| /* |
| * Copyright (C) 2003-2004 The FFmpeg project |
| * Copyright (C) 2019 Peter Ross |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * On2 VP3/VP4 Video Decoder |
| * |
| * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) |
| * For more information about the VP3 coding process, visit: |
| * http://wiki.multimedia.cx/index.php?title=On2_VP3 |
| * |
| * Theora decoder by Alex Beregszaszi |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "libavutil/imgutils.h" |
| |
| #include "avcodec.h" |
| #include "get_bits.h" |
| #include "hpeldsp.h" |
| #include "internal.h" |
| #include "mathops.h" |
| #include "thread.h" |
| #include "videodsp.h" |
| #include "vp3data.h" |
| #include "vp4data.h" |
| #include "vp3dsp.h" |
| #include "xiph.h" |
| |
| #define VP3_MV_VLC_BITS 6 |
| #define VP4_MV_VLC_BITS 6 |
| #define SUPERBLOCK_VLC_BITS 6 |
| |
| #define FRAGMENT_PIXELS 8 |
| |
| // FIXME split things out into their own arrays |
| typedef struct Vp3Fragment { |
| int16_t dc; |
| uint8_t coding_method; |
| uint8_t qpi; |
| } Vp3Fragment; |
| |
| #define SB_NOT_CODED 0 |
| #define SB_PARTIALLY_CODED 1 |
| #define SB_FULLY_CODED 2 |
| |
| // This is the maximum length of a single long bit run that can be encoded |
| // for superblock coding or block qps. Theora special-cases this to read a |
| // bit instead of flipping the current bit to allow for runs longer than 4129. |
| #define MAXIMUM_LONG_BIT_RUN 4129 |
| |
| #define MODE_INTER_NO_MV 0 |
| #define MODE_INTRA 1 |
| #define MODE_INTER_PLUS_MV 2 |
| #define MODE_INTER_LAST_MV 3 |
| #define MODE_INTER_PRIOR_LAST 4 |
| #define MODE_USING_GOLDEN 5 |
| #define MODE_GOLDEN_MV 6 |
| #define MODE_INTER_FOURMV 7 |
| #define CODING_MODE_COUNT 8 |
| |
| /* special internal mode */ |
| #define MODE_COPY 8 |
| |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb); |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb); |
| |
| |
| /* There are 6 preset schemes, plus a free-form scheme */ |
| static const int ModeAlphabet[6][CODING_MODE_COUNT] = { |
| /* scheme 1: Last motion vector dominates */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 2 */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 3 */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
| MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 4 */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
| MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 5: No motion vector dominates */ |
| { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, |
| MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 6 */ |
| { MODE_INTER_NO_MV, MODE_USING_GOLDEN, |
| MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTER_PLUS_MV, MODE_INTRA, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| }; |
| |
| static const uint8_t hilbert_offset[16][2] = { |
| { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, |
| { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 }, |
| { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 }, |
| { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 } |
| }; |
| |
| enum { |
| VP4_DC_INTRA = 0, |
| VP4_DC_INTER = 1, |
| VP4_DC_GOLDEN = 2, |
| NB_VP4_DC_TYPES, |
| VP4_DC_UNDEFINED = NB_VP4_DC_TYPES |
| }; |
| |
| static const uint8_t vp4_pred_block_type_map[8] = { |
| [MODE_INTER_NO_MV] = VP4_DC_INTER, |
| [MODE_INTRA] = VP4_DC_INTRA, |
| [MODE_INTER_PLUS_MV] = VP4_DC_INTER, |
| [MODE_INTER_LAST_MV] = VP4_DC_INTER, |
| [MODE_INTER_PRIOR_LAST] = VP4_DC_INTER, |
| [MODE_USING_GOLDEN] = VP4_DC_GOLDEN, |
| [MODE_GOLDEN_MV] = VP4_DC_GOLDEN, |
| [MODE_INTER_FOURMV] = VP4_DC_INTER, |
| }; |
| |
| typedef struct { |
| int dc; |
| int type; |
| } VP4Predictor; |
| |
| #define MIN_DEQUANT_VAL 2 |
| |
| typedef struct HuffEntry { |
| uint8_t len, sym; |
| } HuffEntry; |
| |
| typedef struct HuffTable { |
| HuffEntry entries[32]; |
| uint8_t nb_entries; |
| } HuffTable; |
| |
| typedef struct Vp3DecodeContext { |
| AVCodecContext *avctx; |
| int theora, theora_tables, theora_header; |
| int version; |
| int width, height; |
| int chroma_x_shift, chroma_y_shift; |
| ThreadFrame golden_frame; |
| ThreadFrame last_frame; |
| ThreadFrame current_frame; |
| int keyframe; |
| uint8_t idct_permutation[64]; |
| uint8_t idct_scantable[64]; |
| HpelDSPContext hdsp; |
| VideoDSPContext vdsp; |
| VP3DSPContext vp3dsp; |
| DECLARE_ALIGNED(16, int16_t, block)[64]; |
| int flipped_image; |
| int last_slice_end; |
| int skip_loop_filter; |
| |
| int qps[3]; |
| int nqps; |
| int last_qps[3]; |
| |
| int superblock_count; |
| int y_superblock_width; |
| int y_superblock_height; |
| int y_superblock_count; |
| int c_superblock_width; |
| int c_superblock_height; |
| int c_superblock_count; |
| int u_superblock_start; |
| int v_superblock_start; |
| unsigned char *superblock_coding; |
| |
| int macroblock_count; /* y macroblock count */ |
| int macroblock_width; |
| int macroblock_height; |
| int c_macroblock_count; |
| int c_macroblock_width; |
| int c_macroblock_height; |
| int yuv_macroblock_count; /* y+u+v macroblock count */ |
| |
| int fragment_count; |
| int fragment_width[2]; |
| int fragment_height[2]; |
| |
| Vp3Fragment *all_fragments; |
| int fragment_start[3]; |
| int data_offset[3]; |
| uint8_t offset_x; |
| uint8_t offset_y; |
| int offset_x_warned; |
| |
| int8_t (*motion_val[2])[2]; |
| |
| /* tables */ |
| uint16_t coded_dc_scale_factor[2][64]; |
| uint32_t coded_ac_scale_factor[64]; |
| uint8_t base_matrix[384][64]; |
| uint8_t qr_count[2][3]; |
| uint8_t qr_size[2][3][64]; |
| uint16_t qr_base[2][3][64]; |
| |
| /** |
| * This is a list of all tokens in bitstream order. Reordering takes place |
| * by pulling from each level during IDCT. As a consequence, IDCT must be |
| * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32 |
| * otherwise. The 32 different tokens with up to 12 bits of extradata are |
| * collapsed into 3 types, packed as follows: |
| * (from the low to high bits) |
| * |
| * 2 bits: type (0,1,2) |
| * 0: EOB run, 14 bits for run length (12 needed) |
| * 1: zero run, 7 bits for run length |
| * 7 bits for the next coefficient (3 needed) |
| * 2: coefficient, 14 bits (11 needed) |
| * |
| * Coefficients are signed, so are packed in the highest bits for automatic |
| * sign extension. |
| */ |
| int16_t *dct_tokens[3][64]; |
| int16_t *dct_tokens_base; |
| #define TOKEN_EOB(eob_run) ((eob_run) << 2) |
| #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1) |
| #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2) |
| |
| /** |
| * number of blocks that contain DCT coefficients at |
| * the given level or higher |
| */ |
| int num_coded_frags[3][64]; |
| int total_num_coded_frags; |
| |
| /* this is a list of indexes into the all_fragments array indicating |
| * which of the fragments are coded */ |
| int *coded_fragment_list[3]; |
| |
| int *kf_coded_fragment_list; |
| int *nkf_coded_fragment_list; |
| int num_kf_coded_fragment[3]; |
| |
| /* The first 16 of the following VLCs are for the dc coefficients; |
| the others are four groups of 16 VLCs each for ac coefficients. */ |
| VLC coeff_vlc[5 * 16]; |
| |
| VLC superblock_run_length_vlc; /* version < 2 */ |
| VLC fragment_run_length_vlc; /* version < 2 */ |
| VLC block_pattern_vlc[2]; /* version >= 2*/ |
| VLC mode_code_vlc; |
| VLC motion_vector_vlc; /* version < 2 */ |
| VLC vp4_mv_vlc[2][7]; /* version >=2 */ |
| |
| /* these arrays need to be on 16-byte boundaries since SSE2 operations |
| * index into them */ |
| DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane] |
| |
| /* This table contains superblock_count * 16 entries. Each set of 16 |
| * numbers corresponds to the fragment indexes 0..15 of the superblock. |
| * An entry will be -1 to indicate that no entry corresponds to that |
| * index. */ |
| int *superblock_fragments; |
| |
| /* This is an array that indicates how a particular macroblock |
| * is coded. */ |
| unsigned char *macroblock_coding; |
| |
| uint8_t *edge_emu_buffer; |
| |
| /* Huffman decode */ |
| HuffTable huffman_table[5 * 16]; |
| |
| uint8_t filter_limit_values[64]; |
| DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2]; |
| |
| VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */ |
| } Vp3DecodeContext; |
| |
| /************************************************************************ |
| * VP3 specific functions |
| ************************************************************************/ |
| |
| static av_cold void free_tables(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| |
| av_freep(&s->superblock_coding); |
| av_freep(&s->all_fragments); |
| av_freep(&s->nkf_coded_fragment_list); |
| av_freep(&s->kf_coded_fragment_list); |
| av_freep(&s->dct_tokens_base); |
| av_freep(&s->superblock_fragments); |
| av_freep(&s->macroblock_coding); |
| av_freep(&s->dc_pred_row); |
| av_freep(&s->motion_val[0]); |
| av_freep(&s->motion_val[1]); |
| } |
| |
| static void vp3_decode_flush(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| |
| if (s->golden_frame.f) |
| ff_thread_release_buffer(avctx, &s->golden_frame); |
| if (s->last_frame.f) |
| ff_thread_release_buffer(avctx, &s->last_frame); |
| if (s->current_frame.f) |
| ff_thread_release_buffer(avctx, &s->current_frame); |
| } |
| |
| static av_cold int vp3_decode_end(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int i, j; |
| |
| free_tables(avctx); |
| av_freep(&s->edge_emu_buffer); |
| |
| s->theora_tables = 0; |
| |
| /* release all frames */ |
| vp3_decode_flush(avctx); |
| av_frame_free(&s->current_frame.f); |
| av_frame_free(&s->last_frame.f); |
| av_frame_free(&s->golden_frame.f); |
| |
| for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) |
| ff_free_vlc(&s->coeff_vlc[i]); |
| |
| ff_free_vlc(&s->superblock_run_length_vlc); |
| ff_free_vlc(&s->fragment_run_length_vlc); |
| ff_free_vlc(&s->mode_code_vlc); |
| ff_free_vlc(&s->motion_vector_vlc); |
| |
| for (j = 0; j < 2; j++) |
| for (i = 0; i < 7; i++) |
| ff_free_vlc(&s->vp4_mv_vlc[j][i]); |
| |
| for (i = 0; i < 2; i++) |
| ff_free_vlc(&s->block_pattern_vlc[i]); |
| return 0; |
| } |
| |
| /** |
| * This function sets up all of the various blocks mappings: |
| * superblocks <-> fragments, macroblocks <-> fragments, |
| * superblocks <-> macroblocks |
| * |
| * @return 0 is successful; returns 1 if *anything* went wrong. |
| */ |
| static int init_block_mapping(Vp3DecodeContext *s) |
| { |
| int sb_x, sb_y, plane; |
| int x, y, i, j = 0; |
| |
| for (plane = 0; plane < 3; plane++) { |
| int sb_width = plane ? s->c_superblock_width |
| : s->y_superblock_width; |
| int sb_height = plane ? s->c_superblock_height |
| : s->y_superblock_height; |
| int frag_width = s->fragment_width[!!plane]; |
| int frag_height = s->fragment_height[!!plane]; |
| |
| for (sb_y = 0; sb_y < sb_height; sb_y++) |
| for (sb_x = 0; sb_x < sb_width; sb_x++) |
| for (i = 0; i < 16; i++) { |
| x = 4 * sb_x + hilbert_offset[i][0]; |
| y = 4 * sb_y + hilbert_offset[i][1]; |
| |
| if (x < frag_width && y < frag_height) |
| s->superblock_fragments[j++] = s->fragment_start[plane] + |
| y * frag_width + x; |
| else |
| s->superblock_fragments[j++] = -1; |
| } |
| } |
| |
| return 0; /* successful path out */ |
| } |
| |
| /* |
| * This function sets up the dequantization tables used for a particular |
| * frame. |
| */ |
| static void init_dequantizer(Vp3DecodeContext *s, int qpi) |
| { |
| int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; |
| int i, plane, inter, qri, bmi, bmj, qistart; |
| |
| for (inter = 0; inter < 2; inter++) { |
| for (plane = 0; plane < 3; plane++) { |
| int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]]; |
| int sum = 0; |
| for (qri = 0; qri < s->qr_count[inter][plane]; qri++) { |
| sum += s->qr_size[inter][plane][qri]; |
| if (s->qps[qpi] <= sum) |
| break; |
| } |
| qistart = sum - s->qr_size[inter][plane][qri]; |
| bmi = s->qr_base[inter][plane][qri]; |
| bmj = s->qr_base[inter][plane][qri + 1]; |
| for (i = 0; i < 64; i++) { |
| int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] - |
| 2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] + |
| s->qr_size[inter][plane][qri]) / |
| (2 * s->qr_size[inter][plane][qri]); |
| |
| int qmin = 8 << (inter + !i); |
| int qscale = i ? ac_scale_factor : dc_scale_factor; |
| int qbias = (1 + inter) * 3; |
| s->qmat[qpi][inter][plane][s->idct_permutation[i]] = |
| (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096) |
| : (qscale * (coeff - qbias) / 100 + qbias) * 4; |
| } |
| /* all DC coefficients use the same quant so as not to interfere |
| * with DC prediction */ |
| s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; |
| } |
| } |
| } |
| |
| /* |
| * This function initializes the loop filter boundary limits if the frame's |
| * quality index is different from the previous frame's. |
| * |
| * The filter_limit_values may not be larger than 127. |
| */ |
| static void init_loop_filter(Vp3DecodeContext *s) |
| { |
| ff_vp3dsp_set_bounding_values(s->bounding_values_array, s->filter_limit_values[s->qps[0]]); |
| } |
| |
| /* |
| * This function unpacks all of the superblock/macroblock/fragment coding |
| * information from the bitstream. |
| */ |
| static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int superblock_starts[3] = { |
| 0, s->u_superblock_start, s->v_superblock_start |
| }; |
| int bit = 0; |
| int current_superblock = 0; |
| int current_run = 0; |
| int num_partial_superblocks = 0; |
| |
| int i, j; |
| int current_fragment; |
| int plane; |
| int plane0_num_coded_frags = 0; |
| |
| if (s->keyframe) { |
| memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); |
| } else { |
| /* unpack the list of partially-coded superblocks */ |
| bit = get_bits1(gb) ^ 1; |
| current_run = 0; |
| |
| while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) { |
| if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) |
| bit = get_bits1(gb); |
| else |
| bit ^= 1; |
| |
| current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, |
| SUPERBLOCK_VLC_BITS, 2); |
| if (current_run == 34) |
| current_run += get_bits(gb, 12); |
| |
| if (current_run > s->superblock_count - current_superblock) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid partially coded superblock run length\n"); |
| return -1; |
| } |
| |
| memset(s->superblock_coding + current_superblock, bit, current_run); |
| |
| current_superblock += current_run; |
| if (bit) |
| num_partial_superblocks += current_run; |
| } |
| |
| /* unpack the list of fully coded superblocks if any of the blocks were |
| * not marked as partially coded in the previous step */ |
| if (num_partial_superblocks < s->superblock_count) { |
| int superblocks_decoded = 0; |
| |
| current_superblock = 0; |
| bit = get_bits1(gb) ^ 1; |
| current_run = 0; |
| |
| while (superblocks_decoded < s->superblock_count - num_partial_superblocks && |
| get_bits_left(gb) > 0) { |
| if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) |
| bit = get_bits1(gb); |
| else |
| bit ^= 1; |
| |
| current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, |
| SUPERBLOCK_VLC_BITS, 2); |
| if (current_run == 34) |
| current_run += get_bits(gb, 12); |
| |
| for (j = 0; j < current_run; current_superblock++) { |
| if (current_superblock >= s->superblock_count) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid fully coded superblock run length\n"); |
| return -1; |
| } |
| |
| /* skip any superblocks already marked as partially coded */ |
| if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { |
| s->superblock_coding[current_superblock] = 2 * bit; |
| j++; |
| } |
| } |
| superblocks_decoded += current_run; |
| } |
| } |
| |
| /* if there were partial blocks, initialize bitstream for |
| * unpacking fragment codings */ |
| if (num_partial_superblocks) { |
| current_run = 0; |
| bit = get_bits1(gb); |
| /* toggle the bit because as soon as the first run length is |
| * fetched the bit will be toggled again */ |
| bit ^= 1; |
| } |
| } |
| |
| /* figure out which fragments are coded; iterate through each |
| * superblock (all planes) */ |
| s->total_num_coded_frags = 0; |
| memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); |
| |
| s->coded_fragment_list[0] = s->keyframe ? s->kf_coded_fragment_list |
| : s->nkf_coded_fragment_list; |
| |
| for (plane = 0; plane < 3; plane++) { |
| int sb_start = superblock_starts[plane]; |
| int sb_end = sb_start + (plane ? s->c_superblock_count |
| : s->y_superblock_count); |
| int num_coded_frags = 0; |
| |
| if (s->keyframe) { |
| if (s->num_kf_coded_fragment[plane] == -1) { |
| for (i = sb_start; i < sb_end; i++) { |
| /* iterate through all 16 fragments in a superblock */ |
| for (j = 0; j < 16; j++) { |
| /* if the fragment is in bounds, check its coding status */ |
| current_fragment = s->superblock_fragments[i * 16 + j]; |
| if (current_fragment != -1) { |
| s->coded_fragment_list[plane][num_coded_frags++] = |
| current_fragment; |
| } |
| } |
| } |
| s->num_kf_coded_fragment[plane] = num_coded_frags; |
| } else |
| num_coded_frags = s->num_kf_coded_fragment[plane]; |
| } else { |
| for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) { |
| if (get_bits_left(gb) < plane0_num_coded_frags >> 2) { |
| return AVERROR_INVALIDDATA; |
| } |
| /* iterate through all 16 fragments in a superblock */ |
| for (j = 0; j < 16; j++) { |
| /* if the fragment is in bounds, check its coding status */ |
| current_fragment = s->superblock_fragments[i * 16 + j]; |
| if (current_fragment != -1) { |
| int coded = s->superblock_coding[i]; |
| |
| if (coded == SB_PARTIALLY_CODED) { |
| /* fragment may or may not be coded; this is the case |
| * that cares about the fragment coding runs */ |
| if (current_run-- == 0) { |
| bit ^= 1; |
| current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2); |
| } |
| coded = bit; |
| } |
| |
| if (coded) { |
| /* default mode; actual mode will be decoded in |
| * the next phase */ |
| s->all_fragments[current_fragment].coding_method = |
| MODE_INTER_NO_MV; |
| s->coded_fragment_list[plane][num_coded_frags++] = |
| current_fragment; |
| } else { |
| /* not coded; copy this fragment from the prior frame */ |
| s->all_fragments[current_fragment].coding_method = |
| MODE_COPY; |
| } |
| } |
| } |
| } |
| } |
| if (!plane) |
| plane0_num_coded_frags = num_coded_frags; |
| s->total_num_coded_frags += num_coded_frags; |
| for (i = 0; i < 64; i++) |
| s->num_coded_frags[plane][i] = num_coded_frags; |
| if (plane < 2) |
| s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] + |
| num_coded_frags; |
| } |
| return 0; |
| } |
| |
| #define BLOCK_X (2 * mb_x + (k & 1)) |
| #define BLOCK_Y (2 * mb_y + (k >> 1)) |
| |
| #if CONFIG_VP4_DECODER |
| /** |
| * @return number of blocks, or > yuv_macroblock_count on error. |
| * return value is always >= 1. |
| */ |
| static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int v = 1; |
| int bits; |
| while ((bits = show_bits(gb, 9)) == 0x1ff) { |
| skip_bits(gb, 9); |
| v += 256; |
| if (v > s->yuv_macroblock_count) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n"); |
| return v; |
| } |
| } |
| #define body(n) { \ |
| skip_bits(gb, 2 + n); \ |
| v += (1 << n) + get_bits(gb, n); } |
| #define thresh(n) (0x200 - (0x80 >> n)) |
| #define else_if(n) else if (bits < thresh(n)) body(n) |
| if (bits < 0x100) { |
| skip_bits(gb, 1); |
| } else if (bits < thresh(0)) { |
| skip_bits(gb, 2); |
| v += 1; |
| } |
| else_if(1) |
| else_if(2) |
| else_if(3) |
| else_if(4) |
| else_if(5) |
| else_if(6) |
| else body(7) |
| #undef body |
| #undef thresh |
| #undef else_if |
| return v; |
| } |
| |
| static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table) |
| { |
| int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2); |
| *next_block_pattern_table = vp4_block_pattern_table_selector[v]; |
| return v + 1; |
| } |
| |
| static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int plane, i, j, k, fragment; |
| int next_block_pattern_table; |
| int bit, current_run, has_partial; |
| |
| memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); |
| |
| if (s->keyframe) |
| return 0; |
| |
| has_partial = 0; |
| bit = get_bits1(gb); |
| for (i = 0; i < s->yuv_macroblock_count; i += current_run) { |
| if (get_bits_left(gb) <= 0) |
| return AVERROR_INVALIDDATA; |
| current_run = vp4_get_mb_count(s, gb); |
| if (current_run > s->yuv_macroblock_count - i) |
| return -1; |
| memset(s->superblock_coding + i, 2 * bit, current_run); |
| bit ^= 1; |
| has_partial |= bit; |
| } |
| |
| if (has_partial) { |
| if (get_bits_left(gb) <= 0) |
| return AVERROR_INVALIDDATA; |
| bit = get_bits1(gb); |
| current_run = vp4_get_mb_count(s, gb); |
| for (i = 0; i < s->yuv_macroblock_count; i++) { |
| if (!s->superblock_coding[i]) { |
| if (!current_run) { |
| bit ^= 1; |
| current_run = vp4_get_mb_count(s, gb); |
| } |
| s->superblock_coding[i] = bit; |
| current_run--; |
| } |
| } |
| if (current_run) /* handle situation when vp4_get_mb_count() fails */ |
| return -1; |
| } |
| |
| next_block_pattern_table = 0; |
| i = 0; |
| for (plane = 0; plane < 3; plane++) { |
| int sb_x, sb_y; |
| int sb_width = plane ? s->c_superblock_width : s->y_superblock_width; |
| int sb_height = plane ? s->c_superblock_height : s->y_superblock_height; |
| int mb_width = plane ? s->c_macroblock_width : s->macroblock_width; |
| int mb_height = plane ? s->c_macroblock_height : s->macroblock_height; |
| int fragment_width = s->fragment_width[!!plane]; |
| int fragment_height = s->fragment_height[!!plane]; |
| |
| for (sb_y = 0; sb_y < sb_height; sb_y++) { |
| for (sb_x = 0; sb_x < sb_width; sb_x++) { |
| for (j = 0; j < 4; j++) { |
| int mb_x = 2 * sb_x + (j >> 1); |
| int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1); |
| int mb_coded, pattern, coded; |
| |
| if (mb_x >= mb_width || mb_y >= mb_height) |
| continue; |
| |
| mb_coded = s->superblock_coding[i++]; |
| |
| if (mb_coded == SB_FULLY_CODED) |
| pattern = 0xF; |
| else if (mb_coded == SB_PARTIALLY_CODED) |
| pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table); |
| else |
| pattern = 0; |
| |
| for (k = 0; k < 4; k++) { |
| if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height) |
| continue; |
| fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X; |
| coded = pattern & (8 >> k); |
| /* MODE_INTER_NO_MV is the default for coded fragments. |
| the actual method is decoded in the next phase. */ |
| s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY; |
| } |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| /* |
| * This function unpacks all the coding mode data for individual macroblocks |
| * from the bitstream. |
| */ |
| static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int i, j, k, sb_x, sb_y; |
| int scheme; |
| int current_macroblock; |
| int current_fragment; |
| int coding_mode; |
| int custom_mode_alphabet[CODING_MODE_COUNT]; |
| const int *alphabet; |
| Vp3Fragment *frag; |
| |
| if (s->keyframe) { |
| for (i = 0; i < s->fragment_count; i++) |
| s->all_fragments[i].coding_method = MODE_INTRA; |
| } else { |
| /* fetch the mode coding scheme for this frame */ |
| scheme = get_bits(gb, 3); |
| |
| /* is it a custom coding scheme? */ |
| if (scheme == 0) { |
| for (i = 0; i < 8; i++) |
| custom_mode_alphabet[i] = MODE_INTER_NO_MV; |
| for (i = 0; i < 8; i++) |
| custom_mode_alphabet[get_bits(gb, 3)] = i; |
| alphabet = custom_mode_alphabet; |
| } else |
| alphabet = ModeAlphabet[scheme - 1]; |
| |
| /* iterate through all of the macroblocks that contain 1 or more |
| * coded fragments */ |
| for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { |
| for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { |
| if (get_bits_left(gb) <= 0) |
| return -1; |
| |
| for (j = 0; j < 4; j++) { |
| int mb_x = 2 * sb_x + (j >> 1); |
| int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); |
| current_macroblock = mb_y * s->macroblock_width + mb_x; |
| |
| if (mb_x >= s->macroblock_width || |
| mb_y >= s->macroblock_height) |
| continue; |
| |
| /* coding modes are only stored if the macroblock has |
| * at least one luma block coded, otherwise it must be |
| * INTER_NO_MV */ |
| for (k = 0; k < 4; k++) { |
| current_fragment = BLOCK_Y * |
| s->fragment_width[0] + BLOCK_X; |
| if (s->all_fragments[current_fragment].coding_method != MODE_COPY) |
| break; |
| } |
| if (k == 4) { |
| s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV; |
| continue; |
| } |
| |
| /* mode 7 means get 3 bits for each coding mode */ |
| if (scheme == 7) |
| coding_mode = get_bits(gb, 3); |
| else |
| coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; |
| |
| s->macroblock_coding[current_macroblock] = coding_mode; |
| for (k = 0; k < 4; k++) { |
| frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X; |
| if (frag->coding_method != MODE_COPY) |
| frag->coding_method = coding_mode; |
| } |
| |
| #define SET_CHROMA_MODES \ |
| if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \ |
| frag[s->fragment_start[1]].coding_method = coding_mode; \ |
| if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \ |
| frag[s->fragment_start[2]].coding_method = coding_mode; |
| |
| if (s->chroma_y_shift) { |
| frag = s->all_fragments + mb_y * |
| s->fragment_width[1] + mb_x; |
| SET_CHROMA_MODES |
| } else if (s->chroma_x_shift) { |
| frag = s->all_fragments + |
| 2 * mb_y * s->fragment_width[1] + mb_x; |
| for (k = 0; k < 2; k++) { |
| SET_CHROMA_MODES |
| frag += s->fragment_width[1]; |
| } |
| } else { |
| for (k = 0; k < 4; k++) { |
| frag = s->all_fragments + |
| BLOCK_Y * s->fragment_width[1] + BLOCK_X; |
| SET_CHROMA_MODES |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion) |
| { |
| int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table, |
| VP4_MV_VLC_BITS, 2); |
| return last_motion < 0 ? -v : v; |
| } |
| |
| /* |
| * This function unpacks all the motion vectors for the individual |
| * macroblocks from the bitstream. |
| */ |
| static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int j, k, sb_x, sb_y; |
| int coding_mode; |
| int motion_x[4]; |
| int motion_y[4]; |
| int last_motion_x = 0; |
| int last_motion_y = 0; |
| int prior_last_motion_x = 0; |
| int prior_last_motion_y = 0; |
| int last_gold_motion_x = 0; |
| int last_gold_motion_y = 0; |
| int current_macroblock; |
| int current_fragment; |
| int frag; |
| |
| if (s->keyframe) |
| return 0; |
| |
| /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */ |
| coding_mode = s->version < 2 ? get_bits1(gb) : 2; |
| |
| /* iterate through all of the macroblocks that contain 1 or more |
| * coded fragments */ |
| for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { |
| for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { |
| if (get_bits_left(gb) <= 0) |
| return -1; |
| |
| for (j = 0; j < 4; j++) { |
| int mb_x = 2 * sb_x + (j >> 1); |
| int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); |
| current_macroblock = mb_y * s->macroblock_width + mb_x; |
| |
| if (mb_x >= s->macroblock_width || |
| mb_y >= s->macroblock_height || |
| s->macroblock_coding[current_macroblock] == MODE_COPY) |
| continue; |
| |
| switch (s->macroblock_coding[current_macroblock]) { |
| case MODE_GOLDEN_MV: |
| if (coding_mode == 2) { /* VP4 */ |
| last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x); |
| last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y); |
| break; |
| } /* otherwise fall through */ |
| case MODE_INTER_PLUS_MV: |
| /* all 6 fragments use the same motion vector */ |
| if (coding_mode == 0) { |
| motion_x[0] = get_vlc2(gb, s->motion_vector_vlc.table, |
| VP3_MV_VLC_BITS, 2); |
| motion_y[0] = get_vlc2(gb, s->motion_vector_vlc.table, |
| VP3_MV_VLC_BITS, 2); |
| } else if (coding_mode == 1) { |
| motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| } else { /* VP4 */ |
| motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x); |
| motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y); |
| } |
| |
| /* vector maintenance, only on MODE_INTER_PLUS_MV */ |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) { |
| prior_last_motion_x = last_motion_x; |
| prior_last_motion_y = last_motion_y; |
| last_motion_x = motion_x[0]; |
| last_motion_y = motion_y[0]; |
| } |
| break; |
| |
| case MODE_INTER_FOURMV: |
| /* vector maintenance */ |
| prior_last_motion_x = last_motion_x; |
| prior_last_motion_y = last_motion_y; |
| |
| /* fetch 4 vectors from the bitstream, one for each |
| * Y fragment, then average for the C fragment vectors */ |
| for (k = 0; k < 4; k++) { |
| current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X; |
| if (s->all_fragments[current_fragment].coding_method != MODE_COPY) { |
| if (coding_mode == 0) { |
| motion_x[k] = get_vlc2(gb, s->motion_vector_vlc.table, |
| VP3_MV_VLC_BITS, 2); |
| motion_y[k] = get_vlc2(gb, s->motion_vector_vlc.table, |
| VP3_MV_VLC_BITS, 2); |
| } else if (coding_mode == 1) { |
| motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| } else { /* VP4 */ |
| motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x); |
| motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y); |
| } |
| last_motion_x = motion_x[k]; |
| last_motion_y = motion_y[k]; |
| } else { |
| motion_x[k] = 0; |
| motion_y[k] = 0; |
| } |
| } |
| break; |
| |
| case MODE_INTER_LAST_MV: |
| /* all 6 fragments use the last motion vector */ |
| motion_x[0] = last_motion_x; |
| motion_y[0] = last_motion_y; |
| |
| /* no vector maintenance (last vector remains the |
| * last vector) */ |
| break; |
| |
| case MODE_INTER_PRIOR_LAST: |
| /* all 6 fragments use the motion vector prior to the |
| * last motion vector */ |
| motion_x[0] = prior_last_motion_x; |
| motion_y[0] = prior_last_motion_y; |
| |
| /* vector maintenance */ |
| prior_last_motion_x = last_motion_x; |
| prior_last_motion_y = last_motion_y; |
| last_motion_x = motion_x[0]; |
| last_motion_y = motion_y[0]; |
| break; |
| |
| default: |
| /* covers intra, inter without MV, golden without MV */ |
| motion_x[0] = 0; |
| motion_y[0] = 0; |
| |
| /* no vector maintenance */ |
| break; |
| } |
| |
| /* assign the motion vectors to the correct fragments */ |
| for (k = 0; k < 4; k++) { |
| current_fragment = |
| BLOCK_Y * s->fragment_width[0] + BLOCK_X; |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| s->motion_val[0][current_fragment][0] = motion_x[k]; |
| s->motion_val[0][current_fragment][1] = motion_y[k]; |
| } else { |
| s->motion_val[0][current_fragment][0] = motion_x[0]; |
| s->motion_val[0][current_fragment][1] = motion_y[0]; |
| } |
| } |
| |
| if (s->chroma_y_shift) { |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + |
| motion_x[2] + motion_x[3], 2); |
| motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + |
| motion_y[2] + motion_y[3], 2); |
| } |
| if (s->version <= 2) { |
| motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); |
| motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1); |
| } |
| frag = mb_y * s->fragment_width[1] + mb_x; |
| s->motion_val[1][frag][0] = motion_x[0]; |
| s->motion_val[1][frag][1] = motion_y[0]; |
| } else if (s->chroma_x_shift) { |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1); |
| motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1); |
| motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1); |
| motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1); |
| } else { |
| motion_x[1] = motion_x[0]; |
| motion_y[1] = motion_y[0]; |
| } |
| if (s->version <= 2) { |
| motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); |
| motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1); |
| } |
| frag = 2 * mb_y * s->fragment_width[1] + mb_x; |
| for (k = 0; k < 2; k++) { |
| s->motion_val[1][frag][0] = motion_x[k]; |
| s->motion_val[1][frag][1] = motion_y[k]; |
| frag += s->fragment_width[1]; |
| } |
| } else { |
| for (k = 0; k < 4; k++) { |
| frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X; |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| s->motion_val[1][frag][0] = motion_x[k]; |
| s->motion_val[1][frag][1] = motion_y[k]; |
| } else { |
| s->motion_val[1][frag][0] = motion_x[0]; |
| s->motion_val[1][frag][1] = motion_y[0]; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi; |
| int num_blocks = s->total_num_coded_frags; |
| |
| for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) { |
| i = blocks_decoded = num_blocks_at_qpi = 0; |
| |
| bit = get_bits1(gb) ^ 1; |
| run_length = 0; |
| |
| do { |
| if (run_length == MAXIMUM_LONG_BIT_RUN) |
| bit = get_bits1(gb); |
| else |
| bit ^= 1; |
| |
| run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, |
| SUPERBLOCK_VLC_BITS, 2); |
| if (run_length == 34) |
| run_length += get_bits(gb, 12); |
| blocks_decoded += run_length; |
| |
| if (!bit) |
| num_blocks_at_qpi += run_length; |
| |
| for (j = 0; j < run_length; i++) { |
| if (i >= s->total_num_coded_frags) |
| return -1; |
| |
| if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) { |
| s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit; |
| j++; |
| } |
| } |
| } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0); |
| |
| num_blocks -= num_blocks_at_qpi; |
| } |
| |
| return 0; |
| } |
| |
| static inline int get_eob_run(GetBitContext *gb, int token) |
| { |
| int v = eob_run_table[token].base; |
| if (eob_run_table[token].bits) |
| v += get_bits(gb, eob_run_table[token].bits); |
| return v; |
| } |
| |
| static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff) |
| { |
| int bits_to_get, zero_run; |
| |
| bits_to_get = coeff_get_bits[token]; |
| if (bits_to_get) |
| bits_to_get = get_bits(gb, bits_to_get); |
| *coeff = coeff_tables[token][bits_to_get]; |
| |
| zero_run = zero_run_base[token]; |
| if (zero_run_get_bits[token]) |
| zero_run += get_bits(gb, zero_run_get_bits[token]); |
| |
| return zero_run; |
| } |
| |
| /* |
| * This function is called by unpack_dct_coeffs() to extract the VLCs from |
| * the bitstream. The VLCs encode tokens which are used to unpack DCT |
| * data. This function unpacks all the VLCs for either the Y plane or both |
| * C planes, and is called for DC coefficients or different AC coefficient |
| * levels (since different coefficient types require different VLC tables. |
| * |
| * This function returns a residual eob run. E.g, if a particular token gave |
| * instructions to EOB the next 5 fragments and there were only 2 fragments |
| * left in the current fragment range, 3 would be returned so that it could |
| * be passed into the next call to this same function. |
| */ |
| static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, |
| VLC *table, int coeff_index, |
| int plane, |
| int eob_run) |
| { |
| int i, j = 0; |
| int token; |
| int zero_run = 0; |
| int16_t coeff = 0; |
| int blocks_ended; |
| int coeff_i = 0; |
| int num_coeffs = s->num_coded_frags[plane][coeff_index]; |
| int16_t *dct_tokens = s->dct_tokens[plane][coeff_index]; |
| |
| /* local references to structure members to avoid repeated dereferences */ |
| int *coded_fragment_list = s->coded_fragment_list[plane]; |
| Vp3Fragment *all_fragments = s->all_fragments; |
| VLC_TYPE(*vlc_table)[2] = table->table; |
| |
| if (num_coeffs < 0) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid number of coefficients at level %d\n", coeff_index); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (eob_run > num_coeffs) { |
| coeff_i = |
| blocks_ended = num_coeffs; |
| eob_run -= num_coeffs; |
| } else { |
| coeff_i = |
| blocks_ended = eob_run; |
| eob_run = 0; |
| } |
| |
| // insert fake EOB token to cover the split between planes or zzi |
| if (blocks_ended) |
| dct_tokens[j++] = blocks_ended << 2; |
| |
| while (coeff_i < num_coeffs && get_bits_left(gb) > 0) { |
| /* decode a VLC into a token */ |
| token = get_vlc2(gb, vlc_table, 11, 3); |
| /* use the token to get a zero run, a coefficient, and an eob run */ |
| if ((unsigned) token <= 6U) { |
| eob_run = get_eob_run(gb, token); |
| if (!eob_run) |
| eob_run = INT_MAX; |
| |
| // record only the number of blocks ended in this plane, |
| // any spill will be recorded in the next plane. |
| if (eob_run > num_coeffs - coeff_i) { |
| dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i); |
| blocks_ended += num_coeffs - coeff_i; |
| eob_run -= num_coeffs - coeff_i; |
| coeff_i = num_coeffs; |
| } else { |
| dct_tokens[j++] = TOKEN_EOB(eob_run); |
| blocks_ended += eob_run; |
| coeff_i += eob_run; |
| eob_run = 0; |
| } |
| } else if (token >= 0) { |
| zero_run = get_coeff(gb, token, &coeff); |
| |
| if (zero_run) { |
| dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run); |
| } else { |
| // Save DC into the fragment structure. DC prediction is |
| // done in raster order, so the actual DC can't be in with |
| // other tokens. We still need the token in dct_tokens[] |
| // however, or else the structure collapses on itself. |
| if (!coeff_index) |
| all_fragments[coded_fragment_list[coeff_i]].dc = coeff; |
| |
| dct_tokens[j++] = TOKEN_COEFF(coeff); |
| } |
| |
| if (coeff_index + zero_run > 64) { |
| av_log(s->avctx, AV_LOG_DEBUG, |
| "Invalid zero run of %d with %d coeffs left\n", |
| zero_run, 64 - coeff_index); |
| zero_run = 64 - coeff_index; |
| } |
| |
| // zero runs code multiple coefficients, |
| // so don't try to decode coeffs for those higher levels |
| for (i = coeff_index + 1; i <= coeff_index + zero_run; i++) |
| s->num_coded_frags[plane][i]--; |
| coeff_i++; |
| } else { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); |
| return -1; |
| } |
| } |
| |
| if (blocks_ended > s->num_coded_frags[plane][coeff_index]) |
| av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n"); |
| |
| // decrement the number of blocks that have higher coefficients for each |
| // EOB run at this level |
| if (blocks_ended) |
| for (i = coeff_index + 1; i < 64; i++) |
| s->num_coded_frags[plane][i] -= blocks_ended; |
| |
| // setup the next buffer |
| if (plane < 2) |
| s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j; |
| else if (coeff_index < 63) |
| s->dct_tokens[0][coeff_index + 1] = dct_tokens + j; |
| |
| return eob_run; |
| } |
| |
| static void reverse_dc_prediction(Vp3DecodeContext *s, |
| int first_fragment, |
| int fragment_width, |
| int fragment_height); |
| /* |
| * This function unpacks all of the DCT coefficient data from the |
| * bitstream. |
| */ |
| static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int i; |
| int dc_y_table; |
| int dc_c_table; |
| int ac_y_table; |
| int ac_c_table; |
| int residual_eob_run = 0; |
| VLC *y_tables[64]; |
| VLC *c_tables[64]; |
| |
| s->dct_tokens[0][0] = s->dct_tokens_base; |
| |
| if (get_bits_left(gb) < 16) |
| return AVERROR_INVALIDDATA; |
| |
| /* fetch the DC table indexes */ |
| dc_y_table = get_bits(gb, 4); |
| dc_c_table = get_bits(gb, 4); |
| |
| /* unpack the Y plane DC coefficients */ |
| residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_y_table], 0, |
| 0, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| if (get_bits_left(gb) < 8) |
| return AVERROR_INVALIDDATA; |
| |
| /* reverse prediction of the Y-plane DC coefficients */ |
| reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]); |
| |
| /* unpack the C plane DC coefficients */ |
| residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0, |
| 1, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0, |
| 2, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| |
| /* reverse prediction of the C-plane DC coefficients */ |
| if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) { |
| reverse_dc_prediction(s, s->fragment_start[1], |
| s->fragment_width[1], s->fragment_height[1]); |
| reverse_dc_prediction(s, s->fragment_start[2], |
| s->fragment_width[1], s->fragment_height[1]); |
| } |
| |
| if (get_bits_left(gb) < 8) |
| return AVERROR_INVALIDDATA; |
| /* fetch the AC table indexes */ |
| ac_y_table = get_bits(gb, 4); |
| ac_c_table = get_bits(gb, 4); |
| |
| /* build tables of AC VLC tables */ |
| for (i = 1; i <= 5; i++) { |
| /* AC VLC table group 1 */ |
| y_tables[i] = &s->coeff_vlc[ac_y_table + 16]; |
| c_tables[i] = &s->coeff_vlc[ac_c_table + 16]; |
| } |
| for (i = 6; i <= 14; i++) { |
| /* AC VLC table group 2 */ |
| y_tables[i] = &s->coeff_vlc[ac_y_table + 32]; |
| c_tables[i] = &s->coeff_vlc[ac_c_table + 32]; |
| } |
| for (i = 15; i <= 27; i++) { |
| /* AC VLC table group 3 */ |
| y_tables[i] = &s->coeff_vlc[ac_y_table + 48]; |
| c_tables[i] = &s->coeff_vlc[ac_c_table + 48]; |
| } |
| for (i = 28; i <= 63; i++) { |
| /* AC VLC table group 4 */ |
| y_tables[i] = &s->coeff_vlc[ac_y_table + 64]; |
| c_tables[i] = &s->coeff_vlc[ac_c_table + 64]; |
| } |
| |
| /* decode all AC coefficients */ |
| for (i = 1; i <= 63; i++) { |
| residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, |
| 0, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| |
| residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, |
| 1, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, |
| 2, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| } |
| |
| return 0; |
| } |
| |
| #if CONFIG_VP4_DECODER |
| /** |
| * eob_tracker[] is instead of TOKEN_EOB(value) |
| * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work |
| * |
| * @return < 0 on error |
| */ |
| static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, |
| VLC *vlc_tables[64], |
| int plane, int eob_tracker[64], int fragment) |
| { |
| int token; |
| int zero_run = 0; |
| int16_t coeff = 0; |
| int coeff_i = 0; |
| int eob_run; |
| |
| while (!eob_tracker[coeff_i]) { |
| if (get_bits_left(gb) < 1) |
| return AVERROR_INVALIDDATA; |
| |
| token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3); |
| |
| /* use the token to get a zero run, a coefficient, and an eob run */ |
| if ((unsigned) token <= 6U) { |
| eob_run = get_eob_run(gb, token); |
| *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0); |
| eob_tracker[coeff_i] = eob_run - 1; |
| return 0; |
| } else if (token >= 0) { |
| zero_run = get_coeff(gb, token, &coeff); |
| |
| if (zero_run) { |
| if (coeff_i + zero_run > 64) { |
| av_log(s->avctx, AV_LOG_DEBUG, |
| "Invalid zero run of %d with %d coeffs left\n", |
| zero_run, 64 - coeff_i); |
| zero_run = 64 - coeff_i; |
| } |
| *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run); |
| coeff_i += zero_run; |
| } else { |
| if (!coeff_i) |
| s->all_fragments[fragment].dc = coeff; |
| |
| *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff); |
| } |
| coeff_i++; |
| if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */ |
| return 0; /* stop */ |
| } else { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); |
| return -1; |
| } |
| } |
| *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0); |
| eob_tracker[coeff_i]--; |
| return 0; |
| } |
| |
| static void vp4_dc_predictor_reset(VP4Predictor *p) |
| { |
| p->dc = 0; |
| p->type = VP4_DC_UNDEFINED; |
| } |
| |
| static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x) |
| { |
| int i, j; |
| |
| for (i = 0; i < 4; i++) |
| dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i]; |
| |
| for (j = 1; j < 5; j++) |
| for (i = 0; i < 4; i++) |
| vp4_dc_predictor_reset(&dc_pred[j][i + 1]); |
| } |
| |
| static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x) |
| { |
| int i; |
| |
| for (i = 0; i < 4; i++) |
| s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1]; |
| |
| for (i = 1; i < 5; i++) |
| dc_pred[i][0] = dc_pred[i][4]; |
| } |
| |
| /* note: dc_pred points to the current block */ |
| static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane) |
| { |
| int count = 0; |
| int dc = 0; |
| |
| if (dc_pred[-6].type == type) { |
| dc += dc_pred[-6].dc; |
| count++; |
| } |
| |
| if (dc_pred[6].type == type) { |
| dc += dc_pred[6].dc; |
| count++; |
| } |
| |
| if (count != 2 && dc_pred[-1].type == type) { |
| dc += dc_pred[-1].dc; |
| count++; |
| } |
| |
| if (count != 2 && dc_pred[1].type == type) { |
| dc += dc_pred[1].dc; |
| count++; |
| } |
| |
| /* using division instead of shift to correctly handle negative values */ |
| return count == 2 ? dc / 2 : last_dc[type]; |
| } |
| |
| static void vp4_set_tokens_base(Vp3DecodeContext *s) |
| { |
| int plane, i; |
| int16_t *base = s->dct_tokens_base; |
| for (plane = 0; plane < 3; plane++) { |
| for (i = 0; i < 64; i++) { |
| s->dct_tokens[plane][i] = base; |
| base += s->fragment_width[!!plane] * s->fragment_height[!!plane]; |
| } |
| } |
| } |
| |
| static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int i, j; |
| int dc_y_table; |
| int dc_c_table; |
| int ac_y_table; |
| int ac_c_table; |
| VLC *tables[2][64]; |
| int plane, sb_y, sb_x; |
| int eob_tracker[64]; |
| VP4Predictor dc_pred[6][6]; |
| int last_dc[NB_VP4_DC_TYPES]; |
| |
| if (get_bits_left(gb) < 16) |
| return AVERROR_INVALIDDATA; |
| |
| /* fetch the DC table indexes */ |
| dc_y_table = get_bits(gb, 4); |
| dc_c_table = get_bits(gb, 4); |
| |
| ac_y_table = get_bits(gb, 4); |
| ac_c_table = get_bits(gb, 4); |
| |
| /* build tables of DC/AC VLC tables */ |
| |
| /* DC table group */ |
| tables[0][0] = &s->coeff_vlc[dc_y_table]; |
| tables[1][0] = &s->coeff_vlc[dc_c_table]; |
| for (i = 1; i <= 5; i++) { |
| /* AC VLC table group 1 */ |
| tables[0][i] = &s->coeff_vlc[ac_y_table + 16]; |
| tables[1][i] = &s->coeff_vlc[ac_c_table + 16]; |
| } |
| for (i = 6; i <= 14; i++) { |
| /* AC VLC table group 2 */ |
| tables[0][i] = &s->coeff_vlc[ac_y_table + 32]; |
| tables[1][i] = &s->coeff_vlc[ac_c_table + 32]; |
| } |
| for (i = 15; i <= 27; i++) { |
| /* AC VLC table group 3 */ |
| tables[0][i] = &s->coeff_vlc[ac_y_table + 48]; |
| tables[1][i] = &s->coeff_vlc[ac_c_table + 48]; |
| } |
| for (i = 28; i <= 63; i++) { |
| /* AC VLC table group 4 */ |
| tables[0][i] = &s->coeff_vlc[ac_y_table + 64]; |
| tables[1][i] = &s->coeff_vlc[ac_c_table + 64]; |
| } |
| |
| vp4_set_tokens_base(s); |
| |
| memset(last_dc, 0, sizeof(last_dc)); |
| |
| for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) { |
| memset(eob_tracker, 0, sizeof(eob_tracker)); |
| |
| /* initialise dc prediction */ |
| for (i = 0; i < s->fragment_width[!!plane]; i++) |
| vp4_dc_predictor_reset(&s->dc_pred_row[i]); |
| |
| for (j = 0; j < 6; j++) |
| for (i = 0; i < 6; i++) |
| vp4_dc_predictor_reset(&dc_pred[j][i]); |
| |
| for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) { |
| for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) { |
| vp4_dc_pred_before(s, dc_pred, sb_x); |
| for (j = 0; j < 16; j++) { |
| int hx = hilbert_offset[j][0]; |
| int hy = hilbert_offset[j][1]; |
| int x = 4 * sb_x + hx; |
| int y = 4 * sb_y + hy; |
| VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1]; |
| int fragment, dc_block_type; |
| |
| if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane]) |
| continue; |
| |
| fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x; |
| |
| if (s->all_fragments[fragment].coding_method == MODE_COPY) |
| continue; |
| |
| if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0) |
| return -1; |
| |
| dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method]; |
| |
| s->all_fragments[fragment].dc += |
| vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane); |
| |
| this_dc_pred->type = dc_block_type, |
| this_dc_pred->dc = last_dc[dc_block_type] = s->all_fragments[fragment].dc; |
| } |
| vp4_dc_pred_after(s, dc_pred, sb_x); |
| } |
| } |
| } |
| |
| vp4_set_tokens_base(s); |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * This function reverses the DC prediction for each coded fragment in |
| * the frame. Much of this function is adapted directly from the original |
| * VP3 source code. |
| */ |
| #define COMPATIBLE_FRAME(x) \ |
| (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) |
| #define DC_COEFF(u) s->all_fragments[u].dc |
| |
| static void reverse_dc_prediction(Vp3DecodeContext *s, |
| int first_fragment, |
| int fragment_width, |
| int fragment_height) |
| { |
| #define PUL 8 |
| #define PU 4 |
| #define PUR 2 |
| #define PL 1 |
| |
| int x, y; |
| int i = first_fragment; |
| |
| int predicted_dc; |
| |
| /* DC values for the left, up-left, up, and up-right fragments */ |
| int vl, vul, vu, vur; |
| |
| /* indexes for the left, up-left, up, and up-right fragments */ |
| int l, ul, u, ur; |
| |
| /* |
| * The 6 fields mean: |
| * 0: up-left multiplier |
| * 1: up multiplier |
| * 2: up-right multiplier |
| * 3: left multiplier |
| */ |
| static const int predictor_transform[16][4] = { |
| { 0, 0, 0, 0 }, |
| { 0, 0, 0, 128 }, // PL |
| { 0, 0, 128, 0 }, // PUR |
| { 0, 0, 53, 75 }, // PUR|PL |
| { 0, 128, 0, 0 }, // PU |
| { 0, 64, 0, 64 }, // PU |PL |
| { 0, 128, 0, 0 }, // PU |PUR |
| { 0, 0, 53, 75 }, // PU |PUR|PL |
| { 128, 0, 0, 0 }, // PUL |
| { 0, 0, 0, 128 }, // PUL|PL |
| { 64, 0, 64, 0 }, // PUL|PUR |
| { 0, 0, 53, 75 }, // PUL|PUR|PL |
| { 0, 128, 0, 0 }, // PUL|PU |
| { -104, 116, 0, 116 }, // PUL|PU |PL |
| { 24, 80, 24, 0 }, // PUL|PU |PUR |
| { -104, 116, 0, 116 } // PUL|PU |PUR|PL |
| }; |
| |
| /* This table shows which types of blocks can use other blocks for |
| * prediction. For example, INTRA is the only mode in this table to |
| * have a frame number of 0. That means INTRA blocks can only predict |
| * from other INTRA blocks. There are 2 golden frame coding types; |
| * blocks encoding in these modes can only predict from other blocks |
| * that were encoded with these 1 of these 2 modes. */ |
| static const unsigned char compatible_frame[9] = { |
| 1, /* MODE_INTER_NO_MV */ |
| 0, /* MODE_INTRA */ |
| 1, /* MODE_INTER_PLUS_MV */ |
| 1, /* MODE_INTER_LAST_MV */ |
| 1, /* MODE_INTER_PRIOR_MV */ |
| 2, /* MODE_USING_GOLDEN */ |
| 2, /* MODE_GOLDEN_MV */ |
| 1, /* MODE_INTER_FOUR_MV */ |
| 3 /* MODE_COPY */ |
| }; |
| int current_frame_type; |
| |
| /* there is a last DC predictor for each of the 3 frame types */ |
| short last_dc[3]; |
| |
| int transform = 0; |
| |
| vul = |
| vu = |
| vur = |
| vl = 0; |
| last_dc[0] = |
| last_dc[1] = |
| last_dc[2] = 0; |
| |
| /* for each fragment row... */ |
| for (y = 0; y < fragment_height; y++) { |
| /* for each fragment in a row... */ |
| for (x = 0; x < fragment_width; x++, i++) { |
| |
| /* reverse prediction if this block was coded */ |
| if (s->all_fragments[i].coding_method != MODE_COPY) { |
| current_frame_type = |
| compatible_frame[s->all_fragments[i].coding_method]; |
| |
| transform = 0; |
| if (x) { |
| l = i - 1; |
| vl = DC_COEFF(l); |
| if (COMPATIBLE_FRAME(l)) |
| transform |= PL; |
| } |
| if (y) { |
| u = i - fragment_width; |
| vu = DC_COEFF(u); |
| if (COMPATIBLE_FRAME(u)) |
| transform |= PU; |
| if (x) { |
| ul = i - fragment_width - 1; |
| vul = DC_COEFF(ul); |
| if (COMPATIBLE_FRAME(ul)) |
| transform |= PUL; |
| } |
| if (x + 1 < fragment_width) { |
| ur = i - fragment_width + 1; |
| vur = DC_COEFF(ur); |
| if (COMPATIBLE_FRAME(ur)) |
| transform |= PUR; |
| } |
| } |
| |
| if (transform == 0) { |
| /* if there were no fragments to predict from, use last |
| * DC saved */ |
| predicted_dc = last_dc[current_frame_type]; |
| } else { |
| /* apply the appropriate predictor transform */ |
| predicted_dc = |
| (predictor_transform[transform][0] * vul) + |
| (predictor_transform[transform][1] * vu) + |
| (predictor_transform[transform][2] * vur) + |
| (predictor_transform[transform][3] * vl); |
| |
| predicted_dc /= 128; |
| |
| /* check for outranging on the [ul u l] and |
| * [ul u ur l] predictors */ |
| if ((transform == 15) || (transform == 13)) { |
| if (FFABS(predicted_dc - vu) > 128) |
| predicted_dc = vu; |
| else if (FFABS(predicted_dc - vl) > 128) |
| predicted_dc = vl; |
| else if (FFABS(predicted_dc - vul) > 128) |
| predicted_dc = vul; |
| } |
| } |
| |
| /* at long last, apply the predictor */ |
| DC_COEFF(i) += predicted_dc; |
| /* save the DC */ |
| last_dc[current_frame_type] = DC_COEFF(i); |
| } |
| } |
| } |
| } |
| |
| static void apply_loop_filter(Vp3DecodeContext *s, int plane, |
| int ystart, int yend) |
| { |
| int x, y; |
| int *bounding_values = s->bounding_values_array + 127; |
| |
| int width = s->fragment_width[!!plane]; |
| int height = s->fragment_height[!!plane]; |
| int fragment = s->fragment_start[plane] + ystart * width; |
| ptrdiff_t stride = s->current_frame.f->linesize[plane]; |
| uint8_t *plane_data = s->current_frame.f->data[plane]; |
| if (!s->flipped_image) |
| stride = -stride; |
| plane_data += s->data_offset[plane] + 8 * ystart * stride; |
| |
| for (y = ystart; y < yend; y++) { |
| for (x = 0; x < width; x++) { |
| /* This code basically just deblocks on the edges of coded blocks. |
| * However, it has to be much more complicated because of the |
| * brain damaged deblock ordering used in VP3/Theora. Order matters |
| * because some pixels get filtered twice. */ |
| if (s->all_fragments[fragment].coding_method != MODE_COPY) { |
| /* do not perform left edge filter for left columns frags */ |
| if (x > 0) { |
| s->vp3dsp.h_loop_filter( |
| plane_data + 8 * x, |
| stride, bounding_values); |
| } |
| |
| /* do not perform top edge filter for top row fragments */ |
| if (y > 0) { |
| s->vp3dsp.v_loop_filter( |
| plane_data + 8 * x, |
| stride, bounding_values); |
| } |
| |
| /* do not perform right edge filter for right column |
| * fragments or if right fragment neighbor is also coded |
| * in this frame (it will be filtered in next iteration) */ |
| if ((x < width - 1) && |
| (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { |
| s->vp3dsp.h_loop_filter( |
| plane_data + 8 * x + 8, |
| stride, bounding_values); |
| } |
| |
| /* do not perform bottom edge filter for bottom row |
| * fragments or if bottom fragment neighbor is also coded |
| * in this frame (it will be filtered in the next row) */ |
| if ((y < height - 1) && |
| (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { |
| s->vp3dsp.v_loop_filter( |
| plane_data + 8 * x + 8 * stride, |
| stride, bounding_values); |
| } |
| } |
| |
| fragment++; |
| } |
| plane_data += 8 * stride; |
| } |
| } |
| |
| /** |
| * Pull DCT tokens from the 64 levels to decode and dequant the coefficients |
| * for the next block in coding order |
| */ |
| static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, |
| int plane, int inter, int16_t block[64]) |
| { |
| int16_t *dequantizer = s->qmat[frag->qpi][inter][plane]; |
| uint8_t *perm = s->idct_scantable; |
| int i = 0; |
| |
| do { |
| int token = *s->dct_tokens[plane][i]; |
| switch (token & 3) { |
| case 0: // EOB |
| if (--token < 4) // 0-3 are token types so the EOB run must now be 0 |
| s->dct_tokens[plane][i]++; |
| else |
| *s->dct_tokens[plane][i] = token & ~3; |
| goto end; |
| case 1: // zero run |
| s->dct_tokens[plane][i]++; |
| i += (token >> 2) & 0x7f; |
| if (i > 63) { |
| av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n"); |
| return i; |
| } |
| block[perm[i]] = (token >> 9) * dequantizer[perm[i]]; |
| i++; |
| break; |
| case 2: // coeff |
| block[perm[i]] = (token >> 2) * dequantizer[perm[i]]; |
| s->dct_tokens[plane][i++]++; |
| break; |
| default: // shouldn't happen |
| return i; |
| } |
| } while (i < 64); |
| // return value is expected to be a valid level |
| i--; |
| end: |
| // the actual DC+prediction is in the fragment structure |
| block[0] = frag->dc * s->qmat[0][inter][plane][0]; |
| return i; |
| } |
| |
| /** |
| * called when all pixels up to row y are complete |
| */ |
| static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y) |
| { |
| int h, cy, i; |
| int offset[AV_NUM_DATA_POINTERS]; |
| |
| if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) { |
| int y_flipped = s->flipped_image ? s->height - y : y; |
| |
| /* At the end of the frame, report INT_MAX instead of the height of |
| * the frame. This makes the other threads' ff_thread_await_progress() |
| * calls cheaper, because they don't have to clip their values. */ |
| ff_thread_report_progress(&s->current_frame, |
| y_flipped == s->height ? INT_MAX |
| : y_flipped - 1, |
| 0); |
| } |
| |
| if (!s->avctx->draw_horiz_band) |
| return; |
| |
| h = y - s->last_slice_end; |
| s->last_slice_end = y; |
| y -= h; |
| |
| if (!s->flipped_image) |
| y = s->height - y - h; |
| |
| cy = y >> s->chroma_y_shift; |
| offset[0] = s->current_frame.f->linesize[0] * y; |
| offset[1] = s->current_frame.f->linesize[1] * cy; |
| offset[2] = s->current_frame.f->linesize[2] * cy; |
| for (i = 3; i < AV_NUM_DATA_POINTERS; i++) |
| offset[i] = 0; |
| |
| emms_c(); |
| s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h); |
| } |
| |
| /** |
| * Wait for the reference frame of the current fragment. |
| * The progress value is in luma pixel rows. |
| */ |
| static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, |
| int motion_y, int y) |
| { |
| ThreadFrame *ref_frame; |
| int ref_row; |
| int border = motion_y & 1; |
| |
| if (fragment->coding_method == MODE_USING_GOLDEN || |
| fragment->coding_method == MODE_GOLDEN_MV) |
| ref_frame = &s->golden_frame; |
| else |
| ref_frame = &s->last_frame; |
| |
| ref_row = y + (motion_y >> 1); |
| ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border); |
| |
| ff_thread_await_progress(ref_frame, ref_row, 0); |
| } |
| |
| #if CONFIG_VP4_DECODER |
| /** |
| * @return non-zero if temp (edge_emu_buffer) was populated |
| */ |
| static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by, |
| uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp) |
| { |
| int motion_shift = plane ? 4 : 2; |
| int subpel_mask = plane ? 3 : 1; |
| int *bounding_values = s->bounding_values_array + 127; |
| |
| int i; |
| int x, y; |
| int x2, y2; |
| int x_subpel, y_subpel; |
| int x_offset, y_offset; |
| |
| int block_width = plane ? 8 : 16; |
| int plane_width = s->width >> (plane && s->chroma_x_shift); |
| int plane_height = s->height >> (plane && s->chroma_y_shift); |
| |
| #define loop_stride 12 |
| uint8_t loop[12 * loop_stride]; |
| |
| /* using division instead of shift to correctly handle negative values */ |
| x = 8 * bx + motion_x / motion_shift; |
| y = 8 * by + motion_y / motion_shift; |
| |
| x_subpel = motion_x & subpel_mask; |
| y_subpel = motion_y & subpel_mask; |
| |
| if (x_subpel || y_subpel) { |
| x--; |
| y--; |
| |
| if (x_subpel) |
| x = FFMIN(x, x + FFSIGN(motion_x)); |
| |
| if (y_subpel) |
| y = FFMIN(y, y + FFSIGN(motion_y)); |
| |
| x2 = x + block_width; |
| y2 = y + block_width; |
| |
| if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height) |
| return 0; |
| |
| x_offset = (-(x + 2) & 7) + 2; |
| y_offset = (-(y + 2) & 7) + 2; |
| |
| if (x_offset > 8 + x_subpel && y_offset > 8 + y_subpel) |
| return 0; |
| |
| s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1, |
| loop_stride, stride, |
| 12, 12, src_x - 1, src_y - 1, |
| plane_width, |
| plane_height); |
| |
| if (x_offset <= 8 + x_subpel) |
| ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values); |
| |
| if (y_offset <= 8 + y_subpel) |
| ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values); |
| |
| } else { |
| |
| x_offset = -x & 7; |
| y_offset = -y & 7; |
| |
| if (!x_offset && !y_offset) |
| return 0; |
| |
| s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1, |
| loop_stride, stride, |
| 12, 12, src_x - 1, src_y - 1, |
| plane_width, |
| plane_height); |
| |
| #define safe_loop_filter(name, ptr, stride, bounding_values) \ |
| if ((uintptr_t)(ptr) & 7) \ |
| s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \ |
| else \ |
| s->vp3dsp.name(ptr, stride, bounding_values); |
| |
| if (x_offset) |
| safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values); |
| |
| if (y_offset) |
| safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values); |
| } |
| |
| for (i = 0; i < 9; i++) |
| memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9); |
| |
| return 1; |
| } |
| #endif |
| |
| /* |
| * Perform the final rendering for a particular slice of data. |
| * The slice number ranges from 0..(c_superblock_height - 1). |
| */ |
| static void render_slice(Vp3DecodeContext *s, int slice) |
| { |
| int x, y, i, j, fragment; |
| int16_t *block = s->block; |
| int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; |
| int motion_halfpel_index; |
| uint8_t *motion_source; |
| int plane, first_pixel; |
| |
| if (slice >= s->c_superblock_height) |
| return; |
| |
| for (plane = 0; plane < 3; plane++) { |
| uint8_t *output_plane = s->current_frame.f->data[plane] + |
| s->data_offset[plane]; |
| uint8_t *last_plane = s->last_frame.f->data[plane] + |
| s->data_offset[plane]; |
| uint8_t *golden_plane = s->golden_frame.f->data[plane] + |
| s->data_offset[plane]; |
| ptrdiff_t stride = s->current_frame.f->linesize[plane]; |
| int plane_width = s->width >> (plane && s->chroma_x_shift); |
| int plane_height = s->height >> (plane && s->chroma_y_shift); |
| int8_t(*motion_val)[2] = s->motion_val[!!plane]; |
| |
| int sb_x, sb_y = slice << (!plane && s->chroma_y_shift); |
| int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift); |
| int slice_width = plane ? s->c_superblock_width |
| : s->y_superblock_width; |
| |
| int fragment_width = s->fragment_width[!!plane]; |
| int fragment_height = s->fragment_height[!!plane]; |
| int fragment_start = s->fragment_start[plane]; |
| |
| int do_await = !plane && HAVE_THREADS && |
| (s->avctx->active_thread_type & FF_THREAD_FRAME); |
| |
| if (!s->flipped_image) |
| stride = -stride; |
| if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) |
| continue; |
| |
| /* for each superblock row in the slice (both of them)... */ |
| for (; sb_y < slice_height; sb_y++) { |
| /* for each superblock in a row... */ |
| for (sb_x = 0; sb_x < slice_width; sb_x++) { |
| /* for each block in a superblock... */ |
| for (j = 0; j < 16; j++) { |
| x = 4 * sb_x + hilbert_offset[j][0]; |
| y = 4 * sb_y + hilbert_offset[j][1]; |
| fragment = y * fragment_width + x; |
| |
| i = fragment_start + fragment; |
| |
| // bounds check |
| if (x >= fragment_width || y >= fragment_height) |
| continue; |
| |
| first_pixel = 8 * y * stride + 8 * x; |
| |
| if (do_await && |
| s->all_fragments[i].coding_method != MODE_INTRA) |
| await_reference_row(s, &s->all_fragments[i], |
| motion_val[fragment][1], |
| (16 * y) >> s->chroma_y_shift); |
| |
| /* transform if this block was coded */ |
| if (s->all_fragments[i].coding_method != MODE_COPY) { |
| if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || |
| (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) |
| motion_source = golden_plane; |
| else |
| motion_source = last_plane; |
| |
| motion_source += first_pixel; |
| motion_halfpel_index = 0; |
| |
| /* sort out the motion vector if this fragment is coded |
| * using a motion vector method */ |
| if ((s->all_fragments[i].coding_method > MODE_INTRA) && |
| (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { |
| int src_x, src_y; |
| int standard_mc = 1; |
| motion_x = motion_val[fragment][0]; |
| motion_y = motion_val[fragment][1]; |
| #if CONFIG_VP4_DECODER |
| if (plane && s->version >= 2) { |
| motion_x = (motion_x >> 1) | (motion_x & 1); |
| motion_y = (motion_y >> 1) | (motion_y & 1); |
| } |
| #endif |
| |
| src_x = (motion_x >> 1) + 8 * x; |
| src_y = (motion_y >> 1) + 8 * y; |
| |
| motion_halfpel_index = motion_x & 0x01; |
| motion_source += (motion_x >> 1); |
| |
| motion_halfpel_index |= (motion_y & 0x01) << 1; |
| motion_source += ((motion_y >> 1) * stride); |
| |
| #if CONFIG_VP4_DECODER |
| if (s->version >= 2) { |
| uint8_t *temp = s->edge_emu_buffer; |
| if (stride < 0) |
| temp -= 8 * stride; |
| if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) { |
| motion_source = temp; |
| standard_mc = 0; |
| } |
| } |
| #endif |
| |
| if (standard_mc && ( |
| src_x < 0 || src_y < 0 || |
| src_x + 9 >= plane_width || |
| src_y + 9 >= plane_height)) { |
| uint8_t *temp = s->edge_emu_buffer; |
| if (stride < 0) |
| temp -= 8 * stride; |
| |
| s->vdsp.emulated_edge_mc(temp, motion_source, |
| stride, stride, |
| 9, 9, src_x, src_y, |
| plane_width, |
| plane_height); |
| motion_source = temp; |
| } |
| } |
| |
| /* first, take care of copying a block from either the |
| * previous or the golden frame */ |
| if (s->all_fragments[i].coding_method != MODE_INTRA) { |
| /* Note, it is possible to implement all MC cases |
| * with put_no_rnd_pixels_l2 which would look more |
| * like the VP3 source but this would be slower as |
| * put_no_rnd_pixels_tab is better optimized */ |
| if (motion_halfpel_index != 3) { |
| s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( |
| output_plane + first_pixel, |
| motion_source, stride, 8); |
| } else { |
| /* d is 0 if motion_x and _y have the same sign, |
| * else -1 */ |
| int d = (motion_x ^ motion_y) >> 31; |
| s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel, |
| motion_source - d, |
| motion_source + stride + 1 + d, |
| stride, 8); |
| } |
| } |
| |
| /* invert DCT and place (or add) in final output */ |
| |
| if (s->all_fragments[i].coding_method == MODE_INTRA) { |
| vp3_dequant(s, s->all_fragments + i, |
| plane, 0, block); |
| s->vp3dsp.idct_put(output_plane + first_pixel, |
| stride, |
| block); |
| } else { |
| if (vp3_dequant(s, s->all_fragments + i, |
| plane, 1, block)) { |
| s->vp3dsp.idct_add(output_plane + first_pixel, |
| stride, |
| block); |
| } else { |
| s->vp3dsp.idct_dc_add(output_plane + first_pixel, |
| stride, block); |
| } |
| } |
| } else { |
| /* copy directly from the previous frame */ |
| s->hdsp.put_pixels_tab[1][0]( |
| output_plane + first_pixel, |
| last_plane + first_pixel, |
| stride, 8); |
| } |
| } |
| } |
| |
| // Filter up to the last row in the superblock row |
| if (s->version < 2 && !s->skip_loop_filter) |
| apply_loop_filter(s, plane, 4 * sb_y - !!sb_y, |
| FFMIN(4 * sb_y + 3, fragment_height - 1)); |
| } |
| } |
| |
| /* this looks like a good place for slice dispatch... */ |
| /* algorithm: |
| * if (slice == s->macroblock_height - 1) |
| * dispatch (both last slice & 2nd-to-last slice); |
| * else if (slice > 0) |
| * dispatch (slice - 1); |
| */ |
| |
| vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16, |
| s->height - 16)); |
| } |
| |
| /// Allocate tables for per-frame data in Vp3DecodeContext |
| static av_cold int allocate_tables(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int y_fragment_count, c_fragment_count; |
| |
| free_tables(avctx); |
| |
| y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; |
| c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; |
| |
| /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */ |
| s->superblock_coding = av_mallocz(FFMAX(s->superblock_count, s->yuv_macroblock_count)); |
| s->all_fragments = av_mallocz_array(s->fragment_count, sizeof(Vp3Fragment)); |
| |
| s-> kf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int)); |
| s->nkf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int)); |
| memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment)); |
| |
| s->dct_tokens_base = av_mallocz_array(s->fragment_count, |
| 64 * sizeof(*s->dct_tokens_base)); |
| s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0])); |
| s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1])); |
| |
| /* work out the block mapping tables */ |
| s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int)); |
| s->macroblock_coding = av_mallocz(s->macroblock_count + 1); |
| |
| s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row)); |
| |
| if (!s->superblock_coding || !s->all_fragments || |
| !s->dct_tokens_base || !s->kf_coded_fragment_list || |
| !s->nkf_coded_fragment_list || |
| !s->superblock_fragments || !s->macroblock_coding || |
| !s->dc_pred_row || |
| !s->motion_val[0] || !s->motion_val[1]) { |
| return -1; |
| } |
| |
| init_block_mapping(s); |
| |
| return 0; |
| } |
| |
| static av_cold int init_frames(Vp3DecodeContext *s) |
| { |
| s->current_frame.f = av_frame_alloc(); |
| s->last_frame.f = av_frame_alloc(); |
| s->golden_frame.f = av_frame_alloc(); |
| |
| if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) |
| return AVERROR(ENOMEM); |
| |
| return 0; |
| } |
| |
| static av_cold int vp3_decode_init(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int i, inter, plane, ret; |
| int c_width; |
| int c_height; |
| int y_fragment_count, c_fragment_count; |
| #if CONFIG_VP4_DECODER |
| int j; |
| #endif |
| |
| ret = init_frames(s); |
| if (ret < 0) |
| return ret; |
| |
| if (avctx->codec_tag == MKTAG('V', 'P', '4', '0')) |
| s->version = 3; |
| else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0')) |
| s->version = 0; |
| else |
| s->version = 1; |
| |
| s->avctx = avctx; |
| s->width = FFALIGN(avctx->coded_width, 16); |
| s->height = FFALIGN(avctx->coded_height, 16); |
| if (avctx->codec_id != AV_CODEC_ID_THEORA) |
| avctx->pix_fmt = AV_PIX_FMT_YUV420P; |
| avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; |
| ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT); |
| ff_videodsp_init(&s->vdsp, 8); |
| ff_vp3dsp_init(&s->vp3dsp, avctx->flags); |
| |
| for (i = 0; i < 64; i++) { |
| #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3)) |
| s->idct_permutation[i] = TRANSPOSE(i); |
| s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]); |
| #undef TRANSPOSE |
| } |
| |
| /* initialize to an impossible value which will force a recalculation |
| * in the first frame decode */ |
| for (i = 0; i < 3; i++) |
| s->qps[i] = -1; |
| |
| ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); |
| if (ret) |
| return ret; |
| |
| s->y_superblock_width = (s->width + 31) / 32; |
| s->y_superblock_height = (s->height + 31) / 32; |
| s->y_superblock_count = s->y_superblock_width * s->y_superblock_height; |
| |
| /* work out the dimensions for the C planes */ |
| c_width = s->width >> s->chroma_x_shift; |
| c_height = s->height >> s->chroma_y_shift; |
| s->c_superblock_width = (c_width + 31) / 32; |
| s->c_superblock_height = (c_height + 31) / 32; |
| s->c_superblock_count = s->c_superblock_width * s->c_superblock_height; |
| |
| s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2); |
| s->u_superblock_start = s->y_superblock_count; |
| s->v_superblock_start = s->u_superblock_start + s->c_superblock_count; |
| |
| s->macroblock_width = (s->width + 15) / 16; |
| s->macroblock_height = (s->height + 15) / 16; |
| s->macroblock_count = s->macroblock_width * s->macroblock_height; |
| s->c_macroblock_width = (c_width + 15) / 16; |
| s->c_macroblock_height = (c_height + 15) / 16; |
| s->c_macroblock_count = s->c_macroblock_width * s->c_macroblock_height; |
| s->yuv_macroblock_count = s->macroblock_count + 2 * s->c_macroblock_count; |
| |
| s->fragment_width[0] = s->width / FRAGMENT_PIXELS; |
| s->fragment_height[0] = s->height / FRAGMENT_PIXELS; |
| s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift; |
| s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift; |
| |
| /* fragment count covers all 8x8 blocks for all 3 planes */ |
| y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; |
| c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; |
| s->fragment_count = y_fragment_count + 2 * c_fragment_count; |
| s->fragment_start[1] = y_fragment_count; |
| s->fragment_start[2] = y_fragment_count + c_fragment_count; |
| |
| if (!s->theora_tables) { |
| for (i = 0; i < 64; i++) { |
| s->coded_dc_scale_factor[0][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_y_dc_scale_factor[i]; |
| s->coded_dc_scale_factor[1][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_uv_dc_scale_factor[i]; |
| s->coded_ac_scale_factor[i] = s->version < 2 ? vp31_ac_scale_factor[i] : vp4_ac_scale_factor[i]; |
| s->base_matrix[0][i] = s->version < 2 ? vp31_intra_y_dequant[i] : vp4_generic_dequant[i]; |
| s->base_matrix[1][i] = s->version < 2 ? vp31_intra_c_dequant[i] : vp4_generic_dequant[i]; |
| s->base_matrix[2][i] = s->version < 2 ? vp31_inter_dequant[i] : vp4_generic_dequant[i]; |
| s->filter_limit_values[i] = s->version < 2 ? vp31_filter_limit_values[i] : vp4_filter_limit_values[i]; |
| } |
| |
| for (inter = 0; inter < 2; inter++) { |
| for (plane = 0; plane < 3; plane++) { |
| s->qr_count[inter][plane] = 1; |
| s->qr_size[inter][plane][0] = 63; |
| s->qr_base[inter][plane][0] = |
| s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter; |
| } |
| } |
| |
| /* init VLC tables */ |
| if (s->version < 2) { |
| for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) { |
| ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, 32, |
| &vp3_bias[i][0][1], 2, |
| &vp3_bias[i][0][0], 2, 1, |
| 0, 0, avctx); |
| if (ret < 0) |
| return ret; |
| } |
| #if CONFIG_VP4_DECODER |
| } else { /* version >= 2 */ |
| for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) { |
| ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, 32, |
| &vp4_bias[i][0][1], 2, |
| &vp4_bias[i][0][0], 2, 1, |
| 0, 0, avctx); |
| if (ret < 0) |
| return ret; |
| } |
| #endif |
| } |
| } else { |
| for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) { |
| const HuffTable *tab = &s->huffman_table[i]; |
| |
| ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, tab->nb_entries, |
| &tab->entries[0].len, sizeof(*tab->entries), |
| &tab->entries[0].sym, sizeof(*tab->entries), 1, |
| 0, 0, avctx); |
| if (ret < 0) |
| return ret; |
| } |
| } |
| |
| ret = ff_init_vlc_from_lengths(&s->superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 34, |
| superblock_run_length_vlc_lens, 1, |
| NULL, 0, 0, 1, 0, avctx); |
| if (ret < 0) |
| return ret; |
| |
| ret = ff_init_vlc_from_lengths(&s->fragment_run_length_vlc, 5, 30, |
| fragment_run_length_vlc_len, 1, |
| NULL, 0, 0, 0, 0, avctx); |
| if (ret < 0) |
| return ret; |
| |
| ret = ff_init_vlc_from_lengths(&s->mode_code_vlc, 3, 8, |
| mode_code_vlc_len, 1, |
| NULL, 0, 0, 0, 0, avctx); |
| if (ret < 0) |
| return ret; |
| |
| ret = ff_init_vlc_from_lengths(&s->motion_vector_vlc, VP3_MV_VLC_BITS, 63, |
| &motion_vector_vlc_table[0][1], 2, |
| &motion_vector_vlc_table[0][0], 2, 1, |
| -31, 0, avctx); |
| if (ret < 0) |
| return ret; |
| |
| #if CONFIG_VP4_DECODER |
| for (j = 0; j < 2; j++) |
| for (i = 0; i < 7; i++) { |
| ret = ff_init_vlc_from_lengths(&s->vp4_mv_vlc[j][i], VP4_MV_VLC_BITS, 63, |
| &vp4_mv_vlc[j][i][0][1], 2, |
| &vp4_mv_vlc[j][i][0][0], 2, 1, -31, |
| 0, avctx); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* version >= 2 */ |
| for (i = 0; i < 2; i++) |
| if ((ret = init_vlc(&s->block_pattern_vlc[i], 3, 14, |
| &vp4_block_pattern_vlc[i][0][1], 2, 1, |
| &vp4_block_pattern_vlc[i][0][0], 2, 1, 0)) < 0) |
| return ret; |
| #endif |
| |
| return allocate_tables(avctx); |
| } |
| |
| /// Release and shuffle frames after decode finishes |
| static int update_frames(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int ret = 0; |
| |
| /* shuffle frames (last = current) */ |
| ff_thread_release_buffer(avctx, &s->last_frame); |
| ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame); |
| if (ret < 0) |
| goto fail; |
| |
| if (s->keyframe) { |
| ff_thread_release_buffer(avctx, &s->golden_frame); |
| ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame); |
| } |
| |
| fail: |
| ff_thread_release_buffer(avctx, &s->current_frame); |
| return ret; |
| } |
| |
| #if HAVE_THREADS |
| static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src) |
| { |
| ff_thread_release_buffer(s->avctx, dst); |
| if (src->f->data[0]) |
| return ff_thread_ref_frame(dst, src); |
| return 0; |
| } |
| |
| static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src) |
| { |
| int ret; |
| if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 || |
| (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 || |
| (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0) |
| return ret; |
| return 0; |
| } |
| |
| static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) |
| { |
| Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data; |
| int qps_changed = 0, i, err; |
| |
| if (!s1->current_frame.f->data[0] || |
| s->width != s1->width || s->height != s1->height) { |
| if (s != s1) |
| ref_frames(s, s1); |
| return -1; |
| } |
| |
| if (s != s1) { |
| // copy previous frame data |
| if ((err = ref_frames(s, s1)) < 0) |
| return err; |
| |
| s->keyframe = s1->keyframe; |
| |
| // copy qscale data if necessary |
| for (i = 0; i < 3; i++) { |
| if (s->qps[i] != s1->qps[1]) { |
| qps_changed = 1; |
| memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i])); |
| } |
| } |
| |
| if (s->qps[0] != s1->qps[0]) |
| memcpy(&s->bounding_values_array, &s1->bounding_values_array, |
| sizeof(s->bounding_values_array)); |
| |
| if (qps_changed) { |
| memcpy(s->qps, s1->qps, sizeof(s->qps)); |
| memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps)); |
| s->nqps = s1->nqps; |
| } |
| } |
| |
| return update_frames(dst); |
| } |
| #endif |
| |
| static int vp3_decode_frame(AVCodecContext *avctx, |
| void *data, int *got_frame, |
| AVPacket *avpkt) |
| { |
| AVFrame *frame = data; |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| Vp3DecodeContext *s = avctx->priv_data; |
| GetBitContext gb; |
| int i, ret; |
| |
| if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0) |
| return ret; |
| |
| #if CONFIG_THEORA_DECODER |
| if (s->theora && get_bits1(&gb)) { |
| int type = get_bits(&gb, 7); |
| skip_bits_long(&gb, 6*8); /* "theora" */ |
| |
| if (s->avctx->active_thread_type&FF_THREAD_FRAME) { |
| av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n"); |
| return AVERROR_PATCHWELCOME; |
| } |
| if (type == 0) { |
| vp3_decode_end(avctx); |
| ret = theora_decode_header(avctx, &gb); |
| |
| if (ret >= 0) |
| ret = vp3_decode_init(avctx); |
| if (ret < 0) { |
| vp3_decode_end(avctx); |
| return ret; |
| } |
| return buf_size; |
| } else if (type == 2) { |
| vp3_decode_end(avctx); |
| ret = theora_decode_tables(avctx, &gb); |
| if (ret >= 0) |
| ret = vp3_decode_init(avctx); |
| if (ret < 0) { |
| vp3_decode_end(avctx); |
| return ret; |
| } |
| return buf_size; |
| } |
| |
| av_log(avctx, AV_LOG_ERROR, |
| "Header packet passed to frame decoder, skipping\n"); |
| return -1; |
| } |
| #endif |
| |
| s->keyframe = !get_bits1(&gb); |
| if (!s->all_fragments) { |
| av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n"); |
| return -1; |
| } |
| if (!s->theora) |
| skip_bits(&gb, 1); |
| for (i = 0; i < 3; i++) |
| s->last_qps[i] = s->qps[i]; |
| |
| s->nqps = 0; |
| do { |
| s->qps[s->nqps++] = get_bits |