| /* |
| * Copyright (c) 2007-2008 CSIRO |
| * Copyright (c) 2007-2009 Xiph.Org Foundation |
| * Copyright (c) 2008-2009 Gregory Maxwell |
| * Copyright (c) 2012 Andrew D'Addesio |
| * Copyright (c) 2013-2014 Mozilla Corporation |
| * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "opustab.h" |
| #include "opus_pvq.h" |
| |
| #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) |
| #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) |
| |
| static inline int16_t celt_cos(int16_t x) |
| { |
| x = (MUL16(x, x) + 4096) >> 13; |
| x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); |
| return x + 1; |
| } |
| |
| static inline int celt_log2tan(int isin, int icos) |
| { |
| int lc, ls; |
| lc = opus_ilog(icos); |
| ls = opus_ilog(isin); |
| icos <<= 15 - lc; |
| isin <<= 15 - ls; |
| return (ls << 11) - (lc << 11) + |
| ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - |
| ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); |
| } |
| |
| static inline int celt_bits2pulses(const uint8_t *cache, int bits) |
| { |
| // TODO: Find the size of cache and make it into an array in the parameters list |
| int i, low = 0, high; |
| |
| high = cache[0]; |
| bits--; |
| |
| for (i = 0; i < 6; i++) { |
| int center = (low + high + 1) >> 1; |
| if (cache[center] >= bits) |
| high = center; |
| else |
| low = center; |
| } |
| |
| return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; |
| } |
| |
| static inline int celt_pulses2bits(const uint8_t *cache, int pulses) |
| { |
| // TODO: Find the size of cache and make it into an array in the parameters list |
| return (pulses == 0) ? 0 : cache[pulses] + 1; |
| } |
| |
| static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X, |
| int N, float g) |
| { |
| int i; |
| for (i = 0; i < N; i++) |
| X[i] = g * iy[i]; |
| } |
| |
| static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride, |
| float c, float s) |
| { |
| float *Xptr; |
| int i; |
| |
| Xptr = X; |
| for (i = 0; i < len - stride; i++) { |
| float x1 = Xptr[0]; |
| float x2 = Xptr[stride]; |
| Xptr[stride] = c * x2 + s * x1; |
| *Xptr++ = c * x1 - s * x2; |
| } |
| |
| Xptr = &X[len - 2 * stride - 1]; |
| for (i = len - 2 * stride - 1; i >= 0; i--) { |
| float x1 = Xptr[0]; |
| float x2 = Xptr[stride]; |
| Xptr[stride] = c * x2 + s * x1; |
| *Xptr-- = c * x1 - s * x2; |
| } |
| } |
| |
| static inline void celt_exp_rotation(float *X, uint32_t len, |
| uint32_t stride, uint32_t K, |
| enum CeltSpread spread, const int encode) |
| { |
| uint32_t stride2 = 0; |
| float c, s; |
| float gain, theta; |
| int i; |
| |
| if (2*K >= len || spread == CELT_SPREAD_NONE) |
| return; |
| |
| gain = (float)len / (len + (20 - 5*spread) * K); |
| theta = M_PI * gain * gain / 4; |
| |
| c = cosf(theta); |
| s = sinf(theta); |
| |
| if (len >= stride << 3) { |
| stride2 = 1; |
| /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. |
| It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ |
| while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) |
| stride2++; |
| } |
| |
| len /= stride; |
| for (i = 0; i < stride; i++) { |
| if (encode) { |
| celt_exp_rotation_impl(X + i * len, len, 1, c, -s); |
| if (stride2) |
| celt_exp_rotation_impl(X + i * len, len, stride2, s, -c); |
| } else { |
| if (stride2) |
| celt_exp_rotation_impl(X + i * len, len, stride2, s, c); |
| celt_exp_rotation_impl(X + i * len, len, 1, c, s); |
| } |
| } |
| } |
| |
| static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B) |
| { |
| int i, j, N0 = N / B; |
| uint32_t collapse_mask = 0; |
| |
| if (B <= 1) |
| return 1; |
| |
| for (i = 0; i < B; i++) |
| for (j = 0; j < N0; j++) |
| collapse_mask |= (!!iy[i*N0+j]) << i; |
| return collapse_mask; |
| } |
| |
| static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) |
| { |
| int i; |
| float xp = 0, side = 0; |
| float E[2]; |
| float mid2; |
| float gain[2]; |
| |
| /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
| for (i = 0; i < N; i++) { |
| xp += X[i] * Y[i]; |
| side += Y[i] * Y[i]; |
| } |
| |
| /* Compensating for the mid normalization */ |
| xp *= mid; |
| mid2 = mid; |
| E[0] = mid2 * mid2 + side - 2 * xp; |
| E[1] = mid2 * mid2 + side + 2 * xp; |
| if (E[0] < 6e-4f || E[1] < 6e-4f) { |
| for (i = 0; i < N; i++) |
| Y[i] = X[i]; |
| return; |
| } |
| |
| gain[0] = 1.0f / sqrtf(E[0]); |
| gain[1] = 1.0f / sqrtf(E[1]); |
| |
| for (i = 0; i < N; i++) { |
| float value[2]; |
| /* Apply mid scaling (side is already scaled) */ |
| value[0] = mid * X[i]; |
| value[1] = Y[i]; |
| X[i] = gain[0] * (value[0] - value[1]); |
| Y[i] = gain[1] * (value[0] + value[1]); |
| } |
| } |
| |
| static void celt_interleave_hadamard(float *tmp, float *X, int N0, |
| int stride, int hadamard) |
| { |
| int i, j, N = N0*stride; |
| const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; |
| |
| for (i = 0; i < stride; i++) |
| for (j = 0; j < N0; j++) |
| tmp[j*stride+i] = X[order[i]*N0+j]; |
| |
| memcpy(X, tmp, N*sizeof(float)); |
| } |
| |
| static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, |
| int stride, int hadamard) |
| { |
| int i, j, N = N0*stride; |
| const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; |
| |
| for (i = 0; i < stride; i++) |
| for (j = 0; j < N0; j++) |
| tmp[order[i]*N0+j] = X[j*stride+i]; |
| |
| memcpy(X, tmp, N*sizeof(float)); |
| } |
| |
| static void celt_haar1(float *X, int N0, int stride) |
| { |
| int i, j; |
| N0 >>= 1; |
| for (i = 0; i < stride; i++) { |
| for (j = 0; j < N0; j++) { |
| float x0 = X[stride * (2 * j + 0) + i]; |
| float x1 = X[stride * (2 * j + 1) + i]; |
| X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; |
| X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; |
| } |
| } |
| } |
| |
| static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, |
| int stereo) |
| { |
| int qn, qb; |
| int N2 = 2 * N - 1; |
| if (stereo && N == 2) |
| N2--; |
| |
| /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
| * always have enough bits left over to code at least one pulse in the |
| * side; otherwise it would collapse, since it doesn't get folded. */ |
| qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); |
| qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; |
| return qn; |
| } |
| |
| /* Convert the quantized vector to an index */ |
| static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y) |
| { |
| int i, idx = 0, sum = 0; |
| for (i = N - 1; i >= 0; i--) { |
| const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1); |
| idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s; |
| sum += FFABS(y[i]); |
| } |
| return idx; |
| } |
| |
| // this code was adapted from libopus |
| static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y) |
| { |
| uint64_t norm = 0; |
| uint32_t q, p; |
| int s, val; |
| int k0; |
| |
| while (N > 2) { |
| /*Lots of pulses case:*/ |
| if (K >= N) { |
| const uint32_t *row = ff_celt_pvq_u_row[N]; |
| |
| /* Are the pulses in this dimension negative? */ |
| p = row[K + 1]; |
| s = -(i >= p); |
| i -= p & s; |
| |
| /*Count how many pulses were placed in this dimension.*/ |
| k0 = K; |
| q = row[N]; |
| if (q > i) { |
| K = N; |
| do { |
| p = ff_celt_pvq_u_row[--K][N]; |
| } while (p > i); |
| } else |
| for (p = row[K]; p > i; p = row[K]) |
| K--; |
| |
| i -= p; |
| val = (k0 - K + s) ^ s; |
| norm += val * val; |
| *y++ = val; |
| } else { /*Lots of dimensions case:*/ |
| /*Are there any pulses in this dimension at all?*/ |
| p = ff_celt_pvq_u_row[K ][N]; |
| q = ff_celt_pvq_u_row[K + 1][N]; |
| |
| if (p <= i && i < q) { |
| i -= p; |
| *y++ = 0; |
| } else { |
| /*Are the pulses in this dimension negative?*/ |
| s = -(i >= q); |
| i -= q & s; |
| |
| /*Count how many pulses were placed in this dimension.*/ |
| k0 = K; |
| do p = ff_celt_pvq_u_row[--K][N]; |
| while (p > i); |
| |
| i -= p; |
| val = (k0 - K + s) ^ s; |
| norm += val * val; |
| *y++ = val; |
| } |
| } |
| N--; |
| } |
| |
| /* N == 2 */ |
| p = 2 * K + 1; |
| s = -(i >= p); |
| i -= p & s; |
| k0 = K; |
| K = (i + 1) / 2; |
| |
| if (K) |
| i -= 2 * K - 1; |
| |
| val = (k0 - K + s) ^ s; |
| norm += val * val; |
| *y++ = val; |
| |
| /* N==1 */ |
| s = -i; |
| val = (K + s) ^ s; |
| norm += val * val; |
| *y = val; |
| |
| return norm; |
| } |
| |
| static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) |
| { |
| ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K)); |
| } |
| |
| static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) |
| { |
| const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); |
| return celt_cwrsi(N, K, idx, y); |
| } |
| |
| /* |
| * Faster than libopus's search, operates entirely in the signed domain. |
| * Slightly worse/better depending on N, K and the input vector. |
| */ |
| static float ppp_pvq_search_c(float *X, int *y, int K, int N) |
| { |
| int i, y_norm = 0; |
| float res = 0.0f, xy_norm = 0.0f; |
| |
| for (i = 0; i < N; i++) |
| res += FFABS(X[i]); |
| |
| res = K/(res + FLT_EPSILON); |
| |
| for (i = 0; i < N; i++) { |
| y[i] = lrintf(res*X[i]); |
| y_norm += y[i]*y[i]; |
| xy_norm += y[i]*X[i]; |
| K -= FFABS(y[i]); |
| } |
| |
| while (K) { |
| int max_idx = 0, phase = FFSIGN(K); |
| float max_num = 0.0f; |
| float max_den = 1.0f; |
| y_norm += 1.0f; |
| |
| for (i = 0; i < N; i++) { |
| /* If the sum has been overshot and the best place has 0 pulses allocated |
| * to it, attempting to decrease it further will actually increase the |
| * sum. Prevent this by disregarding any 0 positions when decrementing. */ |
| const int ca = 1 ^ ((y[i] == 0) & (phase < 0)); |
| const int y_new = y_norm + 2*phase*FFABS(y[i]); |
| float xy_new = xy_norm + 1*phase*FFABS(X[i]); |
| xy_new = xy_new * xy_new; |
| if (ca && (max_den*xy_new) > (y_new*max_num)) { |
| max_den = y_new; |
| max_num = xy_new; |
| max_idx = i; |
| } |
| } |
| |
| K -= phase; |
| |
| phase *= FFSIGN(X[max_idx]); |
| xy_norm += 1*phase*X[max_idx]; |
| y_norm += 2*phase*y[max_idx]; |
| y[max_idx] += phase; |
| } |
| |
| return (float)y_norm; |
| } |
| |
| static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, |
| enum CeltSpread spread, uint32_t blocks, float gain, |
| CeltPVQ *pvq) |
| { |
| int *y = pvq->qcoeff; |
| |
| celt_exp_rotation(X, N, blocks, K, spread, 1); |
| gain /= sqrtf(pvq->pvq_search(X, y, K, N)); |
| celt_encode_pulses(rc, y, N, K); |
| celt_normalize_residual(y, X, N, gain); |
| celt_exp_rotation(X, N, blocks, K, spread, 0); |
| return celt_extract_collapse_mask(y, N, blocks); |
| } |
| |
| /** Decode pulse vector and combine the result with the pitch vector to produce |
| the final normalised signal in the current band. */ |
| static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, |
| enum CeltSpread spread, uint32_t blocks, float gain, |
| CeltPVQ *pvq) |
| { |
| int *y = pvq->qcoeff; |
| |
| gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); |
| celt_normalize_residual(y, X, N, gain); |
| celt_exp_rotation(X, N, blocks, K, spread, 0); |
| return celt_extract_collapse_mask(y, N, blocks); |
| } |
| |
| static int celt_calc_theta(const float *X, const float *Y, int coupling, int N) |
| { |
| int i; |
| float e[2] = { 0.0f, 0.0f }; |
| if (coupling) { /* Coupling case */ |
| for (i = 0; i < N; i++) { |
| e[0] += (X[i] + Y[i])*(X[i] + Y[i]); |
| e[1] += (X[i] - Y[i])*(X[i] - Y[i]); |
| } |
| } else { |
| for (i = 0; i < N; i++) { |
| e[0] += X[i]*X[i]; |
| e[1] += Y[i]*Y[i]; |
| } |
| } |
| return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI); |
| } |
| |
| static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N) |
| { |
| int i; |
| const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON); |
| e_l *= energy_n; |
| e_r *= energy_n; |
| for (i = 0; i < N; i++) |
| X[i] = e_l*X[i] + e_r*Y[i]; |
| } |
| |
| static void celt_stereo_ms_decouple(float *X, float *Y, int N) |
| { |
| int i; |
| for (i = 0; i < N; i++) { |
| const float Xret = X[i]; |
| X[i] = (X[i] + Y[i])*M_SQRT1_2; |
| Y[i] = (Y[i] - Xret)*M_SQRT1_2; |
| } |
| } |
| |
| static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f, |
| OpusRangeCoder *rc, |
| const int band, float *X, |
| float *Y, int N, int b, |
| uint32_t blocks, float *lowband, |
| int duration, float *lowband_out, |
| int level, float gain, |
| float *lowband_scratch, |
| int fill, int quant) |
| { |
| int i; |
| const uint8_t *cache; |
| int stereo = !!Y, split = stereo; |
| int imid = 0, iside = 0; |
| uint32_t N0 = N; |
| int N_B = N / blocks; |
| int N_B0 = N_B; |
| int B0 = blocks; |
| int time_divide = 0; |
| int recombine = 0; |
| int inv = 0; |
| float mid = 0, side = 0; |
| int longblocks = (B0 == 1); |
| uint32_t cm = 0; |
| |
| if (N == 1) { |
| float *x = X; |
| for (i = 0; i <= stereo; i++) { |
| int sign = 0; |
| if (f->remaining2 >= 1 << 3) { |
| if (quant) { |
| sign = x[0] < 0; |
| ff_opus_rc_put_raw(rc, sign, 1); |
| } else { |
| sign = ff_opus_rc_get_raw(rc, 1); |
| } |
| f->remaining2 -= 1 << 3; |
| } |
| x[0] = 1.0f - 2.0f*sign; |
| x = Y; |
| } |
| if (lowband_out) |
| lowband_out[0] = X[0]; |
| return 1; |
| } |
| |
| if (!stereo && level == 0) { |
| int tf_change = f->tf_change[band]; |
| int k; |
| if (tf_change > 0) |
| recombine = tf_change; |
| /* Band recombining to increase frequency resolution */ |
| |
| if (lowband && |
| (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { |
| for (i = 0; i < N; i++) |
| lowband_scratch[i] = lowband[i]; |
| lowband = lowband_scratch; |
| } |
| |
| for (k = 0; k < recombine; k++) { |
| if (quant || lowband) |
| celt_haar1(quant ? X : lowband, N >> k, 1 << k); |
| fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; |
| } |
| blocks >>= recombine; |
| N_B <<= recombine; |
| |
| /* Increasing the time resolution */ |
| while ((N_B & 1) == 0 && tf_change < 0) { |
| if (quant || lowband) |
| celt_haar1(quant ? X : lowband, N_B, blocks); |
| fill |= fill << blocks; |
| blocks <<= 1; |
| N_B >>= 1; |
| time_divide++; |
| tf_change++; |
| } |
| B0 = blocks; |
| N_B0 = N_B; |
| |
| /* Reorganize the samples in time order instead of frequency order */ |
| if (B0 > 1 && (quant || lowband)) |
| celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband, |
| N_B >> recombine, B0 << recombine, |
| longblocks); |
| } |
| |
| /* If we need 1.5 more bit than we can produce, split the band in two. */ |
| cache = ff_celt_cache_bits + |
| ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; |
| if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { |
| N >>= 1; |
| Y = X + N; |
| split = 1; |
| duration -= 1; |
| if (blocks == 1) |
| fill = (fill & 1) | (fill << 1); |
| blocks = (blocks + 1) >> 1; |
| } |
| |
| if (split) { |
| int qn; |
| int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0; |
| int mbits, sbits, delta; |
| int qalloc; |
| int pulse_cap; |
| int offset; |
| int orig_fill; |
| int tell; |
| |
| /* Decide on the resolution to give to the split parameter theta */ |
| pulse_cap = ff_celt_log_freq_range[band] + duration * 8; |
| offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : |
| CELT_QTHETA_OFFSET); |
| qn = (stereo && band >= f->intensity_stereo) ? 1 : |
| celt_compute_qn(N, b, offset, pulse_cap, stereo); |
| tell = opus_rc_tell_frac(rc); |
| if (qn != 1) { |
| if (quant) |
| itheta = (itheta*qn + 8192) >> 14; |
| /* Entropy coding of the angle. We use a uniform pdf for the |
| * time split, a step for stereo, and a triangular one for the rest. */ |
| if (quant) { |
| if (stereo && N > 2) |
| ff_opus_rc_enc_uint_step(rc, itheta, qn / 2); |
| else if (stereo || B0 > 1) |
| ff_opus_rc_enc_uint(rc, itheta, qn + 1); |
| else |
| ff_opus_rc_enc_uint_tri(rc, itheta, qn); |
| itheta = itheta * 16384 / qn; |
| if (stereo) { |
| if (itheta == 0) |
| celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], |
| f->block[1].lin_energy[band], N); |
| else |
| celt_stereo_ms_decouple(X, Y, N); |
| } |
| } else { |
| if (stereo && N > 2) |
| itheta = ff_opus_rc_dec_uint_step(rc, qn / 2); |
| else if (stereo || B0 > 1) |
| itheta = ff_opus_rc_dec_uint(rc, qn+1); |
| else |
| itheta = ff_opus_rc_dec_uint_tri(rc, qn); |
| itheta = itheta * 16384 / qn; |
| } |
| } else if (stereo) { |
| if (quant) { |
| inv = f->apply_phase_inv ? itheta > 8192 : 0; |
| if (inv) { |
| for (i = 0; i < N; i++) |
| Y[i] *= -1; |
| } |
| celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], |
| f->block[1].lin_energy[band], N); |
| |
| if (b > 2 << 3 && f->remaining2 > 2 << 3) { |
| ff_opus_rc_enc_log(rc, inv, 2); |
| } else { |
| inv = 0; |
| } |
| } else { |
| inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; |
| inv = f->apply_phase_inv ? inv : 0; |
| } |
| itheta = 0; |
| } |
| qalloc = opus_rc_tell_frac(rc) - tell; |
| b -= qalloc; |
| |
| orig_fill = fill; |
| if (itheta == 0) { |
| imid = 32767; |
| iside = 0; |
| fill = av_mod_uintp2(fill, blocks); |
| delta = -16384; |
| } else if (itheta == 16384) { |
| imid = 0; |
| iside = 32767; |
| fill &= ((1 << blocks) - 1) << blocks; |
| delta = 16384; |
| } else { |
| imid = celt_cos(itheta); |
| iside = celt_cos(16384-itheta); |
| /* This is the mid vs side allocation that minimizes squared error |
| in that band. */ |
| delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); |
| } |
| |
| mid = imid / 32768.0f; |
| side = iside / 32768.0f; |
| |
| /* This is a special case for N=2 that only works for stereo and takes |
| advantage of the fact that mid and side are orthogonal to encode |
| the side with just one bit. */ |
| if (N == 2 && stereo) { |
| int c; |
| int sign = 0; |
| float tmp; |
| float *x2, *y2; |
| mbits = b; |
| /* Only need one bit for the side */ |
| sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; |
| mbits -= sbits; |
| c = (itheta > 8192); |
| f->remaining2 -= qalloc+sbits; |
| |
| x2 = c ? Y : X; |
| y2 = c ? X : Y; |
| if (sbits) { |
| if (quant) { |
| sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
| ff_opus_rc_put_raw(rc, sign, 1); |
| } else { |
| sign = ff_opus_rc_get_raw(rc, 1); |
| } |
| } |
| sign = 1 - 2 * sign; |
| /* We use orig_fill here because we want to fold the side, but if |
| itheta==16384, we'll have cleared the low bits of fill. */ |
| cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration, |
| lowband_out, level, gain, lowband_scratch, orig_fill); |
| /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
| and there's no need to worry about mixing with the other channel. */ |
| y2[0] = -sign * x2[1]; |
| y2[1] = sign * x2[0]; |
| X[0] *= mid; |
| X[1] *= mid; |
| Y[0] *= side; |
| Y[1] *= side; |
| tmp = X[0]; |
| X[0] = tmp - Y[0]; |
| Y[0] = tmp + Y[0]; |
| tmp = X[1]; |
| X[1] = tmp - Y[1]; |
| Y[1] = tmp + Y[1]; |
| } else { |
| /* "Normal" split code */ |
| float *next_lowband2 = NULL; |
| float *next_lowband_out1 = NULL; |
| int next_level = 0; |
| int rebalance; |
| uint32_t cmt; |
| |
| /* Give more bits to low-energy MDCTs than they would |
| * otherwise deserve */ |
| if (B0 > 1 && !stereo && (itheta & 0x3fff)) { |
| if (itheta > 8192) |
| /* Rough approximation for pre-echo masking */ |
| delta -= delta >> (4 - duration); |
| else |
| /* Corresponds to a forward-masking slope of |
| * 1.5 dB per 10 ms */ |
| delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); |
| } |
| mbits = av_clip((b - delta) / 2, 0, b); |
| sbits = b - mbits; |
| f->remaining2 -= qalloc; |
| |
| if (lowband && !stereo) |
| next_lowband2 = lowband + N; /* >32-bit split case */ |
| |
| /* Only stereo needs to pass on lowband_out. |
| * Otherwise, it's handled at the end */ |
| if (stereo) |
| next_lowband_out1 = lowband_out; |
| else |
| next_level = level + 1; |
| |
| rebalance = f->remaining2; |
| if (mbits >= sbits) { |
| /* In stereo mode, we do not apply a scaling to the mid |
| * because we need the normalized mid for folding later */ |
| cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, |
| lowband, duration, next_lowband_out1, next_level, |
| stereo ? 1.0f : (gain * mid), lowband_scratch, fill); |
| rebalance = mbits - (rebalance - f->remaining2); |
| if (rebalance > 3 << 3 && itheta != 0) |
| sbits += rebalance - (3 << 3); |
| |
| /* For a stereo split, the high bits of fill are always zero, |
| * so no folding will be done to the side. */ |
| cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, |
| next_lowband2, duration, NULL, next_level, |
| gain * side, NULL, fill >> blocks); |
| cm |= cmt << ((B0 >> 1) & (stereo - 1)); |
| } else { |
| /* For a stereo split, the high bits of fill are always zero, |
| * so no folding will be done to the side. */ |
| cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, |
| next_lowband2, duration, NULL, next_level, |
| gain * side, NULL, fill >> blocks); |
| cm <<= ((B0 >> 1) & (stereo - 1)); |
| rebalance = sbits - (rebalance - f->remaining2); |
| if (rebalance > 3 << 3 && itheta != 16384) |
| mbits += rebalance - (3 << 3); |
| |
| /* In stereo mode, we do not apply a scaling to the mid because |
| * we need the normalized mid for folding later */ |
| cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, |
| lowband, duration, next_lowband_out1, next_level, |
| stereo ? 1.0f : (gain * mid), lowband_scratch, fill); |
| } |
| } |
| } else { |
| /* This is the basic no-split case */ |
| uint32_t q = celt_bits2pulses(cache, b); |
| uint32_t curr_bits = celt_pulses2bits(cache, q); |
| f->remaining2 -= curr_bits; |
| |
| /* Ensures we can never bust the budget */ |
| while (f->remaining2 < 0 && q > 0) { |
| f->remaining2 += curr_bits; |
| curr_bits = celt_pulses2bits(cache, --q); |
| f->remaining2 -= curr_bits; |
| } |
| |
| if (q != 0) { |
| /* Finally do the actual (de)quantization */ |
| if (quant) { |
| cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), |
| f->spread, blocks, gain, pvq); |
| } else { |
| cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), |
| f->spread, blocks, gain, pvq); |
| } |
| } else { |
| /* If there's no pulse, fill the band anyway */ |
| uint32_t cm_mask = (1 << blocks) - 1; |
| fill &= cm_mask; |
| if (fill) { |
| if (!lowband) { |
| /* Noise */ |
| for (i = 0; i < N; i++) |
| X[i] = (((int32_t)celt_rng(f)) >> 20); |
| cm = cm_mask; |
| } else { |
| /* Folded spectrum */ |
| for (i = 0; i < N; i++) { |
| /* About 48 dB below the "normal" folding level */ |
| X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); |
| } |
| cm = fill; |
| } |
| celt_renormalize_vector(X, N, gain); |
| } else { |
| memset(X, 0, N*sizeof(float)); |
| } |
| } |
| } |
| |
| /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
| if (stereo) { |
| if (N > 2) |
| celt_stereo_merge(X, Y, mid, N); |
| if (inv) { |
| for (i = 0; i < N; i++) |
| Y[i] *= -1; |
| } |
| } else if (level == 0) { |
| int k; |
| |
| /* Undo the sample reorganization going from time order to frequency order */ |
| if (B0 > 1) |
| celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine, |
| B0 << recombine, longblocks); |
| |
| /* Undo time-freq changes that we did earlier */ |
| N_B = N_B0; |
| blocks = B0; |
| for (k = 0; k < time_divide; k++) { |
| blocks >>= 1; |
| N_B <<= 1; |
| cm |= cm >> blocks; |
| celt_haar1(X, N_B, blocks); |
| } |
| |
| for (k = 0; k < recombine; k++) { |
| cm = ff_celt_bit_deinterleave[cm]; |
| celt_haar1(X, N0>>k, 1<<k); |
| } |
| blocks <<= recombine; |
| |
| /* Scale output for later folding */ |
| if (lowband_out) { |
| float n = sqrtf(N0); |
| for (i = 0; i < N0; i++) |
| lowband_out[i] = n * X[i]; |
| } |
| cm = av_mod_uintp2(cm, blocks); |
| } |
| |
| return cm; |
| } |
| |
| static QUANT_FN(pvq_decode_band) |
| { |
| #if CONFIG_OPUS_DECODER |
| return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration, |
| lowband_out, level, gain, lowband_scratch, fill, 0); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static QUANT_FN(pvq_encode_band) |
| { |
| #if CONFIG_OPUS_ENCODER |
| return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration, |
| lowband_out, level, gain, lowband_scratch, fill, 1); |
| #else |
| return 0; |
| #endif |
| } |
| |
| int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode) |
| { |
| CeltPVQ *s = av_malloc(sizeof(CeltPVQ)); |
| if (!s) |
| return AVERROR(ENOMEM); |
| |
| s->pvq_search = ppp_pvq_search_c; |
| s->quant_band = encode ? pvq_encode_band : pvq_decode_band; |
| |
| if (CONFIG_OPUS_ENCODER && ARCH_X86) |
| ff_celt_pvq_init_x86(s); |
| |
| *pvq = s; |
| |
| return 0; |
| } |
| |
| void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq) |
| { |
| av_freep(pvq); |
| } |