| /* |
| * MagicYUV encoder |
| * Copyright (c) 2017 Paul B Mahol |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "libavutil/opt.h" |
| #include "libavutil/pixdesc.h" |
| #include "libavutil/qsort.h" |
| |
| #include "avcodec.h" |
| #include "bytestream.h" |
| #include "put_bits.h" |
| #include "internal.h" |
| #include "thread.h" |
| #include "lossless_videoencdsp.h" |
| |
| typedef enum Prediction { |
| LEFT = 1, |
| GRADIENT, |
| MEDIAN, |
| } Prediction; |
| |
| typedef struct HuffEntry { |
| uint8_t len; |
| uint32_t code; |
| } HuffEntry; |
| |
| typedef struct PTable { |
| int value; ///< input value |
| int64_t prob; ///< number of occurences of this value in input |
| } PTable; |
| |
| typedef struct MagicYUVContext { |
| const AVClass *class; |
| int frame_pred; |
| PutBitContext pb; |
| int planes; |
| uint8_t format; |
| AVFrame *p; |
| int slice_height; |
| int nb_slices; |
| int correlate; |
| int hshift[4]; |
| int vshift[4]; |
| uint8_t *slices[4]; |
| unsigned slice_pos[4]; |
| unsigned tables_size; |
| HuffEntry he[4][256]; |
| LLVidEncDSPContext llvidencdsp; |
| void (*predict)(struct MagicYUVContext *s, uint8_t *src, uint8_t *dst, |
| ptrdiff_t stride, int width, int height); |
| } MagicYUVContext; |
| |
| static void left_predict(MagicYUVContext *s, |
| uint8_t *src, uint8_t *dst, ptrdiff_t stride, |
| int width, int height) |
| { |
| uint8_t prev = 0; |
| int i, j; |
| |
| for (i = 0; i < width; i++) { |
| dst[i] = src[i] - prev; |
| prev = src[i]; |
| } |
| dst += width; |
| src += stride; |
| for (j = 1; j < height; j++) { |
| prev = src[-stride]; |
| for (i = 0; i < width; i++) { |
| dst[i] = src[i] - prev; |
| prev = src[i]; |
| } |
| dst += width; |
| src += stride; |
| } |
| } |
| |
| static void gradient_predict(MagicYUVContext *s, |
| uint8_t *src, uint8_t *dst, ptrdiff_t stride, |
| int width, int height) |
| { |
| int left = 0, top, lefttop; |
| int i, j; |
| |
| for (i = 0; i < width; i++) { |
| dst[i] = src[i] - left; |
| left = src[i]; |
| } |
| dst += width; |
| src += stride; |
| for (j = 1; j < height; j++) { |
| top = src[-stride]; |
| left = src[0] - top; |
| dst[0] = left; |
| for (i = 1; i < width; i++) { |
| top = src[i - stride]; |
| lefttop = src[i - (stride + 1)]; |
| left = src[i-1]; |
| dst[i] = (src[i] - top) - left + lefttop; |
| } |
| dst += width; |
| src += stride; |
| } |
| } |
| |
| static void median_predict(MagicYUVContext *s, |
| uint8_t *src, uint8_t *dst, ptrdiff_t stride, |
| int width, int height) |
| { |
| int left = 0, lefttop; |
| int i, j; |
| |
| for (i = 0; i < width; i++) { |
| dst[i] = src[i] - left; |
| left = src[i]; |
| } |
| dst += width; |
| src += stride; |
| for (j = 1; j < height; j++) { |
| left = lefttop = src[-stride]; |
| s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop); |
| dst += width; |
| src += stride; |
| } |
| } |
| |
| static av_cold int magy_encode_init(AVCodecContext *avctx) |
| { |
| MagicYUVContext *s = avctx->priv_data; |
| PutByteContext pb; |
| int i; |
| |
| switch (avctx->pix_fmt) { |
| case AV_PIX_FMT_GBRP: |
| avctx->codec_tag = MKTAG('M', '8', 'R', 'G'); |
| s->correlate = 1; |
| s->format = 0x65; |
| break; |
| case AV_PIX_FMT_GBRAP: |
| avctx->codec_tag = MKTAG('M', '8', 'R', 'A'); |
| s->correlate = 1; |
| s->format = 0x66; |
| break; |
| case AV_PIX_FMT_YUV420P: |
| avctx->codec_tag = MKTAG('M', '8', 'Y', '0'); |
| s->hshift[1] = |
| s->vshift[1] = |
| s->hshift[2] = |
| s->vshift[2] = 1; |
| s->format = 0x69; |
| break; |
| case AV_PIX_FMT_YUV422P: |
| avctx->codec_tag = MKTAG('M', '8', 'Y', '2'); |
| s->hshift[1] = |
| s->hshift[2] = 1; |
| s->format = 0x68; |
| break; |
| case AV_PIX_FMT_YUV444P: |
| avctx->codec_tag = MKTAG('M', '8', 'Y', '4'); |
| s->format = 0x67; |
| break; |
| case AV_PIX_FMT_YUVA444P: |
| avctx->codec_tag = MKTAG('M', '8', 'Y', 'A'); |
| s->format = 0x6a; |
| break; |
| case AV_PIX_FMT_GRAY8: |
| avctx->codec_tag = MKTAG('M', '8', 'G', '0'); |
| s->format = 0x6b; |
| break; |
| default: |
| av_log(avctx, AV_LOG_ERROR, "Unsupported pixel format: %d\n", |
| avctx->pix_fmt); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ff_llvidencdsp_init(&s->llvidencdsp); |
| |
| s->planes = av_pix_fmt_count_planes(avctx->pix_fmt); |
| |
| s->nb_slices = 1; |
| |
| for (i = 0; i < s->planes; i++) { |
| s->slices[i] = av_malloc(avctx->width * (avctx->height + 2) + |
| AV_INPUT_BUFFER_PADDING_SIZE); |
| if (!s->slices[i]) { |
| av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n"); |
| return AVERROR(ENOMEM); |
| } |
| } |
| |
| switch (s->frame_pred) { |
| case LEFT: s->predict = left_predict; break; |
| case GRADIENT: s->predict = gradient_predict; break; |
| case MEDIAN: s->predict = median_predict; break; |
| } |
| |
| avctx->extradata_size = 32; |
| |
| avctx->extradata = av_mallocz(avctx->extradata_size + |
| AV_INPUT_BUFFER_PADDING_SIZE); |
| |
| if (!avctx->extradata) { |
| av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n"); |
| return AVERROR(ENOMEM); |
| } |
| |
| bytestream2_init_writer(&pb, avctx->extradata, avctx->extradata_size); |
| bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y')); |
| bytestream2_put_le32(&pb, 32); |
| bytestream2_put_byte(&pb, 7); |
| bytestream2_put_byte(&pb, s->format); |
| bytestream2_put_byte(&pb, 12); |
| bytestream2_put_byte(&pb, 0); |
| |
| bytestream2_put_byte(&pb, 0); |
| bytestream2_put_byte(&pb, 0); |
| bytestream2_put_byte(&pb, 32); |
| bytestream2_put_byte(&pb, 0); |
| |
| bytestream2_put_le32(&pb, avctx->width); |
| bytestream2_put_le32(&pb, avctx->height); |
| bytestream2_put_le32(&pb, avctx->width); |
| bytestream2_put_le32(&pb, avctx->height); |
| |
| return 0; |
| } |
| |
| static void calculate_codes(HuffEntry *he, uint16_t codes_count[33]) |
| { |
| for (unsigned i = 32, nb_codes = 0; i > 0; i--) { |
| uint16_t curr = codes_count[i]; // # of leafs of length i |
| codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i |
| nb_codes = codes_count[i] + curr; // # of nodes on level i |
| } |
| |
| for (unsigned i = 0; i < 256; i++) { |
| he[i].code = codes_count[he[i].len]; |
| codes_count[he[i].len]++; |
| } |
| } |
| |
| static void count_usage(uint8_t *src, int width, |
| int height, PTable *counts) |
| { |
| int i, j; |
| |
| for (j = 0; j < height; j++) { |
| for (i = 0; i < width; i++) { |
| counts[src[i]].prob++; |
| } |
| src += width; |
| } |
| } |
| |
| typedef struct PackageMergerList { |
| int nitems; ///< number of items in the list and probability ex. 4 |
| int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13 |
| int probability[514]; ///< probability of each item 3, 8, 18, 46 |
| int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E |
| } PackageMergerList; |
| |
| static int compare_by_prob(const void *a, const void *b) |
| { |
| const PTable *a2 = a; |
| const PTable *b2 = b; |
| return a2->prob - b2->prob; |
| } |
| |
| static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts, |
| uint16_t codes_counts[33], |
| int size, int max_length) |
| { |
| PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp; |
| int times, i, j, k; |
| int nbits[257] = {0}; |
| int min; |
| |
| av_assert0(max_length > 0); |
| |
| to->nitems = 0; |
| from->nitems = 0; |
| to->item_idx[0] = 0; |
| from->item_idx[0] = 0; |
| AV_QSORT(prob_table, size, PTable, compare_by_prob); |
| |
| for (times = 0; times <= max_length; times++) { |
| to->nitems = 0; |
| to->item_idx[0] = 0; |
| |
| j = 0; |
| k = 0; |
| |
| if (times < max_length) { |
| i = 0; |
| } |
| while (i < size || j + 1 < from->nitems) { |
| to->nitems++; |
| to->item_idx[to->nitems] = to->item_idx[to->nitems - 1]; |
| if (i < size && |
| (j + 1 >= from->nitems || |
| prob_table[i].prob < |
| from->probability[j] + from->probability[j + 1])) { |
| to->items[to->item_idx[to->nitems]++] = prob_table[i].value; |
| to->probability[to->nitems - 1] = prob_table[i].prob; |
| i++; |
| } else { |
| for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) { |
| to->items[to->item_idx[to->nitems]++] = from->items[k]; |
| } |
| to->probability[to->nitems - 1] = |
| from->probability[j] + from->probability[j + 1]; |
| j += 2; |
| } |
| } |
| temp = to; |
| to = from; |
| from = temp; |
| } |
| |
| min = (size - 1 < from->nitems) ? size - 1 : from->nitems; |
| for (i = 0; i < from->item_idx[min]; i++) { |
| nbits[from->items[i]]++; |
| } |
| |
| for (i = 0; i < size; i++) { |
| distincts[i].len = nbits[i]; |
| codes_counts[nbits[i]]++; |
| } |
| } |
| |
| static int encode_table(AVCodecContext *avctx, uint8_t *dst, |
| int width, int height, |
| PutBitContext *pb, HuffEntry *he) |
| { |
| PTable counts[256] = { {0} }; |
| uint16_t codes_counts[33] = { 0 }; |
| int i; |
| |
| count_usage(dst, width, height, counts); |
| |
| for (i = 0; i < 256; i++) { |
| counts[i].prob++; |
| counts[i].value = i; |
| } |
| |
| magy_huffman_compute_bits(counts, he, codes_counts, 256, 12); |
| |
| calculate_codes(he, codes_counts); |
| |
| for (i = 0; i < 256; i++) { |
| put_bits(pb, 1, 0); |
| put_bits(pb, 7, he[i].len); |
| } |
| |
| return 0; |
| } |
| |
| static int encode_slice(uint8_t *src, uint8_t *dst, int dst_size, |
| int width, int height, HuffEntry *he, int prediction) |
| { |
| PutBitContext pb; |
| int i, j; |
| int count; |
| |
| init_put_bits(&pb, dst, dst_size); |
| |
| put_bits(&pb, 8, 0); |
| put_bits(&pb, 8, prediction); |
| |
| for (j = 0; j < height; j++) { |
| for (i = 0; i < width; i++) { |
| const int idx = src[i]; |
| put_bits(&pb, he[idx].len, he[idx].code); |
| } |
| |
| src += width; |
| } |
| |
| count = put_bits_count(&pb) & 0x1F; |
| |
| if (count) |
| put_bits(&pb, 32 - count, 0); |
| |
| count = put_bits_count(&pb); |
| |
| flush_put_bits(&pb); |
| |
| return count >> 3; |
| } |
| |
| static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
| const AVFrame *frame, int *got_packet) |
| { |
| MagicYUVContext *s = avctx->priv_data; |
| PutByteContext pb; |
| const int width = avctx->width, height = avctx->height; |
| int pos, slice, i, j, ret = 0; |
| |
| ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * s->nb_slices + width * height) * |
| s->planes + 256, 0); |
| if (ret < 0) |
| return ret; |
| |
| bytestream2_init_writer(&pb, pkt->data, pkt->size); |
| bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y')); |
| bytestream2_put_le32(&pb, 32); // header size |
| bytestream2_put_byte(&pb, 7); // version |
| bytestream2_put_byte(&pb, s->format); |
| bytestream2_put_byte(&pb, 12); // max huffman length |
| bytestream2_put_byte(&pb, 0); |
| |
| bytestream2_put_byte(&pb, 0); |
| bytestream2_put_byte(&pb, 0); |
| bytestream2_put_byte(&pb, 32); // coder type |
| bytestream2_put_byte(&pb, 0); |
| |
| bytestream2_put_le32(&pb, avctx->width); |
| bytestream2_put_le32(&pb, avctx->height); |
| bytestream2_put_le32(&pb, avctx->width); |
| bytestream2_put_le32(&pb, avctx->height); |
| bytestream2_put_le32(&pb, 0); |
| |
| for (i = 0; i < s->planes; i++) { |
| bytestream2_put_le32(&pb, 0); |
| for (j = 1; j < s->nb_slices; j++) { |
| bytestream2_put_le32(&pb, 0); |
| } |
| } |
| |
| bytestream2_put_byte(&pb, s->planes); |
| |
| for (i = 0; i < s->planes; i++) { |
| for (slice = 0; slice < s->nb_slices; slice++) { |
| bytestream2_put_byte(&pb, i); |
| } |
| } |
| |
| if (s->correlate) { |
| uint8_t *r, *g, *b; |
| AVFrame *p = av_frame_clone(frame); |
| |
| g = p->data[0]; |
| b = p->data[1]; |
| r = p->data[2]; |
| |
| for (i = 0; i < height; i++) { |
| s->llvidencdsp.diff_bytes(b, b, g, width); |
| s->llvidencdsp.diff_bytes(r, r, g, width); |
| g += p->linesize[0]; |
| b += p->linesize[1]; |
| r += p->linesize[2]; |
| } |
| |
| FFSWAP(uint8_t*, p->data[0], p->data[1]); |
| FFSWAP(int, p->linesize[0], p->linesize[1]); |
| |
| for (i = 0; i < s->planes; i++) { |
| for (slice = 0; slice < s->nb_slices; slice++) { |
| s->predict(s, p->data[i], s->slices[i], p->linesize[i], |
| p->width, p->height); |
| } |
| } |
| |
| av_frame_free(&p); |
| } else { |
| for (i = 0; i < s->planes; i++) { |
| for (slice = 0; slice < s->nb_slices; slice++) { |
| s->predict(s, frame->data[i], s->slices[i], frame->linesize[i], |
| AV_CEIL_RSHIFT(frame->width, s->hshift[i]), |
| AV_CEIL_RSHIFT(frame->height, s->vshift[i])); |
| } |
| } |
| } |
| |
| init_put_bits(&s->pb, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb)); |
| |
| for (i = 0; i < s->planes; i++) { |
| encode_table(avctx, s->slices[i], |
| AV_CEIL_RSHIFT(frame->width, s->hshift[i]), |
| AV_CEIL_RSHIFT(frame->height, s->vshift[i]), |
| &s->pb, s->he[i]); |
| } |
| s->tables_size = (put_bits_count(&s->pb) + 7) >> 3; |
| bytestream2_skip_p(&pb, s->tables_size); |
| |
| for (i = 0; i < s->planes; i++) { |
| unsigned slice_size; |
| |
| s->slice_pos[i] = bytestream2_tell_p(&pb); |
| slice_size = encode_slice(s->slices[i], pkt->data + bytestream2_tell_p(&pb), |
| bytestream2_get_bytes_left_p(&pb), |
| AV_CEIL_RSHIFT(frame->width, s->hshift[i]), |
| AV_CEIL_RSHIFT(frame->height, s->vshift[i]), |
| s->he[i], s->frame_pred); |
| bytestream2_skip_p(&pb, slice_size); |
| } |
| |
| pos = bytestream2_tell_p(&pb); |
| bytestream2_seek_p(&pb, 32, SEEK_SET); |
| bytestream2_put_le32(&pb, s->slice_pos[0] - 32); |
| for (i = 0; i < s->planes; i++) { |
| bytestream2_put_le32(&pb, s->slice_pos[i] - 32); |
| } |
| bytestream2_seek_p(&pb, pos, SEEK_SET); |
| |
| pkt->size = bytestream2_tell_p(&pb); |
| pkt->flags |= AV_PKT_FLAG_KEY; |
| |
| *got_packet = 1; |
| |
| return 0; |
| } |
| |
| static av_cold int magy_encode_close(AVCodecContext *avctx) |
| { |
| MagicYUVContext *s = avctx->priv_data; |
| int i; |
| |
| for (i = 0; i < s->planes; i++) |
| av_freep(&s->slices[i]); |
| |
| return 0; |
| } |
| |
| #define OFFSET(x) offsetof(MagicYUVContext, x) |
| #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
| static const AVOption options[] = { |
| { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, "pred" }, |
| { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, "pred" }, |
| { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, "pred" }, |
| { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, "pred" }, |
| { NULL}, |
| }; |
| |
| static const AVClass magicyuv_class = { |
| .class_name = "magicyuv", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_magicyuv_encoder = { |
| .name = "magicyuv", |
| .long_name = NULL_IF_CONFIG_SMALL("MagicYUV video"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_MAGICYUV, |
| .priv_data_size = sizeof(MagicYUVContext), |
| .priv_class = &magicyuv_class, |
| .init = magy_encode_init, |
| .close = magy_encode_close, |
| .encode2 = magy_encode_frame, |
| .capabilities = AV_CODEC_CAP_FRAME_THREADS, |
| .pix_fmts = (const enum AVPixelFormat[]) { |
| AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P, |
| AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8, |
| AV_PIX_FMT_NONE |
| }, |
| .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
| }; |