static void bw_expand(int16_t *out, const int16_t *in, const int16_t *coef, int length) |
| { |
| int i; |
| |
| out[0] = in[0]; |
| for (i = 1; i < length; i++) |
| out[i] = (coef[i] * in[i] + 16384) >> 15; |
| } |
| |
| static void lsp_interpolate(int16_t *syntdenum, int16_t *weightdenum, |
| int16_t *lsfdeq, int16_t length, |
| ILBCContext *s) |
| { |
| int16_t lp[LPC_FILTERORDER + 1], *lsfdeq2; |
| int i, pos, lp_length; |
| |
| lsfdeq2 = lsfdeq + length; |
| lp_length = length + 1; |
| |
| if (s->mode == 30) { |
| lsp_interpolate2polydec(lp, (*s).lsfdeqold, lsfdeq, lsf_weight_30ms[0], length); |
| memcpy(syntdenum, lp, lp_length * 2); |
| bw_expand(weightdenum, lp, kLpcChirpSyntDenum, lp_length); |
| |
| pos = lp_length; |
| for (i = 1; i < 6; i++) { |
| lsp_interpolate2polydec(lp, lsfdeq, lsfdeq2, |
| lsf_weight_30ms[i], |
| length); |
| memcpy(syntdenum + pos, lp, lp_length * 2); |
| bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length); |
| pos += lp_length; |
| } |
| } else { |
| pos = 0; |
| for (i = 0; i < s->nsub; i++) { |
| lsp_interpolate2polydec(lp, s->lsfdeqold, lsfdeq, |
| lsf_weight_20ms[i], length); |
| memcpy(syntdenum + pos, lp, lp_length * 2); |
| bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length); |
| pos += lp_length; |
| } |
| } |
| |
| if (s->mode == 30) { |
| memcpy(s->lsfdeqold, lsfdeq2, length * 2); |
| } else { |
| memcpy(s->lsfdeqold, lsfdeq, length * 2); |
| } |
| } |
| |
| static void filter_mafq12(int16_t *in_ptr, int16_t *out_ptr, |
| int16_t *B, int16_t B_length, |
| int16_t length) |
| { |
| int o, i, j; |
| |
| for (i = 0; i < length; i++) { |
| const int16_t *b_ptr = &B[0]; |
| const int16_t *x_ptr = &in_ptr[i]; |
| |
| o = 0; |
| for (j = 0; j < B_length; j++) |
| o += b_ptr[j] * *x_ptr--; |
| |
| o = av_clip(o, -134217728, 134215679); |
| |
| out_ptr[i] = ((o + 2048) >> 12); |
| } |
| } |
| |
| static void filter_arfq12(const int16_t *data_in, |
| int16_t *data_out, |
| const int16_t *coefficients, |
| int coefficients_length, |
| int data_length) |
| { |
| int i, j; |
| |
| for (i = 0; i < data_length; i++) { |
| int output = 0, sum = 0; |
| |
| for (j = coefficients_length - 1; j > 0; j--) { |
| sum += (unsigned)(coefficients[j] * data_out[i - j]); |
| } |
| |
| output = coefficients[0] * data_in[i] - (unsigned)sum; |
| output = av_clip(output, -134217728, 134215679); |
| |
| data_out[i] = (output + 2048) >> 12; |
| } |
| } |
| |
| static void state_construct(int16_t ifm, int16_t *idx, |
| int16_t *synt_denum, int16_t *Out_fix, |
| int16_t len) |
| { |
| int k; |
| int16_t maxVal; |
| int16_t *tmp1, *tmp2, *tmp3; |
| /* Stack based */ |
| int16_t numerator[1 + LPC_FILTERORDER]; |
| int16_t sampleValVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER]; |
| int16_t sampleMaVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER]; |
| int16_t *sampleVal = &sampleValVec[LPC_FILTERORDER]; |
| int16_t *sampleMa = &sampleMaVec[LPC_FILTERORDER]; |
| int16_t *sampleAr = &sampleValVec[LPC_FILTERORDER]; |
| |
| /* initialization of coefficients */ |
| |
| for (k = 0; k < LPC_FILTERORDER + 1; k++) { |
| numerator[k] = synt_denum[LPC_FILTERORDER - k]; |
| } |
| |
| /* decoding of the maximum value */ |
| |
| maxVal = frg_quant_mod[ifm]; |
| |
| /* decoding of the sample values */ |
| tmp1 = sampleVal; |
| tmp2 = &idx[len - 1]; |
| |
| if (ifm < 37) { |
| for (k = 0; k < len; k++) { |
| /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 2097152 (= 0.5 << 22) |
| maxVal is in Q8 and result is in Q(-1) */ |
| (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 2097152) >> 22); |
| tmp1++; |
| tmp2--; |
| } |
| } else if (ifm < 59) { |
| for (k = 0; k < len; k++) { |
| /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 262144 (= 0.5 << 19) |
| maxVal is in Q5 and result is in Q(-1) */ |
| (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 262144) >> 19); |
| tmp1++; |
| tmp2--; |
| } |
| } else { |
| for (k = 0; k < len; k++) { |
| /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 65536 (= 0.5 << 17) |
| maxVal is in Q3 and result is in Q(-1) */ |
| (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 65536) >> 17); |
| tmp1++; |
| tmp2--; |
| } |
| } |
| |
| /* Set the rest of the data to zero */ |
| memset(&sampleVal[len], 0, len * 2); |
| |
| /* circular convolution with all-pass filter */ |
| |
| /* Set the state to zero */ |
| memset(sampleValVec, 0, LPC_FILTERORDER * 2); |
| |
| /* Run MA filter + AR filter */ |
| filter_mafq12(sampleVal, sampleMa, numerator, LPC_FILTERORDER + 1, len + LPC_FILTERORDER); |
| memset(&sampleMa[len + LPC_FILTERORDER], 0, (len - LPC_FILTERORDER) * 2); |
| filter_arfq12(sampleMa, sampleAr, synt_denum, LPC_FILTERORDER + 1, 2 * len); |
| |
| tmp1 = &sampleAr[len - 1]; |
| tmp2 = &sampleAr[2 * len - 1]; |
| tmp3 = Out_fix; |
| for (k = 0; k < len; k++) { |
| (*tmp3) = (*tmp1) + (*tmp2); |
| tmp1--; |
| tmp2--; |
| tmp3++; |
| } |
| } |
| |
| static int16_t gain_dequantization(int index, int max_in, int stage) |
| { |
| int16_t scale = FFMAX(1638, FFABS(max_in)); |
| |
| return ((scale * ilbc_gain[stage][index]) + 8192) >> 14; |
| } |
| |
| static void vector_rmultiplication(int16_t *out, const int16_t *in, |
| const int16_t *win, |
| int length, int shift) |
| { |
| for (int i = 0; i < length; i++) |
| out[i] = (in[i] * win[-i]) >> shift; |
| } |
| |
| static void vector_multiplication(int16_t *out, const int16_t *in, |
| const int16_t *win, int length, |
| int shift) |
| { |
| for (int i = 0; i < length; i++) |
| out[i] = (in[i] * win[i]) >> shift; |
| } |
| |
| static void add_vector_and_shift(int16_t *out, const int16_t *in1, |
| const int16_t *in2, int length, |
| int shift) |
| { |
| for (int i = 0; i < length; i++) |
| out[i] = (in1[i] + in2[i]) >> shift; |
| } |
| |
| static void create_augmented_vector(int index, int16_t *buffer, int16_t *cbVec) |
| { |
| int16_t cbVecTmp[4]; |
| int interpolation_length = FFMIN(4, index); |
| int16_t ilow = index - interpolation_length; |
| |
| memcpy(cbVec, buffer - index, index * 2); |
| |
| vector_multiplication(&cbVec[ilow], buffer - index - interpolation_length, alpha, interpolation_length, 15); |
| vector_rmultiplication(cbVecTmp, buffer - interpolation_length, &alpha[interpolation_length - 1], interpolation_length, 15); |
| add_vector_and_shift(&cbVec[ilow], &cbVec[ilow], cbVecTmp, interpolation_length, 0); |
| |
| memcpy(cbVec + index, buffer - index, FFMIN(SUBL - index, index) * sizeof(*cbVec)); |
| } |
| |
| static void get_codebook(int16_t * cbvec, /* (o) Constructed codebook vector */ |
| int16_t * mem, /* (i) Codebook buffer */ |
| int16_t index, /* (i) Codebook index */ |
| int16_t lMem, /* (i) Length of codebook buffer */ |
| int16_t cbveclen /* (i) Codebook vector length */ |
| ) |
| { |
| int16_t k, base_size; |
| int16_t lag; |
| /* Stack based */ |
| int16_t tempbuff2[SUBL + 5]; |
| |
| /* Determine size of codebook sections */ |
| base_size = lMem - cbveclen + 1; |
| |
| if (cbveclen == SUBL) { |
| base_size += cbveclen / 2; |
| } |
| |
| /* No filter -> First codebook section */ |
| if (index < lMem - cbveclen + 1) { |
| /* first non-interpolated vectors */ |
| |
| k = index + cbveclen; |
| /* get vector */ |
| memcpy(cbvec, mem + lMem - k, cbveclen * 2); |
| } else if (index < base_size) { |
| |
| /* Calculate lag */ |
| |
| k = (int16_t) SPL_MUL_16_16(2, (index - (lMem - cbveclen + 1))) + cbveclen; |
| |
| lag = k / 2; |
| |
| create_augmented_vector(lag, mem + lMem, cbvec); |
| } else { |
| int16_t memIndTest; |
| |
| /* first non-interpolated vectors */ |
| |
| if (index - base_size < lMem - cbveclen + 1) { |
| |
| /* Set up filter memory, stuff zeros outside memory buffer */ |
| |
| memIndTest = lMem - (index - base_size + cbveclen); |
| |
| memset(mem - CB_HALFFILTERLEN, 0, CB_HALFFILTERLEN * 2); |
| memset(mem + lMem, 0, CB_HALFFILTERLEN * 2); |
| |
| /* do filtering to get the codebook vector */ |
| |
| filter_mafq12(&mem[memIndTest + 4], cbvec, (int16_t *) kCbFiltersRev, CB_FILTERLEN, cbveclen); |
| } else { |
| /* interpolated vectors */ |
| /* Stuff zeros outside memory buffer */ |
| memIndTest = lMem - cbveclen - CB_FILTERLEN; |
| memset(mem + lMem, 0, CB_HALFFILTERLEN * 2); |
| |
| /* do filtering */ |
| filter_mafq12(&mem[memIndTest + 7], tempbuff2, (int16_t *) kCbFiltersRev, CB_FILTERLEN, (int16_t) (cbveclen + 5)); |
| |
| /* Calculate lag index */ |
| lag = (cbveclen << 1) - 20 + index - base_size - lMem - 1; |
| |
| create_augmented_vector(lag, tempbuff2 + SUBL + 5, cbvec); |
| } |
| } |
| } |
| |
| static void construct_vector ( |
| int16_t *decvector, /* (o) Decoded vector */ |
| int16_t *index, /* (i) Codebook indices */ |
| int16_t *gain_index, /* (i) Gain quantization indices */ |
| int16_t *mem, /* (i) Buffer for codevector construction */ |
| int16_t lMem, /* (i) Length of buffer */ |
| int16_t veclen) |
| { |
| int16_t gain[CB_NSTAGES]; |
| int16_t cbvec0[SUBL]; |
| int16_t cbvec1[SUBL]; |
| int16_t cbvec2[SUBL]; |
| unsigned a32; |
| int16_t *gainPtr; |
| int j; |
| |
| /* gain de-quantization */ |
| |
| gain[0] = gain_dequantization(gain_index[0], 16384, 0); |
| gain[1] = gain_dequantization(gain_index[1], gain[0], 1); |
| gain[2] = gain_dequantization(gain_index[2], gain[1], 2); |
| |
| /* codebook vector construction and construction of total vector */ |
| |
| /* Stack based */ |
| get_codebook(cbvec0, mem, index[0], lMem, veclen); |
| get_codebook(cbvec1, mem, index[1], lMem, veclen); |
| get_codebook(cbvec2, mem, index[2], lMem, veclen); |
| |
| gainPtr = &gain[0]; |
| for (j = 0; j < veclen; j++) { |
| a32 = SPL_MUL_16_16(*gainPtr++, cbvec0[j]); |
| a32 += SPL_MUL_16_16(*gainPtr++, cbvec1[j]); |
| a32 += SPL_MUL_16_16(*gainPtr, cbvec2[j]); |
| gainPtr -= 2; |
| decvector[j] = (int)(a32 + 8192) >> 14; |
| } |
| } |
| |
| static void reverse_memcpy(int16_t *dest, int16_t *source, int length) |
| { |
| int16_t* destPtr = dest; |
| int16_t* sourcePtr = source; |
| int j; |
| |
| for (j = 0; j < length; j++) |
| *destPtr-- = *sourcePtr++; |
| } |
| |
| static void decode_residual(ILBCContext *s, |
| ILBCFrame *encbits, |
| int16_t *decresidual, |
| int16_t *syntdenum) |
| { |
| int16_t meml_gotten, Nfor, Nback, diff, start_pos; |
| int16_t subcount, subframe; |
| int16_t *reverseDecresidual = s->enh_buf; /* Reversed decoded data, used for decoding backwards in time (reuse memory in state) */ |
| int16_t *memVec = s->prevResidual; |
| int16_t *mem = &memVec[CB_HALFFILTERLEN]; /* Memory for codebook */ |
| |
| diff = STATE_LEN - s->state_short_len; |
| |
| if (encbits->state_first == 1) { |
| start_pos = (encbits->start - 1) * SUBL; |
| } else { |
| start_pos = (encbits->start - 1) * SUBL + diff; |
| } |
| |
| /* decode scalar part of start state */ |
| |
| state_construct(encbits->ifm, encbits->idx, &syntdenum[(encbits->start - 1) * (LPC_FILTERORDER + 1)], &decresidual[start_pos], s->state_short_len); |
| |
| if (encbits->state_first) { /* put adaptive part in the end */ |
| /* setup memory */ |
| memset(mem, 0, (int16_t) (CB_MEML - s->state_short_len) * 2); |
| memcpy(mem + CB_MEML - s->state_short_len, decresidual + start_pos, s->state_short_len * 2); |
| |
| /* construct decoded vector */ |
| |
| construct_vector(&decresidual[start_pos + s->state_short_len], encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, (int16_t) diff); |
| |
| } else { /* put adaptive part in the beginning */ |
| /* setup memory */ |
| meml_gotten = s->state_short_len; |
| reverse_memcpy(mem + CB_MEML - 1, decresidual + start_pos, meml_gotten); |
| memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2); |
| |
| /* construct decoded vector */ |
| construct_vector(reverseDecresidual, encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, diff); |
| |
| /* get decoded residual from reversed vector */ |
| reverse_memcpy(&decresidual[start_pos - 1], reverseDecresidual, diff); |
| } |
| |
| /* counter for predicted subframes */ |
| subcount = 1; |
| |
| /* forward prediction of subframes */ |
| Nfor = s->nsub - encbits->start - 1; |
| |
| if (Nfor > 0) { |
| /* setup memory */ |
| memset(mem, 0, (CB_MEML - STATE_LEN) * 2); |
| memcpy(mem + CB_MEML - STATE_LEN, decresidual + (encbits->start - 1) * SUBL, STATE_LEN * 2); |
| |
| /* loop over subframes to encode */ |
| for (subframe = 0; subframe < Nfor; subframe++) { |
| /* construct decoded vector */ |
| construct_vector(&decresidual[(encbits->start + 1 + subframe) * SUBL], encbits->cb_index + subcount * CB_NSTAGES, encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL); |
| |
| /* update memory */ |
| memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem)); |
| memcpy(mem + CB_MEML - SUBL, &decresidual[(encbits->start + 1 + subframe) * SUBL], SUBL * 2); |
| |
| subcount++; |
| } |
| |
| } |
| |
| /* backward prediction of subframes */ |
| Nback = encbits->start - 1; |
| |
| if (Nback > 0) { |
| /* setup memory */ |
| meml_gotten = SUBL * (s->nsub + 1 - encbits->start); |
| if (meml_gotten > CB_MEML) { |
| meml_gotten = CB_MEML; |
| } |
| |
| reverse_memcpy(mem + CB_MEML - 1, decresidual + (encbits->start - 1) * SUBL, meml_gotten); |
| memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2); |
| |
| /* loop over subframes to decode */ |
| for (subframe = 0; subframe < Nback; subframe++) { |
| /* construct decoded vector */ |
| construct_vector(&reverseDecresidual[subframe * SUBL], encbits->cb_index + subcount * CB_NSTAGES, |
| encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL); |
| |
| /* update memory */ |
| memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem)); |
| memcpy(mem + CB_MEML - SUBL, &reverseDecresidual[subframe * SUBL], SUBL * 2); |
| |
| subcount++; |
| } |
| |
| /* get decoded residual from reversed vector */ |
| reverse_memcpy(decresidual + SUBL * Nback - 1, reverseDecresidual, SUBL * Nback); |
| } |
| } |
| |
| static int16_t max_abs_value_w16(const int16_t* vector, int length) |
| { |
| int i = 0, absolute = 0, maximum = 0; |
| |
| if (vector == NULL || length <= 0) { |
| return -1; |
| } |
| |
| for (i = 0; i < length; i++) { |
| absolute = FFABS(vector[i]); |
| if (absolute > maximum) |
| maximum = absolute; |
| } |
| |
| // Guard the case for abs(-32768). |
| return FFMIN(maximum, INT16_MAX); |
| } |
| |
| static int16_t get_size_in_bits(uint32_t n) |
| { |
| int16_t bits; |
| |
| if (0xFFFF0000 & n) { |
| bits = 16; |
| } else { |
| bits = 0; |
| } |
| |
| if (0x0000FF00 & (n >> bits)) bits += 8; |
| if (0x000000F0 & (n >> bits)) bits += 4; |
| if (0x0000000C & (n >> bits)) bits += 2; |
| if (0x00000002 & (n >> bits)) bits += 1; |
| if (0x00000001 & (n >> bits)) bits += 1; |
| |
| return bits; |
| } |
| |
| static int32_t scale_dot_product(const int16_t *v1, const int16_t *v2, int length, int scaling) |
| { |
| int64_t sum = 0; |
| |
| for (int i = 0; i < length; i++) |
| sum += (v1[i] * v2[i]) >> scaling; |
| |
| return av_clipl_int32(sum); |
| } |
| |
| static void correlation(int32_t *corr, int32_t *ener, int16_t *buffer, |
| int16_t lag, int16_t blen, int16_t srange, int16_t scale) |
| { |
| int16_t *w16ptr; |
| |
| w16ptr = &buffer[blen - srange - lag]; |
| |
| *corr = scale_dot_product(&buffer[blen - srange], w16ptr, srange, scale); |
| *ener = scale_dot_product(w16ptr, w16ptr, srange, scale); |
| |
| if (*ener == 0) { |
| *corr = 0; |
| *ener = 1; |
| } |
| } |
| |
| #define SPL_SHIFT_W32(x, c) (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c)))) |
| |
| static int16_t norm_w32(int32_t a) |
| { |
| if (a == 0) { |
| return 0; |
| } else if (a < 0) { |
| a = ~a; |
| } |
| |
| return ff_clz(a); |
| } |
| |
| static int32_t div_w32_w16(int32_t num, int16_t den) |
| { |
| if (den != 0) |
| return num / den; |
| else |
| return 0x7FFFFFFF; |
| } |
| |
| static void do_plc(int16_t *plc_residual, /* (o) concealed residual */ |
| int16_t *plc_lpc, /* (o) concealed LP parameters */ |
| int16_t PLI, /* (i) packet loss indicator |
| 0 - no PL, 1 = PL */ |
| int16_t *decresidual, /* (i) decoded residual */ |
| int16_t *lpc, /* (i) decoded LPC (only used for no PL) */ |
| int16_t inlag, /* (i) pitch lag */ |
| ILBCContext *s) /* (i/o) decoder instance */ |
| { |
| int16_t i, pick; |
| int32_t cross, ener, cross_comp, ener_comp = 0; |
| int32_t measure, max_measure, energy; |
| int16_t max, cross_square_max, cross_square; |
| int16_t j, lag, tmp1, tmp2, randlag; |
| int16_t shift1, shift2, shift3, shift_max; |
| int16_t scale3; |
| int16_t corrLen; |
| int32_t tmpW32, tmp2W32; |
| int16_t use_gain; |
| int16_t tot_gain; |
| int16_t max_perSquare; |
| int16_t scale1, scale2; |
| int16_t totscale; |
| int32_t nom; |
| int16_t denom; |
| int16_t pitchfact; |
| int16_t use_lag; |
| int ind; |
| int16_t randvec[BLOCKL_MAX]; |
| |
| /* Packet Loss */ |
| if (PLI == 1) { |
| |
| s->consPLICount += 1; |
| |
| /* if previous frame not lost, |
| determine pitch pred. gain */ |
| |
| if (s->prevPLI != 1) { |
| |
| /* Maximum 60 samples are correlated, preserve as high accuracy |
| as possible without getting overflow */ |
| max = max_abs_value_w16(s->prevResidual, s->block_samples); |
| scale3 = (get_size_in_bits(max) << 1) - 25; |
| if (scale3 < 0) { |
| scale3 = 0; |
| } |
| |
| /* Store scale for use when interpolating between the |
| * concealment and the received packet */ |
| s->prevScale = scale3; |
| |
| /* Search around the previous lag +/-3 to find the |
| best pitch period */ |
| lag = inlag - 3; |
| |
| /* Guard against getting outside the frame */ |
| corrLen = FFMIN(60, s->block_samples - (inlag + 3)); |
| |
| correlation(&cross, &ener, s->prevResidual, lag, s->block_samples, corrLen, scale3); |
| |
| /* Normalize and store cross^2 and the number of shifts */ |
| shift_max = get_size_in_bits(FFABS(cross)) - 15; |
| cross_square_max = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross, -shift_max), SPL_SHIFT_W32(cross, -shift_max), 15); |
| |
| for (j = inlag - 2; j <= inlag + 3; j++) { |
| correlation(&cross_comp, &ener_comp, s->prevResidual, j, s->block_samples, corrLen, scale3); |
| |
| /* Use the criteria (corr*corr)/energy to compare if |
| this lag is better or not. To avoid the division, |
| do a cross multiplication */ |
| shift1 = get_size_in_bits(FFABS(cross_comp)) - 15; |
| cross_square = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross_comp, -shift1), SPL_SHIFT_W32(cross_comp, -shift1), 15); |
| |
| shift2 = get_size_in_bits(ener) - 15; |
| measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener, -shift2), cross_square); |
| |
| shift3 = get_size_in_bits(ener_comp) - 15; |
| max_measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener_comp, -shift3), cross_square_max); |
| |
| /* Calculate shift value, so that the two measures can |
| be put in the same Q domain */ |
| if (((shift_max << 1) + shift3) > ((shift1 << 1) + shift2)) { |
| tmp1 = FFMIN(31, (shift_max << 1) + shift3 - (shift1 << 1) - shift2); |
| tmp2 = 0; |
| } else { |
| tmp1 = 0; |
| tmp2 = FFMIN(31, (shift1 << 1) + shift2 - (shift_max << 1) - shift3); |
| } |
| |
| if ((measure >> tmp1) > (max_measure >> tmp2)) { |
| /* New lag is better => record lag, measure and domain */ |
| lag = j; |
| cross_square_max = cross_square; |
| cross = cross_comp; |
| shift_max = shift1; |
| ener = ener_comp; |
| } |
| } |
| |
| /* Calculate the periodicity for the lag with the maximum correlation. |
| |
| Definition of the periodicity: |
| abs(corr(vec1, vec2))/(sqrt(energy(vec1))*sqrt(energy(vec2))) |
| |
| Work in the Square domain to simplify the calculations |
| max_perSquare is less than 1 (in Q15) |
| */ |
| tmp2W32 = scale_dot_product(&s->prevResidual[s->block_samples - corrLen], &s->prevResidual[s->block_samples - corrLen], corrLen, scale3); |
| |
| if ((tmp2W32 > 0) && (ener_comp > 0)) { |
| /* norm energies to int16_t, compute the product of the energies and |
| use the upper int16_t as the denominator */ |
| |
| scale1 = norm_w32(tmp2W32) - 16; |
| tmp1 = SPL_SHIFT_W32(tmp2W32, scale1); |
| |
| scale2 = norm_w32(ener) - 16; |
| tmp2 = SPL_SHIFT_W32(ener, scale2); |
| denom = SPL_MUL_16_16_RSFT(tmp1, tmp2, 16); /* denom in Q(scale1+scale2-16) */ |
| |
| /* Square the cross correlation and norm it such that max_perSquare |
| will be in Q15 after the division */ |
| |
| totscale = scale1 + scale2 - 1; |
| tmp1 = SPL_SHIFT_W32(cross, (totscale >> 1)); |
| tmp2 = SPL_SHIFT_W32(cross, totscale - (totscale >> 1)); |
| |
| nom = SPL_MUL_16_16(tmp1, tmp2); |
| max_perSquare = div_w32_w16(nom, denom); |
| } else { |
| max_perSquare = 0; |
| } |
| } else { |
| /* previous frame lost, use recorded lag and gain */ |
| lag = s->prevLag; |
| max_perSquare = s->per_square; |
| } |
| |
| /* Attenuate signal and scale down pitch pred gain if |
| several frames lost consecutively */ |
| |
| use_gain = 32767; /* 1.0 in Q15 */ |
| |
| if (s->consPLICount * s->block_samples > 320) { |
| use_gain = 29491; /* 0.9 in Q15 */ |
| } else if (s->consPLICount * s->block_samples > 640) { |
| use_gain = 22938; /* 0.7 in Q15 */ |
| } else if (s->consPLICount * s->block_samples > 960) { |
| use_gain = 16384; /* 0.5 in Q15 */ |
| } else if (s->consPLICount * s->block_samples > 1280) { |
| use_gain = 0; /* 0.0 in Q15 */ |
| } |
| |
| /* Compute mixing factor of picth repeatition and noise: |
| for max_per>0.7 set periodicity to 1.0 |
| 0.4<max_per<0.7 set periodicity to (maxper-0.4)/0.7-0.4) |
| max_per<0.4 set periodicity to 0.0 |
| */ |
| |
| if (max_perSquare > 7868) { /* periodicity > 0.7 (0.7^4=0.2401 in Q15) */ |
| pitchfact = 32767; |
| } else if (max_perSquare > 839) { /* 0.4 < periodicity < 0.7 (0.4^4=0.0256 in Q15) */ |
| /* find best index and interpolate from that */ |
| ind = 5; |
| while ((max_perSquare < kPlcPerSqr[ind]) && (ind > 0)) { |
| ind--; |
| } |
| /* pitch fact is approximated by first order */ |
| tmpW32 = kPlcPitchFact[ind] + SPL_MUL_16_16_RSFT(kPlcPfSlope[ind], (max_perSquare - kPlcPerSqr[ind]), 11); |
| |
| pitchfact = FFMIN(tmpW32, 32767); /* guard against overflow */ |
| |
| } else { /* periodicity < 0.4 */ |
| pitchfact = 0; |
| } |
| |
| /* avoid repetition of same pitch cycle (buzzyness) */ |
| use_lag = lag; |
| if (lag < 80) { |
| use_lag = 2 * lag; |
| } |
| |
| /* compute concealed residual */ |
| energy = 0; |
| |
| for (i = 0; i < s->block_samples; i++) { |
| /* noise component - 52 < randlagFIX < 117 */ |
| s->seed = SPL_MUL_16_16(s->seed, 31821) + 13849; |
| randlag = 53 + (s->seed & 63); |
| |
| pick = i - randlag; |
| |
| if (pick < 0) { |
| randvec[i] = s->prevResidual[s->block_samples + pick]; |
| } else { |
| randvec[i] = s->prevResidual[pick]; |
| } |
| |
| /* pitch repeatition component */ |
| pick = i - use_lag; |
| |
| if (pick < 0) { |
| plc_residual[i] = s->prevResidual[s->block_samples + pick]; |
| } else { |
| plc_residual[i] = plc_residual[pick]; |
| } |
| |
| /* Attinuate total gain for each 10 ms */ |
| if (i < 80) { |
| tot_gain = use_gain; |
| } else if (i < 160) { |
| tot_gain = SPL_MUL_16_16_RSFT(31130, use_gain, 15); /* 0.95*use_gain */ |
| } else { |
| tot_gain = SPL_MUL_16_16_RSFT(29491, use_gain, 15); /* 0.9*use_gain */ |
| } |
| |
| /* mix noise and pitch repeatition */ |
| plc_residual[i] = SPL_MUL_16_16_RSFT(tot_gain, (pitchfact * plc_residual[i] + (32767 - pitchfact) * randvec[i] + 16384) >> 15, 15); |
| |
| /* Shifting down the result one step extra to ensure that no overflow |
| will occur */ |
| energy += SPL_MUL_16_16_RSFT(plc_residual[i], plc_residual[i], (s->prevScale + 1)); |
| |
| } |
| |
| /* less than 30 dB, use only noise */ |
| if (energy < SPL_SHIFT_W32(s->block_samples * 900, -s->prevScale - 1)) { |
| energy = 0; |
| for (i = 0; i < s->block_samples; i++) { |
| plc_residual[i] = randvec[i]; |
| } |
| } |
| |
| /* use the old LPC */ |
| memcpy(plc_lpc, (*s).prev_lpc, (LPC_FILTERORDER + 1) * 2); |
| |
| /* Update state in case there are multiple frame losses */ |
| s->prevLag = lag; |
| s->per_square = max_perSquare; |
| } else { /* no packet loss, copy input */ |
| memcpy(plc_residual, decresidual, s->block_samples * 2); |
| memcpy(plc_lpc, lpc, (LPC_FILTERORDER + 1) * 2); |
| s->consPLICount = 0; |
| } |
| |
| /* update state */ |
| s->prevPLI = PLI; |
| memcpy(s->prev_lpc, plc_lpc, (LPC_FILTERORDER + 1) * 2); |
| memcpy(s->prevResidual, plc_residual, s->block_samples * 2); |
| |
| return; |
| } |
| |
| static int xcorr_coeff(int16_t *target, int16_t *regressor, |
| int16_t subl, int16_t searchLen, |
| int16_t offset, int16_t step) |
| { |
| int16_t maxlag; |
| int16_t pos; |
| int16_t max; |
| int16_t cross_corr_scale, energy_scale; |
| int16_t cross_corr_sg_mod, cross_corr_sg_mod_max; |
| int32_t cross_corr, energy; |
| int16_t cross_corr_mod, energy_mod, enery_mod_max; |
| int16_t *tp, *rp; |
| int16_t *rp_beg, *rp_end; |
| int16_t totscale, totscale_max; |
| int16_t scalediff; |
| int32_t new_crit, max_crit; |
| int shifts; |
| int k; |
| |
| /* Initializations, to make sure that the first one is selected */ |
| cross_corr_sg_mod_max = 0; |
| enery_mod_max = INT16_MAX; |
| totscale_max = -500; |
| maxlag = 0; |
| pos = 0; |
| |
| /* Find scale value and start position */ |
| if (step == 1) { |
| max = max_abs_value_w16(regressor, (int16_t) (subl + searchLen - 1)); |
| rp_beg = regressor; |
| rp_end = ®ressor[subl]; |
| } else { /* step== -1 */ |
| max = max_abs_value_w16(®ressor[-searchLen], (int16_t) (subl + searchLen - 1)); |
| rp_beg = ®ressor[-1]; |
| rp_end = ®ressor[subl - 1]; |
| } |
| |
| /* Introduce a scale factor on the energy in int32_t in |
| order to make sure that the calculation does not |
| overflow */ |
| |
| if (max > 5000) { |
| shifts = 2; |
| } else { |
| shifts = 0; |
| } |
| |
| /* Calculate the first energy, then do a +/- to get the other energies */ |
| energy = scale_dot_product(regressor, regressor, subl, shifts); |
| |
| for (k = 0; k < searchLen; k++) { |
| tp = target; |
| rp = ®ressor[pos]; |
| |
| cross_corr = scale_dot_product(tp, rp, subl, shifts); |
| |
| if ((energy > 0) && (cross_corr > 0)) { |
| /* Put cross correlation and energy on 16 bit word */ |
| cross_corr_scale = norm_w32(cross_corr) - 16; |
| cross_corr_mod = (int16_t) SPL_SHIFT_W32(cross_corr, cross_corr_scale); |
| energy_scale = norm_w32(energy) - 16; |
| energy_mod = (int16_t) SPL_SHIFT_W32(energy, energy_scale); |
| |
| /* Square cross correlation and store upper int16_t */ |
| cross_corr_sg_mod = (int16_t) SPL_MUL_16_16_RSFT(cross_corr_mod, cross_corr_mod, 16); |
| |
| /* Calculate the total number of (dynamic) right shifts that have |
| been performed on (cross_corr*cross_corr)/energy |
| */ |
| totscale = energy_scale - (cross_corr_scale * 2); |
| |
| /* Calculate the shift difference in order to be able to compare the two |
| (cross_corr*cross_corr)/energy in the same domain |
| */ |
| scalediff = totscale - totscale_max; |
| scalediff = FFMIN(scalediff, 31); |
| scalediff = FFMAX(scalediff, -31); |
| |
| /* Compute the cross multiplication between the old best criteria |
| and the new one to be able to compare them without using a |
| division */ |
| |
| if (scalediff < 0) { |
| new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max) >> (-scalediff); |
| max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod); |
| } else { |
| new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max); |
| max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod) >> scalediff; |
| } |
| |
| /* Store the new lag value if the new criteria is larger |
| than previous largest criteria */ |
| |
| if (new_crit > max_crit) { |
| cross_corr_sg_mod_max = cross_corr_sg_mod; |
| enery_mod_max = energy_mod; |
| totscale_max = totscale; |
| maxlag = k; |
| } |
| } |
| pos += step; |
| |
| /* Do a +/- to get the next energy */ |
| energy += (unsigned)step * ((*rp_end * *rp_end - *rp_beg * *rp_beg) >> shifts); |
| |
| rp_beg += step; |
| rp_end += step; |
| } |
| |
| return maxlag + offset; |
| } |
| |
| static void hp_output(int16_t *signal, const int16_t *ba, int16_t *y, |
| int16_t *x, int16_t len) |
| { |
| int32_t tmp; |
| |
| for (int i = 0; i < len; i++) { |
| tmp = SPL_MUL_16_16(y[1], ba[3]); /* (-a[1])*y[i-1] (low part) */ |
| tmp += SPL_MUL_16_16(y[3], ba[4]); /* (-a[2])*y[i-2] (low part) */ |
| tmp = (tmp >> 15); |
| tmp += SPL_MUL_16_16(y[0], ba[3]); /* (-a[1])*y[i-1] (high part) */ |
| tmp += SPL_MUL_16_16(y[2], ba[4]); /* (-a[2])*y[i-2] (high part) */ |
| tmp = (tmp * 2); |
| |
| tmp += SPL_MUL_16_16(signal[i], ba[0]); /* b[0]*x[0] */ |
| tmp += SPL_MUL_16_16(x[0], ba[1]); /* b[1]*x[i-1] */ |
| tmp += SPL_MUL_16_16(x[1], ba[2]); /* b[2]*x[i-2] */ |
| |
| /* Update state (input part) */ |
| x[1] = x[0]; |
| x[0] = signal[i]; |
| |
| /* Convert back to Q0 and multiply with 2 */ |
| signal[i] = av_clip_intp2(tmp + 1024, 26) >> 11; |
| |
| /* Update state (filtered part) */ |
| y[2] = y[0]; |
| y[3] = y[1]; |
| |
| /* upshift tmp by 3 with saturation */ |
| if (tmp > 268435455) { |
| tmp = INT32_MAX; |
| } else if (tmp < -268435456) { |
| tmp = INT32_MIN; |
| } else { |
| tmp = tmp * 8; |
| } |
| |
| y[0] = tmp >> 16; |
| y[1] = (tmp - (y[0] * (1 << 16))) >> 1; |
| } |
| } |
| |
| static int ilbc_decode_frame(AVCodecContext *avctx, void *data, |
| int *got_frame_ptr, AVPacket *avpkt) |
| { |
| const uint8_t *buf = avpkt->data; |
| AVFrame *frame = data; |
| ILBCContext *s = avctx->priv_data; |
| int mode = s->mode, ret; |
| int16_t *plc_data = &s->plc_residual[LPC_FILTERORDER]; |
| |
| if ((ret = init_get_bits8(&s->gb, buf, avpkt->size)) < 0) |
| return ret; |
| memset(&s->frame, 0, sizeof(ILBCFrame)); |
| |
| frame->nb_samples = s->block_samples; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| if (unpack_frame(s)) |
| mode = 0; |
| if (s->frame.start < 1 || s->frame.start > 5) |
| mode = 0; |
| |
| if (mode) { |
| index_conv(s->frame.cb_index); |
| |
| lsf_dequantization(s->lsfdeq, s->frame.lsf, s->lpc_n); |
| lsf_check_stability(s->lsfdeq, LPC_FILTERORDER, s->lpc_n); |
| lsp_interpolate(s->syntdenum, s->weightdenum, |
| s->lsfdeq, LPC_FILTERORDER, s); |
| decode_residual(s, &s->frame, s->decresidual, s->syntdenum); |
| |
| do_plc(s->plc_residual, s->plc_lpc, 0, |
| s->decresidual, s->syntdenum + (LPC_FILTERORDER + 1) * (s->nsub - 1), |
| s->last_lag, s); |
| |
| memcpy(s->decresidual, s->plc_residual, s->block_samples * 2); |
| } |
| |
| if (s->enhancer) { |
| /* TODO */ |
| } else { |
| int16_t lag, i; |
| |
| /* Find last lag (since the enhancer is not called to give this info) */ |
| if (s->mode == 20) { |
| lag = xcorr_coeff(&s->decresidual[s->block_samples-60], &s->decresidual[s->block_samples-80], |
| 60, 80, 20, -1); |
| } else { |
| lag = xcorr_coeff(&s->decresidual[s->block_samples-ENH_BLOCKL], |
| &s->decresidual[s->block_samples-ENH_BLOCKL-20], |
| ENH_BLOCKL, 100, 20, -1); |
| } |
| |
| /* Store lag (it is needed if next packet is lost) */ |
| s->last_lag = lag; |
| |
| /* copy data and run synthesis filter */ |
| memcpy(plc_data, s->decresidual, s->block_samples * 2); |
| |
| /* Set up the filter state */ |
| memcpy(&plc_data[-LPC_FILTERORDER], s->syntMem, LPC_FILTERORDER * 2); |
| |
| for (i = 0; i < s->nsub; i++) { |
| filter_arfq12(plc_data+i*SUBL, plc_data+i*SUBL, |
| s->syntdenum + i*(LPC_FILTERORDER + 1), |
| LPC_FILTERORDER + 1, SUBL); |
| } |
| |
| /* Save the filter state */ |
| memcpy(s->syntMem, &plc_data[s->block_samples-LPC_FILTERORDER], LPC_FILTERORDER * 2); |
| } |
| |
| memcpy(frame->data[0], plc_data, s->block_samples * 2); |
| |
| hp_output((int16_t *)frame->data[0], hp_out_coeffs, |
| s->hpimemy, s->hpimemx, s->block_samples); |
| |
| memcpy(s->old_syntdenum, s->syntdenum, s->nsub*(LPC_FILTERORDER + 1) * 2); |
| |
| s->prev_enh_pl = 0; |
| if (mode == 0) |
| s->prev_enh_pl = 1; |
| |
| *got_frame_ptr = 1; |
| |
| return avpkt->size; |
| } |
| |
| static av_cold int ilbc_decode_init(AVCodecContext *avctx) |
| { |
| ILBCContext *s = avctx->priv_data; |
| |
| if (avctx->block_align == 38) |
| s->mode = 20; |
| else if (avctx->block_align == 50) |
| s->mode = 30; |
| else if (avctx->bit_rate > 0) |
| s->mode = avctx->bit_rate <= 14000 ? 30 : 20; |
| else |
| return AVERROR_INVALIDDATA; |
| |
| avctx->channels = 1; |
| avctx->channel_layout = AV_CH_LAYOUT_MONO; |
| avctx->sample_rate = 8000; |
| avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
| |
| if (s->mode == 30) { |
| s->block_samples = 240; |
| s->nsub = NSUB_30MS; |
| s->nasub = NASUB_30MS; |
| s->lpc_n = LPC_N_30MS; |
| s->state_short_len = STATE_SHORT_LEN_30MS; |
| } else { |
| s->block_samples = 160; |
| s->nsub = NSUB_20MS; |
| s->nasub = NASUB_20MS; |
| s->lpc_n = LPC_N_20MS; |
| s->state_short_len = STATE_SHORT_LEN_20MS; |
| } |
| |
| return 0; |
| } |
| |
| AVCodec ff_ilbc_decoder = { |
| .name = "ilbc", |
| .long_name = NULL_IF_CONFIG_SMALL("iLBC (Internet Low Bitrate Codec)"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_ILBC, |
| .init = ilbc_decode_init, |
| .decode = ilbc_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, |
| .priv_data_size = sizeof(ILBCContext), |
| }; |