| /* |
| * VP7/VP8 compatible video decoder |
| * |
| * Copyright (C) 2010 David Conrad |
| * Copyright (C) 2010 Ronald S. Bultje |
| * Copyright (C) 2010 Fiona Glaser |
| * Copyright (C) 2012 Daniel Kang |
| * Copyright (C) 2014 Peter Ross |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/imgutils.h" |
| |
| #include "avcodec.h" |
| #include "hwconfig.h" |
| #include "internal.h" |
| #include "mathops.h" |
| #include "rectangle.h" |
| #include "thread.h" |
| #include "vp8.h" |
| #include "vp8data.h" |
| |
| #if ARCH_ARM |
| # include "arm/vp8.h" |
| #endif |
| |
| #if CONFIG_VP7_DECODER && CONFIG_VP8_DECODER |
| #define VPX(vp7, f) (vp7 ? vp7_ ## f : vp8_ ## f) |
| #elif CONFIG_VP7_DECODER |
| #define VPX(vp7, f) vp7_ ## f |
| #else // CONFIG_VP8_DECODER |
| #define VPX(vp7, f) vp8_ ## f |
| #endif |
| |
| static void free_buffers(VP8Context *s) |
| { |
| int i; |
| if (s->thread_data) |
| for (i = 0; i < MAX_THREADS; i++) { |
| #if HAVE_THREADS |
| pthread_cond_destroy(&s->thread_data[i].cond); |
| pthread_mutex_destroy(&s->thread_data[i].lock); |
| #endif |
| av_freep(&s->thread_data[i].filter_strength); |
| } |
| av_freep(&s->thread_data); |
| av_freep(&s->macroblocks_base); |
| av_freep(&s->intra4x4_pred_mode_top); |
| av_freep(&s->top_nnz); |
| av_freep(&s->top_border); |
| |
| s->macroblocks = NULL; |
| } |
| |
| static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref) |
| { |
| int ret; |
| if ((ret = ff_thread_get_buffer(s->avctx, &f->tf, |
| ref ? AV_GET_BUFFER_FLAG_REF : 0)) < 0) |
| return ret; |
| if (!(f->seg_map = av_buffer_allocz(s->mb_width * s->mb_height))) |
| goto fail; |
| if (s->avctx->hwaccel) { |
| const AVHWAccel *hwaccel = s->avctx->hwaccel; |
| if (hwaccel->frame_priv_data_size) { |
| f->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size); |
| if (!f->hwaccel_priv_buf) |
| goto fail; |
| f->hwaccel_picture_private = f->hwaccel_priv_buf->data; |
| } |
| } |
| return 0; |
| |
| fail: |
| av_buffer_unref(&f->seg_map); |
| ff_thread_release_buffer(s->avctx, &f->tf); |
| return AVERROR(ENOMEM); |
| } |
| |
| static void vp8_release_frame(VP8Context *s, VP8Frame *f) |
| { |
| av_buffer_unref(&f->seg_map); |
| av_buffer_unref(&f->hwaccel_priv_buf); |
| f->hwaccel_picture_private = NULL; |
| ff_thread_release_buffer(s->avctx, &f->tf); |
| } |
| |
| #if CONFIG_VP8_DECODER |
| static int vp8_ref_frame(VP8Context *s, VP8Frame *dst, VP8Frame *src) |
| { |
| int ret; |
| |
| vp8_release_frame(s, dst); |
| |
| if ((ret = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) |
| return ret; |
| if (src->seg_map && |
| !(dst->seg_map = av_buffer_ref(src->seg_map))) { |
| vp8_release_frame(s, dst); |
| return AVERROR(ENOMEM); |
| } |
| if (src->hwaccel_picture_private) { |
| dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf); |
| if (!dst->hwaccel_priv_buf) |
| return AVERROR(ENOMEM); |
| dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data; |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_VP8_DECODER */ |
| |
| static void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem) |
| { |
| VP8Context *s = avctx->priv_data; |
| int i; |
| |
| for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) |
| vp8_release_frame(s, &s->frames[i]); |
| memset(s->framep, 0, sizeof(s->framep)); |
| |
| if (free_mem) |
| free_buffers(s); |
| } |
| |
| static void vp8_decode_flush(AVCodecContext *avctx) |
| { |
| vp8_decode_flush_impl(avctx, 0); |
| } |
| |
| static VP8Frame *vp8_find_free_buffer(VP8Context *s) |
| { |
| VP8Frame *frame = NULL; |
| int i; |
| |
| // find a free buffer |
| for (i = 0; i < 5; i++) |
| if (&s->frames[i] != s->framep[VP56_FRAME_CURRENT] && |
| &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && |
| &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && |
| &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) { |
| frame = &s->frames[i]; |
| break; |
| } |
| if (i == 5) { |
| av_log(s->avctx, AV_LOG_FATAL, "Ran out of free frames!\n"); |
| abort(); |
| } |
| if (frame->tf.f->buf[0]) |
| vp8_release_frame(s, frame); |
| |
| return frame; |
| } |
| |
| static enum AVPixelFormat get_pixel_format(VP8Context *s) |
| { |
| enum AVPixelFormat pix_fmts[] = { |
| #if CONFIG_VP8_VAAPI_HWACCEL |
| AV_PIX_FMT_VAAPI, |
| #endif |
| #if CONFIG_VP8_NVDEC_HWACCEL |
| AV_PIX_FMT_CUDA, |
| #endif |
| AV_PIX_FMT_YUV420P, |
| AV_PIX_FMT_NONE, |
| }; |
| |
| return ff_get_format(s->avctx, pix_fmts); |
| } |
| |
| static av_always_inline |
| int update_dimensions(VP8Context *s, int width, int height, int is_vp7) |
| { |
| AVCodecContext *avctx = s->avctx; |
| int i, ret, dim_reset = 0; |
| |
| if (width != s->avctx->width || ((width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height) && s->macroblocks_base || |
| height != s->avctx->height) { |
| vp8_decode_flush_impl(s->avctx, 1); |
| |
| ret = ff_set_dimensions(s->avctx, width, height); |
| if (ret < 0) |
| return ret; |
| |
| dim_reset = (s->macroblocks_base != NULL); |
| } |
| |
| if ((s->pix_fmt == AV_PIX_FMT_NONE || dim_reset) && |
| !s->actually_webp && !is_vp7) { |
| s->pix_fmt = get_pixel_format(s); |
| if (s->pix_fmt < 0) |
| return AVERROR(EINVAL); |
| avctx->pix_fmt = s->pix_fmt; |
| } |
| |
| s->mb_width = (s->avctx->coded_width + 15) / 16; |
| s->mb_height = (s->avctx->coded_height + 15) / 16; |
| |
| s->mb_layout = is_vp7 || avctx->active_thread_type == FF_THREAD_SLICE && |
| avctx->thread_count > 1; |
| if (!s->mb_layout) { // Frame threading and one thread |
| s->macroblocks_base = av_mallocz((s->mb_width + s->mb_height * 2 + 1) * |
| sizeof(*s->macroblocks)); |
| s->intra4x4_pred_mode_top = av_mallocz(s->mb_width * 4); |
| } else // Sliced threading |
| s->macroblocks_base = av_mallocz((s->mb_width + 2) * (s->mb_height + 2) * |
| sizeof(*s->macroblocks)); |
| s->top_nnz = av_mallocz(s->mb_width * sizeof(*s->top_nnz)); |
| s->top_border = av_mallocz((s->mb_width + 1) * sizeof(*s->top_border)); |
| s->thread_data = av_mallocz(MAX_THREADS * sizeof(VP8ThreadData)); |
| |
| if (!s->macroblocks_base || !s->top_nnz || !s->top_border || |
| !s->thread_data || (!s->intra4x4_pred_mode_top && !s->mb_layout)) { |
| free_buffers(s); |
| return AVERROR(ENOMEM); |
| } |
| |
| for (i = 0; i < MAX_THREADS; i++) { |
| s->thread_data[i].filter_strength = |
| av_mallocz(s->mb_width * sizeof(*s->thread_data[0].filter_strength)); |
| if (!s->thread_data[i].filter_strength) { |
| free_buffers(s); |
| return AVERROR(ENOMEM); |
| } |
| #if HAVE_THREADS |
| pthread_mutex_init(&s->thread_data[i].lock, NULL); |
| pthread_cond_init(&s->thread_data[i].cond, NULL); |
| #endif |
| } |
| |
| s->macroblocks = s->macroblocks_base + 1; |
| |
| return 0; |
| } |
| |
| static int vp7_update_dimensions(VP8Context *s, int width, int height) |
| { |
| return update_dimensions(s, width, height, IS_VP7); |
| } |
| |
| static int vp8_update_dimensions(VP8Context *s, int width, int height) |
| { |
| return update_dimensions(s, width, height, IS_VP8); |
| } |
| |
| |
| static void parse_segment_info(VP8Context *s) |
| { |
| VP56RangeCoder *c = &s->c; |
| int i; |
| |
| s->segmentation.update_map = vp8_rac_get(c); |
| s->segmentation.update_feature_data = vp8_rac_get(c); |
| |
| if (s->segmentation.update_feature_data) { |
| s->segmentation.absolute_vals = vp8_rac_get(c); |
| |
| for (i = 0; i < 4; i++) |
| s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7); |
| |
| for (i = 0; i < 4; i++) |
| s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6); |
| } |
| if (s->segmentation.update_map) |
| for (i = 0; i < 3; i++) |
| s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; |
| } |
| |
| static void update_lf_deltas(VP8Context *s) |
| { |
| VP56RangeCoder *c = &s->c; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| if (vp8_rac_get(c)) { |
| s->lf_delta.ref[i] = vp8_rac_get_uint(c, 6); |
| |
| if (vp8_rac_get(c)) |
| s->lf_delta.ref[i] = -s->lf_delta.ref[i]; |
| } |
| } |
| |
| for (i = MODE_I4x4; i <= VP8_MVMODE_SPLIT; i++) { |
| if (vp8_rac_get(c)) { |
| s->lf_delta.mode[i] = vp8_rac_get_uint(c, 6); |
| |
| if (vp8_rac_get(c)) |
| s->lf_delta.mode[i] = -s->lf_delta.mode[i]; |
| } |
| } |
| } |
| |
| static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) |
| { |
| const uint8_t *sizes = buf; |
| int i; |
| int ret; |
| |
| s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2); |
| |
| buf += 3 * (s->num_coeff_partitions - 1); |
| buf_size -= 3 * (s->num_coeff_partitions - 1); |
| if (buf_size < 0) |
| return -1; |
| |
| for (i = 0; i < s->num_coeff_partitions - 1; i++) { |
| int size = AV_RL24(sizes + 3 * i); |
| if (buf_size - size < 0) |
| return -1; |
| s->coeff_partition_size[i] = size; |
| |
| ret = ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size); |
| if (ret < 0) |
| return ret; |
| buf += size; |
| buf_size -= size; |
| } |
| |
| s->coeff_partition_size[i] = buf_size; |
| ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size); |
| |
| return 0; |
| } |
| |
| static void vp7_get_quants(VP8Context *s) |
| { |
| VP56RangeCoder *c = &s->c; |
| |
| int yac_qi = vp8_rac_get_uint(c, 7); |
| int ydc_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi; |
| int y2dc_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi; |
| int y2ac_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi; |
| int uvdc_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi; |
| int uvac_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi; |
| |
| s->qmat[0].luma_qmul[0] = vp7_ydc_qlookup[ydc_qi]; |
| s->qmat[0].luma_qmul[1] = vp7_yac_qlookup[yac_qi]; |
| s->qmat[0].luma_dc_qmul[0] = vp7_y2dc_qlookup[y2dc_qi]; |
| s->qmat[0].luma_dc_qmul[1] = vp7_y2ac_qlookup[y2ac_qi]; |
| s->qmat[0].chroma_qmul[0] = FFMIN(vp7_ydc_qlookup[uvdc_qi], 132); |
| s->qmat[0].chroma_qmul[1] = vp7_yac_qlookup[uvac_qi]; |
| } |
| |
| static void vp8_get_quants(VP8Context *s) |
| { |
| VP56RangeCoder *c = &s->c; |
| int i, base_qi; |
| |
| s->quant.yac_qi = vp8_rac_get_uint(c, 7); |
| s->quant.ydc_delta = vp8_rac_get_sint(c, 4); |
| s->quant.y2dc_delta = vp8_rac_get_sint(c, 4); |
| s->quant.y2ac_delta = vp8_rac_get_sint(c, 4); |
| s->quant.uvdc_delta = vp8_rac_get_sint(c, 4); |
| s->quant.uvac_delta = vp8_rac_get_sint(c, 4); |
| |
| for (i = 0; i < 4; i++) { |
| if (s->segmentation.enabled) { |
| base_qi = s->segmentation.base_quant[i]; |
| if (!s->segmentation.absolute_vals) |
| base_qi += s->quant.yac_qi; |
| } else |
| base_qi = s->quant.yac_qi; |
| |
| s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.ydc_delta, 7)]; |
| s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi, 7)]; |
| s->qmat[i].luma_dc_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.y2dc_delta, 7)] * 2; |
| /* 101581>>16 is equivalent to 155/100 */ |
| s->qmat[i].luma_dc_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + s->quant.y2ac_delta, 7)] * 101581 >> 16; |
| s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.uvdc_delta, 7)]; |
| s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + s->quant.uvac_delta, 7)]; |
| |
| s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); |
| s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); |
| } |
| } |
| |
| /** |
| * Determine which buffers golden and altref should be updated with after this frame. |
| * The spec isn't clear here, so I'm going by my understanding of what libvpx does |
| * |
| * Intra frames update all 3 references |
| * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set |
| * If the update (golden|altref) flag is set, it's updated with the current frame |
| * if update_last is set, and VP56_FRAME_PREVIOUS otherwise. |
| * If the flag is not set, the number read means: |
| * 0: no update |
| * 1: VP56_FRAME_PREVIOUS |
| * 2: update golden with altref, or update altref with golden |
| */ |
| static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref) |
| { |
| VP56RangeCoder *c = &s->c; |
| |
| if (update) |
| return VP56_FRAME_CURRENT; |
| |
| switch (vp8_rac_get_uint(c, 2)) { |
| case 1: |
| return VP56_FRAME_PREVIOUS; |
| case 2: |
| return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN; |
| } |
| return VP56_FRAME_NONE; |
| } |
| |
| static void vp78_reset_probability_tables(VP8Context *s) |
| { |
| int i, j; |
| for (i = 0; i < 4; i++) |
| for (j = 0; j < 16; j++) |
| memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]], |
| sizeof(s->prob->token[i][j])); |
| } |
| |
| static void vp78_update_probability_tables(VP8Context *s) |
| { |
| VP56RangeCoder *c = &s->c; |
| int i, j, k, l, m; |
| |
| for (i = 0; i < 4; i++) |
| for (j = 0; j < 8; j++) |
| for (k = 0; k < 3; k++) |
| for (l = 0; l < NUM_DCT_TOKENS-1; l++) |
| if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) { |
| int prob = vp8_rac_get_uint(c, 8); |
| for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++) |
| s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob; |
| } |
| } |
| |
| #define VP7_MVC_SIZE 17 |
| #define VP8_MVC_SIZE 19 |
| |
| static void vp78_update_pred16x16_pred8x8_mvc_probabilities(VP8Context *s, |
| int mvc_size) |
| { |
| VP56RangeCoder *c = &s->c; |
| int i, j; |
| |
| if (vp8_rac_get(c)) |
| for (i = 0; i < 4; i++) |
| s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8); |
| if (vp8_rac_get(c)) |
| for (i = 0; i < 3; i++) |
| s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8); |
| |
| // 17.2 MV probability update |
| for (i = 0; i < 2; i++) |
| for (j = 0; j < mvc_size; j++) |
| if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j])) |
| s->prob->mvc[i][j] = vp8_rac_get_nn(c); |
| } |
| |
| static void update_refs(VP8Context *s) |
| { |
| VP56RangeCoder *c = &s->c; |
| |
| int update_golden = vp8_rac_get(c); |
| int update_altref = vp8_rac_get(c); |
| |
| s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN); |
| s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2); |
| } |
| |
| static void copy_chroma(AVFrame *dst, AVFrame *src, int width, int height) |
| { |
| int i, j; |
| |
| for (j = 1; j < 3; j++) { |
| for (i = 0; i < height / 2; i++) |
| memcpy(dst->data[j] + i * dst->linesize[j], |
| src->data[j] + i * src->linesize[j], width / 2); |
| } |
| } |
| |
| static void fade(uint8_t *dst, ptrdiff_t dst_linesize, |
| const uint8_t *src, ptrdiff_t src_linesize, |
| int width, int height, |
| int alpha, int beta) |
| { |
| int i, j; |
| for (j = 0; j < height; j++) { |
| const uint8_t *src2 = src + j * src_linesize; |
| uint8_t *dst2 = dst + j * dst_linesize; |
| for (i = 0; i < width; i++) { |
| uint8_t y = src2[i]; |
| dst2[i] = av_clip_uint8(y + ((y * beta) >> 8) + alpha); |
| } |
| } |
| } |
| |
| static int vp7_fade_frame(VP8Context *s, int alpha, int beta) |
| { |
| int ret; |
| |
| if (!s->keyframe && (alpha || beta)) { |
| int width = s->mb_width * 16; |
| int height = s->mb_height * 16; |
| AVFrame *src, *dst; |
| |
| if (!s->framep[VP56_FRAME_PREVIOUS] || |
| !s->framep[VP56_FRAME_GOLDEN]) { |
| av_log(s->avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| dst = |
| src = s->framep[VP56_FRAME_PREVIOUS]->tf.f; |
| |
| /* preserve the golden frame, write a new previous frame */ |
| if (s->framep[VP56_FRAME_GOLDEN] == s->framep[VP56_FRAME_PREVIOUS]) { |
| s->framep[VP56_FRAME_PREVIOUS] = vp8_find_free_buffer(s); |
| if ((ret = vp8_alloc_frame(s, s->framep[VP56_FRAME_PREVIOUS], 1)) < 0) |
| return ret; |
| |
| dst = s->framep[VP56_FRAME_PREVIOUS]->tf.f; |
| |
| copy_chroma(dst, src, width, height); |
| } |
| |
| fade(dst->data[0], dst->linesize[0], |
| src->data[0], src->linesize[0], |
| width, height, alpha, beta); |
| } |
| |
| return 0; |
| } |
| |
| static int vp7_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) |
| { |
| VP56RangeCoder *c = &s->c; |
| int part1_size, hscale, vscale, i, j, ret; |
| int width = s->avctx->width; |
| int height = s->avctx->height; |
| int alpha = 0; |
| int beta = 0; |
| |
| if (buf_size < 4) { |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->profile = (buf[0] >> 1) & 7; |
| if (s->profile > 1) { |
| avpriv_request_sample(s->avctx, "Unknown profile %d", s->profile); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->keyframe = !(buf[0] & 1); |
| s->invisible = 0; |
| part1_size = AV_RL24(buf) >> 4; |
| |
| if (buf_size < 4 - s->profile + part1_size) { |
| av_log(s->avctx, AV_LOG_ERROR, "Buffer size %d is too small, needed : %d\n", buf_size, 4 - s->profile + part1_size); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| buf += 4 - s->profile; |
| buf_size -= 4 - s->profile; |
| |
| memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab)); |
| |
| ret = ff_vp56_init_range_decoder(c, buf, part1_size); |
| if (ret < 0) |
| return ret; |
| buf += part1_size; |
| buf_size -= part1_size; |
| |
| /* A. Dimension information (keyframes only) */ |
| if (s->keyframe) { |
| width = vp8_rac_get_uint(c, 12); |
| height = vp8_rac_get_uint(c, 12); |
| hscale = vp8_rac_get_uint(c, 2); |
| vscale = vp8_rac_get_uint(c, 2); |
| if (hscale || vscale) |
| avpriv_request_sample(s->avctx, "Upscaling"); |
| |
| s->update_golden = s->update_altref = VP56_FRAME_CURRENT; |
| vp78_reset_probability_tables(s); |
| memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, |
| sizeof(s->prob->pred16x16)); |
| memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter, |
| sizeof(s->prob->pred8x8c)); |
| for (i = 0; i < 2; i++) |
| memcpy(s->prob->mvc[i], vp7_mv_default_prob[i], |
| sizeof(vp7_mv_default_prob[i])); |
| memset(&s->segmentation, 0, sizeof(s->segmentation)); |
| memset(&s->lf_delta, 0, sizeof(s->lf_delta)); |
| memcpy(s->prob[0].scan, ff_zigzag_scan, sizeof(s->prob[0].scan)); |
| } |
| |
| if (s->keyframe || s->profile > 0) |
| memset(s->inter_dc_pred, 0 , sizeof(s->inter_dc_pred)); |
| |
| /* B. Decoding information for all four macroblock-level features */ |
| for (i = 0; i < 4; i++) { |
| s->feature_enabled[i] = vp8_rac_get(c); |
| if (s->feature_enabled[i]) { |
| s->feature_present_prob[i] = vp8_rac_get_uint(c, 8); |
| |
| for (j = 0; j < 3; j++) |
| s->feature_index_prob[i][j] = |
| vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; |
| |
| if (vp7_feature_value_size[s->profile][i]) |
| for (j = 0; j < 4; j++) |
| s->feature_value[i][j] = |
| vp8_rac_get(c) ? vp8_rac_get_uint(c, vp7_feature_value_size[s->profile][i]) : 0; |
| } |
| } |
| |
| s->segmentation.enabled = 0; |
| s->segmentation.update_map = 0; |
| s->lf_delta.enabled = 0; |
| |
| s->num_coeff_partitions = 1; |
| ret = ff_vp56_init_range_decoder(&s->coeff_partition[0], buf, buf_size); |
| if (ret < 0) |
| return ret; |
| |
| if (!s->macroblocks_base || /* first frame */ |
| width != s->avctx->width || height != s->avctx->height || |
| (width + 15) / 16 != s->mb_width || (height + 15) / 16 != s->mb_height) { |
| if ((ret = vp7_update_dimensions(s, width, height)) < 0) |
| return ret; |
| } |
| |
| /* C. Dequantization indices */ |
| vp7_get_quants(s); |
| |
| /* D. Golden frame update flag (a Flag) for interframes only */ |
| if (!s->keyframe) { |
| s->update_golden = vp8_rac_get(c) ? VP56_FRAME_CURRENT : VP56_FRAME_NONE; |
| s->sign_bias[VP56_FRAME_GOLDEN] = 0; |
| } |
| |
| s->update_last = 1; |
| s->update_probabilities = 1; |
| s->fade_present = 1; |
| |
| if (s->profile > 0) { |
| s->update_probabilities = vp8_rac_get(c); |
| if (!s->update_probabilities) |
| s->prob[1] = s->prob[0]; |
| |
| if (!s->keyframe) |
| s->fade_present = vp8_rac_get(c); |
| } |
| |
| if (vpX_rac_is_end(c)) |
| return AVERROR_INVALIDDATA; |
| /* E. Fading information for previous frame */ |
| if (s->fade_present && vp8_rac_get(c)) { |
| alpha = (int8_t) vp8_rac_get_uint(c, 8); |
| beta = (int8_t) vp8_rac_get_uint(c, 8); |
| } |
| |
| /* F. Loop filter type */ |
| if (!s->profile) |
| s->filter.simple = vp8_rac_get(c); |
| |
| /* G. DCT coefficient ordering specification */ |
| if (vp8_rac_get(c)) |
| for (i = 1; i < 16; i++) |
| s->prob[0].scan[i] = ff_zigzag_scan[vp8_rac_get_uint(c, 4)]; |
| |
| /* H. Loop filter levels */ |
| if (s->profile > 0) |
| s->filter.simple = vp8_rac_get(c); |
| s->filter.level = vp8_rac_get_uint(c, 6); |
| s->filter.sharpness = vp8_rac_get_uint(c, 3); |
| |
| /* I. DCT coefficient probability update; 13.3 Token Probability Updates */ |
| vp78_update_probability_tables(s); |
| |
| s->mbskip_enabled = 0; |
| |
| /* J. The remaining frame header data occurs ONLY FOR INTERFRAMES */ |
| if (!s->keyframe) { |
| s->prob->intra = vp8_rac_get_uint(c, 8); |
| s->prob->last = vp8_rac_get_uint(c, 8); |
| vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP7_MVC_SIZE); |
| } |
| |
| if (vpX_rac_is_end(c)) |
| return AVERROR_INVALIDDATA; |
| |
| if ((ret = vp7_fade_frame(s, alpha, beta)) < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) |
| { |
| VP56RangeCoder *c = &s->c; |
| int header_size, hscale, vscale, ret; |
| int width = s->avctx->width; |
| int height = s->avctx->height; |
| |
| if (buf_size < 3) { |
| av_log(s->avctx, AV_LOG_ERROR, "Insufficent data (%d) for header\n", buf_size); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->keyframe = !(buf[0] & 1); |
| s->profile = (buf[0]>>1) & 7; |
| s->invisible = !(buf[0] & 0x10); |
| header_size = AV_RL24(buf) >> 5; |
| buf += 3; |
| buf_size -= 3; |
| |
| s->header_partition_size = header_size; |
| |
| if (s->profile > 3) |
| av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile); |
| |
| if (!s->profile) |
| memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, |
| sizeof(s->put_pixels_tab)); |
| else // profile 1-3 use bilinear, 4+ aren't defined so whatever |
| memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, |
| sizeof(s->put_pixels_tab)); |
| |
| if (header_size > buf_size - 7 * s->keyframe) { |
| av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (s->keyframe) { |
| if (AV_RL24(buf) != 0x2a019d) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid start code 0x%x\n", AV_RL24(buf)); |
| return AVERROR_INVALIDDATA; |
| } |
| width = AV_RL16(buf + 3) & 0x3fff; |
| height = AV_RL16(buf + 5) & 0x3fff; |
| hscale = buf[4] >> 6; |
| vscale = buf[6] >> 6; |
| buf += 7; |
| buf_size -= 7; |
| |
| if (hscale || vscale) |
| avpriv_request_sample(s->avctx, "Upscaling"); |
| |
| s->update_golden = s->update_altref = VP56_FRAME_CURRENT; |
| vp78_reset_probability_tables(s); |
| memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, |
| sizeof(s->prob->pred16x16)); |
| memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter, |
| sizeof(s->prob->pred8x8c)); |
| memcpy(s->prob->mvc, vp8_mv_default_prob, |
| sizeof(s->prob->mvc)); |
| memset(&s->segmentation, 0, sizeof(s->segmentation)); |
| memset(&s->lf_delta, 0, sizeof(s->lf_delta)); |
| } |
| |
| ret = ff_vp56_init_range_decoder(c, buf, header_size); |
| if (ret < 0) |
| return ret; |
| buf += header_size; |
| buf_size -= header_size; |
| |
| if (s->keyframe) { |
| s->colorspace = vp8_rac_get(c); |
| if (s->colorspace) |
| av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n"); |
| s->fullrange = vp8_rac_get(c); |
| } |
| |
| if ((s->segmentation.enabled = vp8_rac_get(c))) |
| parse_segment_info(s); |
| else |
| s->segmentation.update_map = 0; // FIXME: move this to some init function? |
| |
| s->filter.simple = vp8_rac_get(c); |
| s->filter.level = vp8_rac_get_uint(c, 6); |
| s->filter.sharpness = vp8_rac_get_uint(c, 3); |
| |
| if ((s->lf_delta.enabled = vp8_rac_get(c))) { |
| s->lf_delta.update = vp8_rac_get(c); |
| if (s->lf_delta.update) |
| update_lf_deltas(s); |
| } |
| |
| if (setup_partitions(s, buf, buf_size)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (!s->macroblocks_base || /* first frame */ |
| width != s->avctx->width || height != s->avctx->height || |
| (width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height) |
| if ((ret = vp8_update_dimensions(s, width, height)) < 0) |
| return ret; |
| |
| vp8_get_quants(s); |
| |
| if (!s->keyframe) { |
| update_refs(s); |
| s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); |
| s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c); |
| } |
| |
| // if we aren't saving this frame's probabilities for future frames, |
| // make a copy of the current probabilities |
| if (!(s->update_probabilities = vp8_rac_get(c))) |
| s->prob[1] = s->prob[0]; |
| |
| s->update_last = s->keyframe || vp8_rac_get(c); |
| |
| vp78_update_probability_tables(s); |
| |
| if ((s->mbskip_enabled = vp8_rac_get(c))) |
| s->prob->mbskip = vp8_rac_get_uint(c, 8); |
| |
| if (!s->keyframe) { |
| s->prob->intra = vp8_rac_get_uint(c, 8); |
| s->prob->last = vp8_rac_get_uint(c, 8); |
| s->prob->golden = vp8_rac_get_uint(c, 8); |
| vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP8_MVC_SIZE); |
| } |
| |
| // Record the entropy coder state here so that hwaccels can use it. |
| s->c.code_word = vp56_rac_renorm(&s->c); |
| s->coder_state_at_header_end.input = s->c.buffer - (-s->c.bits / 8); |
| s->coder_state_at_header_end.range = s->c.high; |
| s->coder_state_at_header_end.value = s->c.code_word >> 16; |
| s->coder_state_at_header_end.bit_count = -s->c.bits % 8; |
| |
| return 0; |
| } |
| |
| static av_always_inline |
| void clamp_mv(VP8mvbounds *s, VP56mv *dst, const VP56mv *src) |
| { |
| dst->x = av_clip(src->x, av_clip(s->mv_min.x, INT16_MIN, INT16_MAX), |
| av_clip(s->mv_max.x, INT16_MIN, INT16_MAX)); |
| dst->y = av_clip(src->y, av_clip(s->mv_min.y, INT16_MIN, INT16_MAX), |
| av_clip(s->mv_max.y, INT16_MIN, INT16_MAX)); |
| } |
| |
| /** |
| * Motion vector coding, 17.1. |
| */ |
| static av_always_inline int read_mv_component(VP56RangeCoder *c, const uint8_t *p, int vp7) |
| { |
| int bit, x = 0; |
| |
| if (vp56_rac_get_prob_branchy(c, p[0])) { |
| int i; |
| |
| for (i = 0; i < 3; i++) |
| x += vp56_rac_get_prob(c, p[9 + i]) << i; |
| for (i = (vp7 ? 7 : 9); i > 3; i--) |
| x += vp56_rac_get_prob(c, p[9 + i]) << i; |
| if (!(x & (vp7 ? 0xF0 : 0xFFF0)) || vp56_rac_get_prob(c, p[12])) |
| x += 8; |
| } else { |
| // small_mvtree |
| const uint8_t *ps = p + 2; |
| bit = vp56_rac_get_prob(c, *ps); |
| ps += 1 + 3 * bit; |
| x += 4 * bit; |
| bit = vp56_rac_get_prob(c, *ps); |
| ps += 1 + bit; |
| x += 2 * bit; |
| x += vp56_rac_get_prob(c, *ps); |
| } |
| |
| return (x && vp56_rac_get_prob(c, p[1])) ? -x : x; |
| } |
| |
| static int vp7_read_mv_component(VP56RangeCoder *c, const uint8_t *p) |
| { |
| return read_mv_component(c, p, 1); |
| } |
| |
| static int vp8_read_mv_component(VP56RangeCoder *c, const uint8_t *p) |
| { |
| return read_mv_component(c, p, 0); |
| } |
| |
| static av_always_inline |
| const uint8_t *get_submv_prob(uint32_t left, uint32_t top, int is_vp7) |
| { |
| if (is_vp7) |
| return vp7_submv_prob; |
| |
| if (left == top) |
| return vp8_submv_prob[4 - !!left]; |
| if (!top) |
| return vp8_submv_prob[2]; |
| return vp8_submv_prob[1 - !!left]; |
| } |
| |
| /** |
| * Split motion vector prediction, 16.4. |
| * @returns the number of motion vectors parsed (2, 4 or 16) |
| */ |
| static av_always_inline |
| int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, |
| int layout, int is_vp7) |
| { |
| int part_idx; |
| int n, num; |
| VP8Macroblock *top_mb; |
| VP8Macroblock *left_mb = &mb[-1]; |
| const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning]; |
| const uint8_t *mbsplits_top, *mbsplits_cur, *firstidx; |
| VP56mv *top_mv; |
| VP56mv *left_mv = left_mb->bmv; |
| VP56mv *cur_mv = mb->bmv; |
| |
| if (!layout) // layout is inlined, s->mb_layout is not |
| top_mb = &mb[2]; |
| else |
| top_mb = &mb[-s->mb_width - 1]; |
| mbsplits_top = vp8_mbsplits[top_mb->partitioning]; |
| top_mv = top_mb->bmv; |
| |
| if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) { |
| if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) |
| part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]); |
| else |
| part_idx = VP8_SPLITMVMODE_8x8; |
| } else { |
| part_idx = VP8_SPLITMVMODE_4x4; |
| } |
| |
| num = vp8_mbsplit_count[part_idx]; |
| mbsplits_cur = vp8_mbsplits[part_idx], |
| firstidx = vp8_mbfirstidx[part_idx]; |
| mb->partitioning = part_idx; |
| |
| for (n = 0; n < num; n++) { |
| int k = firstidx[n]; |
| uint32_t left, above; |
| const uint8_t *submv_prob; |
| |
| if (!(k & 3)) |
| left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]); |
| else |
| left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]); |
| if (k <= 3) |
| above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]); |
| else |
| above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]); |
| |
| submv_prob = get_submv_prob(left, above, is_vp7); |
| |
| if (vp56_rac_get_prob_branchy(c, submv_prob[0])) { |
| if (vp56_rac_get_prob_branchy(c, submv_prob[1])) { |
| if (vp56_rac_get_prob_branchy(c, submv_prob[2])) { |
| mb->bmv[n].y = mb->mv.y + |
| read_mv_component(c, s->prob->mvc[0], is_vp7); |
| mb->bmv[n].x = mb->mv.x + |
| read_mv_component(c, s->prob->mvc[1], is_vp7); |
| } else { |
| AV_ZERO32(&mb->bmv[n]); |
| } |
| } else { |
| AV_WN32A(&mb->bmv[n], above); |
| } |
| } else { |
| AV_WN32A(&mb->bmv[n], left); |
| } |
| } |
| |
| return num; |
| } |
| |
| /** |
| * The vp7 reference decoder uses a padding macroblock column (added to right |
| * edge of the frame) to guard against illegal macroblock offsets. The |
| * algorithm has bugs that permit offsets to straddle the padding column. |
| * This function replicates those bugs. |
| * |
| * @param[out] edge_x macroblock x address |
| * @param[out] edge_y macroblock y address |
| * |
| * @return macroblock offset legal (boolean) |
| */ |
| static int vp7_calculate_mb_offset(int mb_x, int mb_y, int mb_width, |
| int xoffset, int yoffset, int boundary, |
| int *edge_x, int *edge_y) |
| { |
| int vwidth = mb_width + 1; |
| int new = (mb_y + yoffset) * vwidth + mb_x + xoffset; |
| if (new < boundary || new % vwidth == vwidth - 1) |
| return 0; |
| *edge_y = new / vwidth; |
| *edge_x = new % vwidth; |
| return 1; |
| } |
| |
| static const VP56mv *get_bmv_ptr(const VP8Macroblock *mb, int subblock) |
| { |
| return &mb->bmv[mb->mode == VP8_MVMODE_SPLIT ? vp8_mbsplits[mb->partitioning][subblock] : 0]; |
| } |
| |
| static av_always_inline |
| void vp7_decode_mvs(VP8Context *s, VP8Macroblock *mb, |
| int mb_x, int mb_y, int layout) |
| { |
| VP8Macroblock *mb_edge[12]; |
| enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR }; |
| enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT }; |
| int idx = CNT_ZERO; |
| VP56mv near_mv[3]; |
| uint8_t cnt[3] = { 0 }; |
| VP56RangeCoder *c = &s->c; |
| int i; |
| |
| AV_ZERO32(&near_mv[0]); |
| AV_ZERO32(&near_mv[1]); |
| AV_ZERO32(&near_mv[2]); |
| |
| for (i = 0; i < VP7_MV_PRED_COUNT; i++) { |
| const VP7MVPred * pred = &vp7_mv_pred[i]; |
| int edge_x, edge_y; |
| |
| if (vp7_calculate_mb_offset(mb_x, mb_y, s->mb_width, pred->xoffset, |
| pred->yoffset, !s->profile, &edge_x, &edge_y)) { |
| VP8Macroblock *edge = mb_edge[i] = (s->mb_layout == 1) |
| ? s->macroblocks_base + 1 + edge_x + |
| (s->mb_width + 1) * (edge_y + 1) |
| : s->macroblocks + edge_x + |
| (s->mb_height - edge_y - 1) * 2; |
| uint32_t mv = AV_RN32A(get_bmv_ptr(edge, vp7_mv_pred[i].subblock)); |
| if (mv) { |
| if (AV_RN32A(&near_mv[CNT_NEAREST])) { |
| if (mv == AV_RN32A(&near_mv[CNT_NEAREST])) { |
| idx = CNT_NEAREST; |
| } else if (AV_RN32A(&near_mv[CNT_NEAR])) { |
| if (mv != AV_RN32A(&near_mv[CNT_NEAR])) |
| continue; |
| idx = CNT_NEAR; |
| } else { |
| AV_WN32A(&near_mv[CNT_NEAR], mv); |
| idx = CNT_NEAR; |
| } |
| } else { |
| AV_WN32A(&near_mv[CNT_NEAREST], mv); |
| idx = CNT_NEAREST; |
| } |
| } else { |
| idx = CNT_ZERO; |
| } |
| } else { |
| idx = CNT_ZERO; |
| } |
| cnt[idx] += vp7_mv_pred[i].score; |
| } |
| |
| mb->partitioning = VP8_SPLITMVMODE_NONE; |
| |
| if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_ZERO]][0])) { |
| mb->mode = VP8_MVMODE_MV; |
| |
| if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAREST]][1])) { |
| |
| if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][2])) { |
| |
| if (cnt[CNT_NEAREST] > cnt[CNT_NEAR]) |
| AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAREST] ? 0 : AV_RN32A(&near_mv[CNT_NEAREST])); |
| else |
| AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAR] ? 0 : AV_RN32A(&near_mv[CNT_NEAR])); |
| |
| if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][3])) { |
| mb->mode = VP8_MVMODE_SPLIT; |
| mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP7) - 1]; |
| } else { |
| mb->mv.y += vp7_read_mv_component(c, s->prob->mvc[0]); |
| mb->mv.x += vp7_read_mv_component(c, s->prob->mvc[1]); |
| mb->bmv[0] = mb->mv; |
| } |
| } else { |
| mb->mv = near_mv[CNT_NEAR]; |
| mb->bmv[0] = mb->mv; |
| } |
| } else { |
| mb->mv = near_mv[CNT_NEAREST]; |
| mb->bmv[0] = mb->mv; |
| } |
| } else { |
| mb->mode = VP8_MVMODE_ZERO; |
| AV_ZERO32(&mb->mv); |
| mb->bmv[0] = mb->mv; |
| } |
| } |
| |
| static av_always_inline |
| void vp8_decode_mvs(VP8Context *s, VP8mvbounds *mv_bounds, VP8Macroblock *mb, |
| int mb_x, int mb_y, int layout) |
| { |
| VP8Macroblock *mb_edge[3] = { 0 /* top */, |
| mb - 1 /* left */, |
| 0 /* top-left */ }; |
| enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; |
| enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT }; |
| int idx = CNT_ZERO; |
| int cur_sign_bias = s->sign_bias[mb->ref_frame]; |
| int8_t *sign_bias = s->sign_bias; |
| VP56mv near_mv[4]; |
| uint8_t cnt[4] = { 0 }; |
| VP56RangeCoder *c = &s->c; |
| |
| if (!layout) { // layout is inlined (s->mb_layout is not) |
| mb_edge[0] = mb + 2; |
| mb_edge[2] = mb + 1; |
| } else { |
| mb_edge[0] = mb - s->mb_width - 1; |
| mb_edge[2] = mb - s->mb_width - 2; |
| } |
| |
| AV_ZERO32(&near_mv[0]); |
| AV_ZERO32(&near_mv[1]); |
| AV_ZERO32(&near_mv[2]); |
| |
| /* Process MB on top, left and top-left */ |
| #define MV_EDGE_CHECK(n) \ |
| { \ |
| VP8Macroblock *edge = mb_edge[n]; \ |
| int edge_ref = edge->ref_frame; \ |
| if (edge_ref != VP56_FRAME_CURRENT) { \ |
| uint32_t mv = AV_RN32A(&edge->mv); \ |
| if (mv) { \ |
| if (cur_sign_bias != sign_bias[edge_ref]) { \ |
| /* SWAR negate of the values in mv. */ \ |
| mv = ~mv; \ |
| mv = ((mv & 0x7fff7fff) + \ |
| 0x00010001) ^ (mv & 0x80008000); \ |
| } \ |
| if (!n || mv != AV_RN32A(&near_mv[idx])) \ |
| AV_WN32A(&near_mv[++idx], mv); \ |
| cnt[idx] += 1 + (n != 2); \ |
| } else \ |
| cnt[CNT_ZERO] += 1 + (n != 2); \ |
| } \ |
| } |
| |
| MV_EDGE_CHECK(0) |
| MV_EDGE_CHECK(1) |
| MV_EDGE_CHECK(2) |
| |
| mb->partitioning = VP8_SPLITMVMODE_NONE; |
| if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) { |
| mb->mode = VP8_MVMODE_MV; |
| |
| /* If we have three distinct MVs, merge first and last if they're the same */ |
| if (cnt[CNT_SPLITMV] && |
| AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT])) |
| cnt[CNT_NEAREST] += 1; |
| |
| /* Swap near and nearest if necessary */ |
| if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { |
| FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]); |
| FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); |
| } |
| |
| if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) { |
| if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) { |
| /* Choose the best mv out of 0,0 and the nearest mv */ |
| clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]); |
| cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + |
| (mb_edge[VP8_EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 + |
| (mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); |
| |
| if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) { |
| mb->mode = VP8_MVMODE_SPLIT; |
| mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP8) - 1]; |
| } else { |
| mb->mv.y += vp8_read_mv_component(c, s->prob->mvc[0]); |
| mb->mv.x += vp8_read_mv_component(c, s->prob->mvc[1]); |
| mb->bmv[0] = mb->mv; |
| } |
| } else { |
| clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_NEAR]); |
| mb->bmv[0] = mb->mv; |
| } |
| } else { |
| clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_NEAREST]); |
| mb->bmv[0] = mb->mv; |
| } |
| } else { |
| mb->mode = VP8_MVMODE_ZERO; |
| AV_ZERO32(&mb->mv); |
| mb->bmv[0] = mb->mv; |
| } |
| } |
| |
| static av_always_inline |
| void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, |
| int mb_x, int keyframe, int layout) |
| { |
| uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb; |
| |
| if (layout) { |
| VP8Macroblock *mb_top = mb - s->mb_width - 1; |
| memcpy(mb->intra4x4_pred_mode_top, mb_top->intra4x4_pred_mode_top, 4); |
| } |
| if (keyframe) { |
| int x, y; |
| uint8_t *top; |
| uint8_t *const left = s->intra4x4_pred_mode_left; |
| if (layout) |
| top = mb->intra4x4_pred_mode_top; |
| else |
| top = s->intra4x4_pred_mode_top + 4 * mb_x; |
| for (y = 0; y < 4; y++) { |
| for (x = 0; x < 4; x++) { |
| const uint8_t *ctx; |
| ctx = vp8_pred4x4_prob_intra[top[x]][left[y]]; |
| *intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx); |
| left[y] = top[x] = *intra4x4; |
| intra4x4++; |
| } |
| } |
| } else { |
| int i; |
| for (i = 0; i < 16; i++) |
| intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, |
| vp8_pred4x4_prob_inter); |
| } |
| } |
| |
| static av_always_inline |
| void decode_mb_mode(VP8Context *s, VP8mvbounds *mv_bounds, |
| VP8Macroblock *mb, int mb_x, int mb_y, |
| uint8_t *segment, uint8_t *ref, int layout, int is_vp7) |
| { |
| VP56RangeCoder *c = &s->c; |
| static const char * const vp7_feature_name[] = { "q-index", |
| "lf-delta", |
| "partial-golden-update", |
| "blit-pitch" }; |
| if (is_vp7) { |
| int i; |
| *segment = 0; |
| for (i = 0; i < 4; i++) { |
| if (s->feature_enabled[i]) { |
| if (vp56_rac_get_prob_branchy(c, s->feature_present_prob[i])) { |
| int index = vp8_rac_get_tree(c, vp7_feature_index_tree, |
| s->feature_index_prob[i]); |
| av_log(s->avctx, AV_LOG_WARNING, |
| "Feature %s present in macroblock (value 0x%x)\n", |
| vp7_feature_name[i], s->feature_value[i][index]); |
| } |
| } |
| } |
| } else if (s->segmentation.update_map) { |
| int bit = vp56_rac_get_prob(c, s->prob->segmentid[0]); |
| *segment = vp56_rac_get_prob(c, s->prob->segmentid[1+bit]) + 2*bit; |
| } else if (s->segmentation.enabled) |
| *segment = ref ? *ref : *segment; |
| mb->segment = *segment; |
| |
| mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0; |
| |
| if (s->keyframe) { |
| mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, |
| vp8_pred16x16_prob_intra); |
| |
| if (mb->mode == MODE_I4x4) { |
| decode_intra4x4_modes(s, c, mb, mb_x, 1, layout); |
| } else { |
| const uint32_t modes = (is_vp7 ? vp7_pred4x4_mode |
| : vp8_pred4x4_mode)[mb->mode] * 0x01010101u; |
| if (s->mb_layout) |
| AV_WN32A(mb->intra4x4_pred_mode_top, modes); |
| else |
| AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes); |
| AV_WN32A(s->intra4x4_pred_mode_left, modes); |
| } |
| |
| mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, |
| vp8_pred8x8c_prob_intra); |
| mb->ref_frame = VP56_FRAME_CURRENT; |
| } else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) { |
| // inter MB, 16.2 |
| if (vp56_rac_get_prob_branchy(c, s->prob->last)) |
| mb->ref_frame = |
| (!is_vp7 && vp56_rac_get_prob(c, s->prob->golden)) ? VP56_FRAME_GOLDEN2 /* altref */ |
| : VP56_FRAME_GOLDEN; |
| else |
| mb->ref_frame = VP56_FRAME_PREVIOUS; |
| s->ref_count[mb->ref_frame - 1]++; |
| |
| // motion vectors, 16.3 |
| if (is_vp7) |
| vp7_decode_mvs(s, mb, mb_x, mb_y, layout); |
| else |
| vp8_decode_mvs(s, mv_bounds, mb, mb_x, mb_y, layout); |
| } else { |
| // intra MB, 16.1 |
| mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); |
| |
| if (mb->mode == MODE_I4x4) |
| decode_intra4x4_modes(s, c, mb, mb_x, 0, layout); |
| |
| mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, |
| s->prob->pred8x8c); |
| mb->ref_frame = VP56_FRAME_CURRENT; |
| mb->partitioning = VP8_SPLITMVMODE_NONE; |
| AV_ZERO32(&mb->bmv[0]); |
| } |
| } |
| |
| /** |
| * @param r arithmetic bitstream reader context |
| * @param block destination for block coefficients |
| * @param probs probabilities to use when reading trees from the bitstream |
| * @param i initial coeff index, 0 unless a separate DC block is coded |
| * @param qmul array holding the dc/ac dequant factor at position 0/1 |
| * |
| * @return 0 if no coeffs were decoded |
| * otherwise, the index of the last coeff decoded plus one |
| */ |
| static av_always_inline |
| int decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16], |
| uint8_t probs[16][3][NUM_DCT_TOKENS - 1], |
| int i, uint8_t *token_prob, int16_t qmul[2], |
| const uint8_t scan[16], int vp7) |
| { |
| VP56RangeCoder c = *r; |
| goto skip_eob; |
| do { |
| int coeff; |
| restart: |
| if (!vp56_rac_get_prob_branchy(&c, token_prob[0])) // DCT_EOB |
| break; |
| |
| skip_eob: |
| if (!vp56_rac_get_prob_branchy(&c, token_prob[1])) { // DCT_0 |
| if (++i == 16) |
| break; // invalid input; blocks should end with EOB |
| token_prob = probs[i][0]; |
| if (vp7) |
| goto restart; |
| goto skip_eob; |
| } |
| |
| if (!vp56_rac_get_prob_branchy(&c, token_prob[2])) { // DCT_1 |
| coeff = 1; |
| token_prob = probs[i + 1][1]; |
| } else { |
| if (!vp56_rac_get_prob_branchy(&c, token_prob[3])) { // DCT 2,3,4 |
| coeff = vp56_rac_get_prob_branchy(&c, token_prob[4]); |
| if (coeff) |
| coeff += vp56_rac_get_prob(&c, token_prob[5]); |
| coeff += 2; |
| } else { |
| // DCT_CAT* |
| if (!vp56_rac_get_prob_branchy(&c, token_prob[6])) { |
| if (!vp56_rac_get_prob_branchy(&c, token_prob[7])) { // DCT_CAT1 |
| coeff = 5 + vp56_rac_get_prob(&c, vp8_dct_cat1_prob[0]); |
| } else { // DCT_CAT2 |
| coeff = 7; |
| coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[0]) << 1; |
| coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[1]); |
| } |
| } else { // DCT_CAT3 and up |
| int a = vp56_rac_get_prob(&c, token_prob[8]); |
| int b = vp56_rac_get_prob(&c, token_prob[9 + a]); |
| int cat = (a << 1) + b; |
| coeff = 3 + (8 << cat); |
| coeff += vp8_rac_get_coeff(&c, ff_vp8_dct_cat_prob[cat]); |
| } |
| } |
| token_prob = probs[i + 1][2]; |
| } |
| block[scan[i]] = (vp8_rac_get(&c) ? -coeff : coeff) * qmul[!!i]; |
| } while (++i < 16); |
| |
| *r = c; |
| return i; |
| } |
| |
| static av_always_inline |
| int inter_predict_dc(int16_t block[16], int16_t pred[2]) |
| { |
| int16_t dc = block[0]; |
| int ret = 0; |
| |
| if (pred[1] > 3) { |
| dc += pred[0]; |
| ret = 1; |
| } |
| |
| if (!pred[0] | !dc | ((int32_t)pred[0] ^ (int32_t)dc) >> 31) { |
| block[0] = pred[0] = dc; |
| pred[1] = 0; |
| } else { |
| if (pred[0] == dc) |
| pred[1]++; |
| block[0] = pred[0] = dc; |
| } |
| |
| return ret; |
| } |
| |
| static int vp7_decode_block_coeffs_internal(VP56RangeCoder *r, |
| int16_t block[16], |
| uint8_t probs[16][3][NUM_DCT_TOKENS - 1], |
| int i, uint8_t *token_prob, |
| int16_t qmul[2], |
| const uint8_t scan[16]) |
| { |
| return decode_block_coeffs_internal(r, block, probs, i, |
| token_prob, qmul, scan, IS_VP7); |
| } |
| |
| #ifndef vp8_decode_block_coeffs_internal |
| static int vp8_decode_block_coeffs_internal(VP56RangeCoder *r, |
| int16_t block[16], |
| uint8_t probs[16][3][NUM_DCT_TOKENS - 1], |
| int i, uint8_t *token_prob, |
| int16_t qmul[2]) |
| { |
| return decode_block_coeffs_internal(r, block, probs, i, |
| token_prob, qmul, ff_zigzag_scan, IS_VP8); |
| } |
| #endif |
| |
| /** |
| * @param c arithmetic bitstream reader context |
| * @param block destination for block coefficients |
| * @param probs probabilities to use when reading trees from the bitstream |
| * @param i initial coeff index, 0 unless a separate DC block is coded |
| * @param zero_nhood the initial prediction context for number of surrounding |
| * all-zero blocks (only left/top, so 0-2) |
| * @param qmul array holding the dc/ac dequant factor at position 0/1 |
| * @param scan scan pattern (VP7 only) |
| * |
| * @return 0 if no coeffs were decoded |
| * otherwise, the index of the last coeff decoded plus one |
| */ |
| static av_always_inline |
| int decode_block_coeffs(VP56RangeCoder *c, int16_t block[16], |
| uint8_t probs[16][3][NUM_DCT_TOKENS - 1], |
| int i, int zero_nhood, int16_t qmul[2], |
| const uint8_t scan[16], int vp7) |
| { |
| uint8_t *token_prob = probs[i][zero_nhood]; |
| if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB |
| return 0; |
| return vp7 ? vp7_decode_block_coeffs_internal(c, block, probs, i, |
| token_prob, qmul, scan) |
| : vp8_decode_block_coeffs_internal(c, block, probs, i, |
| token_prob, qmul); |
| } |
| |
| static av_always_inline |
| void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VP56RangeCoder *c, |
| VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9], |
| int is_vp7) |
| { |
| int i, x, y, luma_start = 0, luma_ctx = 3; |
| int nnz_pred, nnz, nnz_total = 0; |
| int segment = mb->segment; |
| int block_dc = 0; |
| |
| if (mb->mode != MODE_I4x4 && (is_vp7 || mb->mode != VP8_MVMODE_SPLIT)) { |
| nnz_pred = t_nnz[8] + l_nnz[8]; |
| |
| // decode DC values and do hadamard |
| nnz = decode_block_coeffs(c, td->block_dc, s->prob->token[1], 0, |
| nnz_pred, s->qmat[segment].luma_dc_qmul, |
| ff_zigzag_scan, is_vp7); |
| l_nnz[8] = t_nnz[8] = !!nnz; |
| |
| if (is_vp7 && mb->mode > MODE_I4x4) { |
| nnz |= inter_predict_dc(td->block_dc, |
| s->inter_dc_pred[mb->ref_frame - 1]); |
| } |
| |
| if (nnz) { |
| nnz_total += nnz; |
| block_dc = 1; |
| if (nnz == 1) |
| s->vp8dsp.vp8_luma_dc_wht_dc(td->block, td->block_dc); |
| else |
| s->vp8dsp.vp8_luma_dc_wht(td->block, td->block_dc); |
| } |
| luma_start = 1; |
| luma_ctx = 0; |
| } |
| |
| // luma blocks |
| for (y = 0; y < 4; y++) |
| for (x = 0; x < 4; x++) { |
| nnz_pred = l_nnz[y] + t_nnz[x]; |
| nnz = decode_block_coeffs(c, td->block[y][x], |
| s->prob->token[luma_ctx], |
| luma_start, nnz_pred, |
| s->qmat[segment].luma_qmul, |
| s->prob[0].scan, is_vp7); |
| /* nnz+block_dc may be one more than the actual last index, |
| * but we don't care */ |
| td->non_zero_count_cache[y][x] = nnz + block_dc; |
| t_nnz[x] = l_nnz[y] = !!nnz; |
| nnz_total += nnz; |
| } |
| |
| // chroma blocks |
| // TODO: what to do about dimensions? 2nd dim for luma is x, |
| // but for chroma it's (y<<1)|x |
| for (i = 4; i < 6; i++) |
| for (y = 0; y < 2; y++) |
| for (x = 0; x < 2; x++) { |
| nnz_pred = l_nnz[i + 2 * y] + t_nnz[i + 2 * x]; |
| nnz = decode_block_coeffs(c, td->block[i][(y << 1) + x], |
| s->prob->token[2], 0, nnz_pred, |
| s->qmat[segment].chroma_qmul, |
| s->prob[0].scan, is_vp7); |
| td->non_zero_count_cache[i][(y << 1) + x] = nnz; |
| t_nnz[i + 2 * x] = l_nnz[i + 2 * y] = !!nnz; |
| nnz_total += nnz; |
| } |
| |
| // if there were no coded coeffs despite the macroblock not being marked skip, |
| // we MUST not do the inner loop filter and should not do IDCT |
| // Since skip isn't used for bitstream prediction, just manually set it. |
| if (!nnz_total) |
| mb->skip = 1; |
| } |
| |
| static av_always_inline |
| void backup_mb_border(uint8_t *top_border, uint8_t *src_y, |
| uint8_t *src_cb, uint8_t *src_cr, |
| ptrdiff_t linesize, ptrdiff_t uvlinesize, int simple) |
| { |
| AV_COPY128(top_border, src_y + 15 * linesize); |
| if (!simple) { |
| AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize); |
| AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize); |
| } |
| } |
| |
| static av_always_inline |
| void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, |
| uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int mb_x, |
| int mb_y, int mb_width, int simple, int xchg) |
| { |
| uint8_t *top_border_m1 = top_border - 32; // for TL prediction |
| src_y -= linesize; |
| src_cb -= uvlinesize; |
| src_cr -= uvlinesize; |
| |
| #define XCHG(a, b, xchg) \ |
| do { \ |
| if (xchg) \ |
| AV_SWAP64(b, a); \ |
| else \ |
| AV_COPY64(b, a); \ |
| } while (0) |
| |
| XCHG(top_border_m1 + 8, src_y - 8, xchg); |
| XCHG(top_border, src_y, xchg); |
| XCHG(top_border + 8, src_y + 8, 1); |
| if (mb_x < mb_width - 1) |
| XCHG(top_border + 32, src_y + 16, 1); |
| |
| // only copy chroma for normal loop filter |
| // or to initialize the top row to 127 |
| if (!simple || !mb_y) { |
| XCHG(top_border_m1 + 16, src_cb - 8, xchg); |
| XCHG(top_border_m1 + 24, src_cr - 8, xchg); |
| XCHG(top_border + 16, src_cb, 1); |
| XCHG(top_border + 24, src_cr, 1); |
| } |
| } |
| |
| static av_always_inline |
| int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y) |
| { |
| if (!mb_x) |
| return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8; |
| else |
| return mb_y ? mode : LEFT_DC_PRED8x8; |
| } |
| |
| static av_always_inline |
| int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y, int vp7) |
| { |
| if (!mb_x) |
| return mb_y ? VERT_PRED8x8 : (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8); |
| else |
| return mb_y ? mode : HOR_PRED8x8; |
| } |
| |
| static av_always_inline |
| int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y, int vp7) |
| { |
| switch (mode) { |
| case DC_PRED8x8: |
| return check_dc_pred8x8_mode(mode, mb_x, mb_y); |
| case VERT_PRED8x8: |
| return !mb_y ? (vp7 ? DC_128_PRED8x8 : DC_127_PRED8x8) : mode; |
| case HOR_PRED8x8: |
| return !mb_x ? (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8) : mode; |
| case PLANE_PRED8x8: /* TM */ |
| return check_tm_pred8x8_mode(mode, mb_x, mb_y, vp7); |
| } |
| return mode; |
| } |
| |
| static av_always_inline |
| int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y, int vp7) |
| { |
| if (!mb_x) { |
| return mb_y ? VERT_VP8_PRED : (vp7 ? DC_128_PRED : DC_129_PRED); |
| } else { |
| return mb_y ? mode : HOR_VP8_PRED; |
| } |
| } |
| |
| static av_always_inline |
| int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, |
| int *copy_buf, int vp7) |
| { |
| switch (mode) { |
| case VERT_PRED: |
| if (!mb_x && mb_y) { |
| *copy_buf = 1; |
| return mode; |
| } |
| /* fall-through */ |
| case DIAG_DOWN_LEFT_PRED: |
| case VERT_LEFT_PRED: |
| return !mb_y ? (vp7 ? DC_128_PRED : DC_127_PRED) : mode; |
| case HOR_PRED: |
| if (!mb_y) { |
| *copy_buf = 1; |
| return mode; |
| } |
| /* fall-through */ |
| case HOR_UP_PRED: |
| return !mb_x ? (vp7 ? DC_128_PRED : DC_129_PRED) : mode; |
| case TM_VP8_PRED: |
| return check_tm_pred4x4_mode(mode, mb_x, mb_y, vp7); |
| case DC_PRED: /* 4x4 DC doesn't use the same "H.264-style" exceptions |
| * as 16x16/8x8 DC */ |
| case DIAG_DOWN_RIGHT_PRED: |
| case VERT_RIGHT_PRED: |
| case HOR_DOWN_PRED: |
| if (!mb_y || !mb_x) |
| *copy_buf = 1; |
| return mode; |
| } |
| return mode; |
| } |
| |
| static av_always_inline |
| void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], |
| VP8Macroblock *mb, int mb_x, int mb_y, int is_vp7) |
| { |
| int x, y, mode, nnz; |
| uint32_t tr; |
| |
| /* for the first row, we need to run xchg_mb_border to init the top edge |
| * to 127 otherwise, skip it if we aren't going to deblock */ |
| if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0) |
| xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], |
| s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
| s->filter.simple, 1); |
| |
| if (mb->mode < MODE_I4x4) { |
| mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y, is_vp7); |
| s->hpc.pred16x16[mode](dst[0], s->linesize); |
| } else { |
| uint8_t *ptr = dst[0]; |
| uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb; |
| const uint8_t lo = is_vp7 ? 128 : 127; |
| const uint8_t hi = is_vp7 ? 128 : 129; |
| uint8_t tr_top[4] = { lo, lo, lo, lo }; |
| |
| // all blocks on the right edge of the macroblock use bottom edge |
| // the top macroblock for their topright edge |
| uint8_t *tr_right = ptr - s->linesize + 16; |
| |
| // if we're on the right edge of the frame, said edge is extended |
| // from the top macroblock |
| if (mb_y && mb_x == s->mb_width - 1) { |
| tr = tr_right[-1] * 0x01010101u; |
| tr_right = (uint8_t *) &tr; |
| } |
| |
| if (mb->skip) |
| AV_ZERO128(td->non_zero_count_cache); |
| |
| for (y = 0; y < 4; y++) { |
| uint8_t *topright = ptr + 4 - s->linesize; |
| for (x = 0; x < 4; x++) { |
| int copy = 0; |
| ptrdiff_t linesize = s->linesize; |
| uint8_t *dst = ptr + 4 * x; |
| LOCAL_ALIGNED(4, uint8_t, copy_dst, [5 * 8]); |
| |
| if ((y == 0 || x == 3) && mb_y == 0) { |
| topright = tr_top; |
| } else if (x == 3) |
| topright = tr_right; |
| |
| mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x, |
| mb_y + y, ©, is_vp7); |
| if (copy) { |
| dst = copy_dst + 12; |
| linesize = 8; |
| if (!(mb_y + y)) { |
| copy_dst[3] = lo; |
| AV_WN32A(copy_dst + 4, lo * 0x01010101U); |
| } else { |
| AV_COPY32(copy_dst + 4, ptr + 4 * x - s->linesize); |
| if (!(mb_x + x)) { |
| copy_dst[3] = hi; |
| } else { |
| copy_dst[3] = ptr[4 * x - s->linesize - 1]; |
| } |
| } |
| if (!(mb_x + x)) { |
| copy_dst[11] = |
| copy_dst[19] = |
| copy_dst[27] = |
| copy_dst[35] = hi; |
| } else { |
| copy_dst[11] = ptr[4 * x - 1]; |
| copy_dst[19] = ptr[4 * x + s->linesize - 1]; |
| copy_dst[27] = ptr[4 * x + s->linesize * 2 - 1]; |
| copy_dst[35] = ptr[4 * x + s->linesize * 3 - 1]; |
| } |
| } |
| s->hpc.pred4x4[mode](dst, topright, linesize); |
| if (copy) { |
| AV_COPY32(ptr + 4 * x, copy_dst + 12); |
| AV_COPY32(ptr + 4 * x + s->linesize, copy_dst + 20); |
| AV_COPY32(ptr + 4 * x + s->linesize * 2, copy_dst + 28); |
| AV_COPY32(ptr + 4 * x + s->linesize * 3, copy_dst + 36); |
| } |
| |
| nnz = td->non_zero_count_cache[y][x]; |
| if (nnz) { |
| if (nnz == 1) |
| s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x, |
| td->block[y][x], s->linesize); |
| else |
| s->vp8dsp.vp8_idct_add(ptr + 4 * x, |
| td->block[y][x], s->linesize); |
| } |
| topright += 4; |
| } |
| |
| ptr += 4 * s->linesize; |
| intra4x4 += 4; |
| } |
| } |
| |
| mode = check_intra_pred8x8_mode_emuedge(mb->chroma_pred_mode, |
| mb_x, mb_y, is_vp7); |
| s->hpc.pred8x8[mode](dst[1], s->uvlinesize); |
| s->hpc.pred8x8[mode](dst[2], s->uvlinesize); |
| |
| if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0) |
| xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], |
| s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
| s->filter.simple, 0); |
| } |
| |
| static const uint8_t subpel_idx[3][8] = { |
| { 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels, |
| // also function pointer index |
| { 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required |
| { 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels |
| }; |
| |
| /** |
| * luma MC function |
| * |
| * @param s VP8 decoding context |
| * @param dst target buffer for block data at block position |
| * @param ref reference picture buffer at origin (0, 0) |
| * @param mv motion vector (relative to block position) to get pixel data from |
| * @param x_off horizontal position of block from origin (0, 0) |
| * @param y_off vertical position of block from origin (0, 0) |
| * @param block_w width of block (16, 8 or 4) |
| * @param block_h height of block (always same as block_w) |
| * @param width width of src/dst plane data |
| * @param height height of src/dst plane data |
| * @param linesize size of a single line of plane data, including padding |
| * @param mc_func motion compensation function pointers (bilinear or sixtap MC) |
| */ |
| static av_always_inline |
| void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst, |
| ThreadFrame *ref, const VP56mv *mv, |
| int x_off, int y_off, int block_w, int block_h, |
| int width, int height, ptrdiff_t linesize, |
| vp8_mc_func mc_func[3][3]) |
| { |
| uint8_t *src = ref->f->data[0]; |
| |
| if (AV_RN32A(mv)) { |
| ptrdiff_t src_linesize = linesize; |
| |
| int mx = (mv->x * 2) & 7, mx_idx = subpel_idx[0][mx]; |
| int my = (mv->y * 2) & 7, my_idx = subpel_idx[0][my]; |
| |
| x_off += mv->x >> 2; |
| y_off += mv->y >> 2; |
| |
| // edge emulation |
| ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 4, 0); |
| src += y_off * linesize + x_off; |
| if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] || |
| y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) { |
| s->vdsp.emulated_edge_mc(td->edge_emu_buffer, |
| src - my_idx * linesize - mx_idx, |
| EDGE_EMU_LINESIZE, linesize, |
| block_w + subpel_idx[1][mx], |
| block_h + subpel_idx[1][my], |
| x_off - mx_idx, y_off - my_idx, |
| width, height); |
| src = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx; |
| src_linesize = EDGE_EMU_LINESIZE; |
| } |
| mc_func[my_idx][mx_idx](dst, linesize, src, src_linesize, block_h, mx, my); |
| } else { |
| ff_thread_await_progress(ref, (3 + y_off + block_h) >> 4, 0); |
| mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, |
| linesize, block_h, 0, 0); |
| } |
| } |
| |
| /** |
| * chroma MC function |
| * |
| * @param s VP8 decoding context |
| * @param dst1 target buffer for block data at block position (U plane) |
| * @param dst2 target buffer for block data at block position (V plane) |
| * @param ref reference picture buffer at origin (0, 0) |
| * @param mv motion vector (relative to block position) to get pixel data from |
| * @param x_off horizontal position of block from origin (0, 0) |
| * @param y_off vertical position of block from origin (0, 0) |
| * @param block_w width of block (16, 8 or 4) |
| * @param block_h height of block (always same as block_w) |
| * @param width width of src/dst plane data |
| * @param height height of src/dst plane data |
| * @param linesize size of a single line of plane data, including padding |
| * @param mc_func motion compensation function pointers (bilinear or sixtap MC) |
| */ |
| static av_always_inline |
| void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1, |
| uint8_t *dst2, ThreadFrame *ref, const VP56mv *mv, |
| int x_off, int y_off, int block_w, int block_h, |
| int width, int height, ptrdiff_t linesize, |
| vp8_mc_func mc_func[3][3]) |
| { |
| uint8_t *src1 = ref->f->data[1], *src2 = ref->f->data[2]; |
| |
| if (AV_RN32A(mv)) { |
| int mx = mv->x & 7, mx_idx = subpel_idx[0][mx]; |
| int my = mv->y & 7, my_idx = subpel_idx[0][my]; |
| |
| x_off += mv->x >> 3; |
| y_off += mv->y >> 3; |
| |
| // edge emulation |
| src1 += y_off * linesize + x_off; |
| src2 += y_off * linesize + x_off; |
| ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 3, 0); |
| if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] || |
| y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) { |
| s->vdsp.emulated_edge_mc(td->edge_emu_buffer, |
| src1 - my_idx * linesize - mx_idx, |
| EDGE_EMU_LINESIZE, linesize, |
| block_w + subpel_idx[1][mx], |
| block_h + subpel_idx[1][my], |
| x_off - mx_idx, y_off - my_idx, width, height); |
| src1 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx; |
| mc_func[my_idx][mx_idx](dst1, linesize, src1, EDGE_EMU_LINESIZE, block_h, mx, my); |
| |
| s->vdsp.emulated_edge_mc(td->edge_emu_buffer, |
| src2 - my_idx * linesize - mx_idx, |
| EDGE_EMU_LINESIZE, linesize, |
| block_w + subpel_idx[1][mx], |
| block_h + subpel_idx[1][my], |
| x_off - mx_idx, y_off - my_idx, width, height); |
| src2 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx; |
| mc_func[my_idx][mx_idx](dst2, linesize, src2, EDGE_EMU_LINESIZE, block_h, mx, my); |
| } else { |
| mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my); |
| mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my); |
| } |
| } else { |
| ff_thread_await_progress(ref, (3 + y_off + block_h) >> 3, 0); |
| mc_func[0][0](dst1, linesize, src1 + y_off * linesize + x_off, linesize, block_h, 0, 0); |
| mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0); |
| } |
| } |
| |
| static av_always_inline |
| void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], |
| ThreadFrame *ref_frame, int x_off, int y_off, |
| int bx_off, int by_off, int block_w, int block_h, |
| int width, int height, VP56mv *mv) |
| { |
| VP56mv uvmv = *mv; |
| |
| /* Y */ |
| vp8_mc_luma(s, td, dst[0] + by_off * s->linesize + bx_off, |
| ref_frame, mv, x_off + bx_off, y_off + by_off, |
| block_w, block_h, width, height, s->linesize, |
| s->put_pixels_tab[block_w == 8]); |
| |
| /* U/V */ |
| if (s->profile == 3) { |
| /* this block only applies VP8; it is safe to check |
| * only the profile, as VP7 profile <= 1 */ |
| uvmv.x &= ~7; |
| uvmv.y &= ~7; |
| } |
| x_off >>= 1; |
| y_off >>= 1; |
| bx_off >>= 1; |
| by_off >>= 1; |
| width >>= 1; |
| height >>= 1; |
| block_w >>= 1; |
| block_h >>= 1; |
| vp8_mc_chroma(s, td, dst[1] + by_off * s->uvlinesize + bx_off, |
| dst[2] + by_off * s->uvlinesize + bx_off, ref_frame, |
| &uvmv, x_off + bx_off, y_off + by_off, |
| block_w, block_h, width, height, s->uvlinesize, |
| s->put_pixels_tab[1 + (block_w == 4)]); |
| } |
| |
| /* Fetch pixels for estimated mv 4 macroblocks ahead. |
| * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */ |
| static av_always_inline |
| void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, |
| int mb_xy, int ref) |
| { |
| /* Don't prefetch refs that haven't been used very often this frame. */ |
| if (s->ref_count[ref - 1] > (mb_xy >> 5)) { |
| int x_off = mb_x << 4, y_off = mb_y << 4; |
| int mx = (mb->mv.x >> 2) + x_off + 8; |
| int my = (mb->mv.y >> 2) + y_off; |
| uint8_t **src = s->framep[ref]->tf.f->data; |
| int off = mx + (my + (mb_x & 3) * 4) * s->linesize + 64; |
| /* For threading, a ff_thread_await_progress here might be useful, but |
| * it actually slows down the decoder. Since a bad prefetch doesn't |
| * generate bad decoder output, we don't run it here. */ |
| s->vdsp.prefetch(src[0] + off, s->linesize, 4); |
| off = (mx >> 1) + ((my >> 1) + (mb_x & 7)) * s->uvlinesize + 64; |
| s->vdsp.prefetch(src[1] + off, src[2] - src[1], 2); |
| } |
| } |
| |
| /** |
| * Apply motion vectors to prediction buffer, chapter 18. |
| */ |
| static av_always_inline |
| void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], |
| VP8Macroblock *mb, int mb_x, int mb_y) |
| { |
| int x_off = mb_x << 4, y_off = mb_y << 4; |
| int width = 16 * s->mb_width, height = 16 * s->mb_height; |
| ThreadFrame *ref = &s->framep[mb->ref_frame]->tf; |
| VP56mv *bmv = mb->bmv; |
| |
| switch (mb->partitioning) { |
| case VP8_SPLITMVMODE_NONE: |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 0, 0, 16, 16, width, height, &mb->mv); |
| break; |
| case VP8_SPLITMVMODE_4x4: { |
| int x, y; |
| VP56mv uvmv; |
| |
| /* Y */ |
| for (y = 0; y < 4; y++) { |
| for (x = 0; x < 4; x++) { |
| vp8_mc_luma(s, td, dst[0] + 4 * y * s->linesize + x * 4, |
| ref, &bmv[4 * y + x], |
| 4 * x + x_off, 4 * y + y_off, 4, 4, |
| width, height, s->linesize, |
| s->put_pixels_tab[2]); |
| } |
| } |
| |
| /* U/V */ |
| x_off >>= 1; |
| y_off >>= 1; |
| width >>= 1; |
| height >>= 1; |
| for (y = 0; y < 2; y++) { |
| for (x = 0; x < 2; x++) { |
| uvmv.x = mb->bmv[2 * y * 4 + 2 * x ].x + |
| mb->bmv[2 * y * 4 + 2 * x + 1].x + |
| mb->bmv[(2 * y + 1) * 4 + 2 * x ].x + |
| mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].x; |
| uvmv.y = mb->bmv[2 * y * 4 + 2 * x ].y + |
| mb->bmv[2 * y * 4 + 2 * x + 1].y + |
| mb->bmv[(2 * y + 1) * 4 + 2 * x ].y + |
| mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].y; |
| uvmv.x = (uvmv.x + 2 + FF_SIGNBIT(uvmv.x)) >> 2; |
| uvmv.y = (uvmv.y + 2 + FF_SIGNBIT(uvmv.y)) >> 2; |
| if (s->profile == 3) { |
| uvmv.x &= ~7; |
| uvmv.y &= ~7; |
| } |
| vp8_mc_chroma(s, td, dst[1] + 4 * y * s->uvlinesize + x * 4, |
| dst[2] + 4 * y * s->uvlinesize + x * 4, ref, |
| &uvmv, 4 * x + x_off, 4 * y + y_off, 4, 4, |
| width, height, s->uvlinesize, |
| s->put_pixels_tab[2]); |
| } |
| } |
| break; |
| } |
| case VP8_SPLITMVMODE_16x8: |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 0, 0, 16, 8, width, height, &bmv[0]); |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 0, 8, 16, 8, width, height, &bmv[1]); |
| break; |
| case VP8_SPLITMVMODE_8x16: |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 0, 0, 8, 16, width, height, &bmv[0]); |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 8, 0, 8, 16, width, height, &bmv[1]); |
| break; |
| case VP8_SPLITMVMODE_8x8: |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 0, 0, 8, 8, width, height, &bmv[0]); |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 8, 0, 8, 8, width, height, &bmv[1]); |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 0, 8, 8, 8, width, height, &bmv[2]); |
| vp8_mc_part(s, td, dst, ref, x_off, y_off, |
| 8, 8, 8, 8, width, height, &bmv[3]); |
| break; |
| } |
| } |
| |
| static av_always_inline |
| void idct_mb(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb) |
| { |
| int x, y, ch; |
| |
| if (mb->mode != MODE_I4x4) { |
| uint8_t *y_dst = dst[0]; |
| for (y = 0; y < 4; y++) { |
| uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[y]); |
| if (nnz4) { |
| if (nnz4 & ~0x01010101) { |
| for (x = 0; x < 4; x++) { |
| if ((uint8_t) nnz4 == 1) |
| s->vp8dsp.vp8_idct_dc_add(y_dst + 4 * x, |
| td->block[y][x], |
| s->linesize); |
| else if ((uint8_t) nnz4 > 1) |
| s->vp8dsp.vp8_idct_add(y_dst + 4 * x, |
| td->block[y][x], |
| s->linesize); |
| nnz4 >>= 8; |
| if (!nnz4) |
| break; |
| } |
| } else { |
| s->vp8dsp.vp8_idct_dc_add4y(y_dst, td->block[y], s->linesize); |
| } |
| } |
| y_dst += 4 * s->linesize; |
| } |
| } |
| |
| for (ch = 0; ch < 2; ch++) { |
| uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[4 + ch]); |
| if (nnz4) { |
| uint8_t *ch_dst = dst[1 + ch]; |
| if (nnz4 & ~0x01010101) { |
| for (y = 0; y < 2; y++) { |
| for (x = 0; x < 2; x++) { |
| if ((uint8_t) nnz4 == 1) |
| s->vp8dsp.vp8_idct_dc_add(ch_dst + 4 * x, |
| td->block[4 + ch][(y << 1) + x], |
| s->uvlinesize); |
| else if ((uint8_t) nnz4 > 1) |
| s->vp8dsp.vp8_idct_add(ch_dst + 4 * x, |
| td->block[4 + ch][(y << 1) + x], |
| s->uvlinesize); |
| nnz4 >>= 8; |
| if (!nnz4) |
| goto chroma_idct_end; |
| } |
| ch_dst += 4 * s->uvlinesize; |
| } |
| } else { |
| s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, td->block[4 + ch], s->uvlinesize); |
| } |
| } |
| chroma_idct_end: |
| ; |
| } |
| } |
| |
| static av_always_inline |
| void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, |
| VP8FilterStrength *f, int is_vp7) |
| { |
| int interior_limit, filter_level; |
| |
| if (s->segmentation.enabled) { |
| filter_level = s->segmentation.filter_level[mb->segment]; |
| if (!s->segmentation.absolute_vals) |
| filter_level += s->filter.level; |
| } else |
| filter_level = s->filter.level; |
| |
| if (s->lf_delta.enabled) { |
| filter_level += s->lf_delta.ref[mb->ref_frame]; |
| filter_level += s->lf_delta.mode[mb->mode]; |
| } |
| |
| filter_level = av_clip_uintp2(filter_level, 6); |
| |
| interior_limit = filter_level; |
| if (s->filter.sharpness) { |
| interior_limit >>= (s->filter.sharpness + 3) >> 2; |
| interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness); |
| } |
| interior_limit = FFMAX(interior_limit, 1); |
| |
| f->filter_level = filter_level; |
| f->inner_limit = interior_limit; |
| f->inner_filter = is_vp7 || !mb->skip || mb->mode == MODE_I4x4 || |
| mb->mode == VP8_MVMODE_SPLIT; |
| } |
| |
| static av_always_inline |
| void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, |
| int mb_x, int mb_y, int is_vp7) |
| { |
| int mbedge_lim, bedge_lim_y, bedge_lim_uv, hev_thresh; |
| int filter_level = f->filter_level; |
| int inner_limit = f->inner_limit; |
| int inner_filter = f->inner_filter; |
| ptrdiff_t linesize = s->linesize; |
| ptrdiff_t uvlinesize = s->uvlinesize; |
| static const uint8_t hev_thresh_lut[2][64] = { |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3 }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 2, 2, 2, 2 } |
| }; |
| |
| if (!filter_level) |
| return; |
| |
| if (is_vp7) { |
| bedge_lim_y = filter_level; |
| bedge_lim_uv = filter_level * 2; |
| mbedge_lim = filter_level + 2; |
| } else { |
| bedge_lim_y = |
| bedge_lim_uv = filter_level * 2 + inner_limit; |
| mbedge_lim = bedge_lim_y + 4; |
| } |
| |
| hev_thresh = hev_thresh_lut[s->keyframe][filter_level]; |
| |
| if (mb_x) { |
| s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize, |
| mbedge_lim, inner_limit, hev_thresh); |
| s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize, |
| mbedge_lim, inner_limit, hev_thresh); |
| } |
| |
| #define H_LOOP_FILTER_16Y_INNER(cond) \ |
| if (cond && inner_filter) { \ |
| s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 4, linesize, \ |
| bedge_lim_y, inner_limit, \ |
| hev_thresh); \ |
| s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 8, linesize, \ |
| bedge_lim_y, inner_limit, \ |
| hev_thresh); \ |
| s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 12, linesize, \ |
| bedge_lim_y, inner_limit, \ |
| hev_thresh); \ |
| s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, \ |
| uvlinesize, bedge_lim_uv, \ |
| inner_limit, hev_thresh); \ |
| } |
| |
| H_LOOP_FILTER_16Y_INNER(!is_vp7) |
| |
| if (mb_y) { |
| s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize, |
| mbedge_lim, inner_limit, hev_thresh); |
| s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize, |
| mbedge_lim, inner_limit, hev_thresh); |
| } |
| |
| if (inner_filter) { |
| s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 4 * linesize, |
| linesize, bedge_lim_y, |
| inner_limit, hev_thresh); |
| s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 8 * linesize, |
| linesize, bedge_lim_y, |
| inner_limit, hev_thresh); |
| s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 12 * linesize, |
| linesize, bedge_lim_y, |
| inner_limit, hev_thresh); |
| s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize, |
| dst[2] + 4 * uvlinesize, |
| uvlinesize, bedge_lim_uv, |
| inner_limit, hev_thresh); |
| } |
| |
| H_LOOP_FILTER_16Y_INNER(is_vp7) |
| } |
| |
| static av_always_inline |
| void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, |
| int mb_x, int mb_y) |
| { |
| int mbedge_lim, bedge_lim; |
| int filter_level = f->filter_level; |
| int inner_limit = f->inner_limit; |
| int inner_filter = f->inner_filter; |
| ptrdiff_t linesize = s->linesize; |
| |
| if (!filter_level) |
| return; |
| |
| bedge_lim = 2 * filter_level + inner_limit; |
| mbedge_lim = bedge_lim + 4; |
| |
| if (mb_x) |
| s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim); |
| if (inner_filter) { |
| s->vp8dsp.vp8_h_loop_filter_simple(dst + 4, linesize, bedge_lim); |
| s->vp8dsp.vp8_h_loop_filter_simple(dst + 8, linesize, bedge_lim); |
| s->vp8dsp.vp8_h_loop_filter_simple(dst + 12, linesize, bedge_lim); |
| } |
| |
| if (mb_y) |
| s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim); |
| if (inner_filter) { |
| s->vp8dsp.vp8_v_loop_filter_simple(dst + 4 * linesize, linesize, bedge_lim); |
| s->vp8dsp.vp8_v_loop_filter_simple(dst + 8 * linesize, linesize, bedge_lim); |
| s->vp8dsp.vp8_v_loop_filter_simple(dst + 12 * linesize, linesize, bedge_lim); |
| } |
| } |
| |
| #define MARGIN (16 << 2) |
| static av_always_inline |
| int vp78_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe, |
| VP8Frame *prev_frame, int is_vp7) |
| { |
| VP8Context *s = avctx->priv_data; |
| int mb_x, mb_y; |
| |
| s->mv_bounds.mv_min.y = -MARGIN; |
| s->mv_bounds.mv_max.y = ((s->mb_height - 1) << 6) + MARGIN; |
| for (mb_y = 0; mb_y < s->mb_height; mb_y++) { |
| VP8Macroblock *mb = s->macroblocks_base + |
| ((s->mb_width + 1) * (mb_y + 1) + 1); |
| int mb_xy = mb_y * s->mb_width; |
| |
| AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101); |
| |
| s->mv_bounds.mv_min.x = -MARGIN; |
| s->mv_bounds.mv_max.x = ((s->mb_width - 1) << 6) + MARGIN; |
| |
| if (vpX_rac_is_end(&s->c)) { |
| return AVERROR_INVALIDDATA; |
| } |
| for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) { |
| if (mb_y == 0) |
| AV_WN32A((mb - s->mb_width - 1)->intra4x4_pred_mode_top, |
| DC_PRED * 0x01010101); |
| decode_mb_mode(s, &s->mv_bounds, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy, |
| prev_frame && prev_frame->seg_map ? |
| prev_frame->seg_map->data + mb_xy : NULL, 1, is_vp7); |
| s->mv_bounds.mv_min.x -= 64; |
| s->mv_bounds.mv_max.x -= 64; |
| } |
| s->mv_bounds.mv_min.y -= 64; |
| s->mv_bounds.mv_max.y -= 64; |
| } |
| return 0; |
| } |
| |
| static int vp7_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, |
| VP8Frame *prev_frame) |
| { |
| return vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP7); |
| } |
| |
| static int vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, |
| VP8Frame *prev_frame) |
| { |
| return vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP8); |
| } |
| |
| #if HAVE_THREADS |
| #define check_thread_pos(td, otd, mb_x_check, mb_y_check) \ |
| do { \ |
| int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF); \ |
| if (atomic_load(&otd->thread_mb_pos) < tmp) { \ |
| pthread_mutex_lock(&otd->lock); \ |
| atomic_store(&td->wait_mb_pos, tmp); \ |
| do { \ |
| if (atomic_load(&otd->thread_mb_pos) >= tmp) \ |
| break; \ |
| pthread_cond_wait(&otd->cond, &otd->lock); \ |
| } while (1); \ |
| atomic_store(&td->wait_mb_pos, INT_MAX); \ |
| pthread_mutex_unlock(&otd->lock); \ |
| } \ |
| } while (0) |
| |
| #define update_pos(td, mb_y, mb_x) \ |
| do { \ |
| int pos = (mb_y << 16) | (mb_x & 0xFFFF); \ |
| int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && \ |
| (num_jobs > 1); \ |
| int is_null = !next_td || !prev_td; \ |
| int pos_check = (is_null) ? 1 : \ |
| (next_td != td && pos >= atomic_load(&next_td->wait_mb_pos)) || \ |
| (prev_td != td && pos >= atomic_load(&prev_td->wait_mb_pos)); \ |
| atomic_store(&td->thread_mb_pos, pos); \ |
| if (sliced_threading && pos_check) { \ |
| pthread_mutex_lock(&td->lock); \ |
| pthread_cond_broadcast(&td->cond); \ |
| pthread_mutex_unlock(&td->lock); \ |
| } \ |
| } while (0) |
| #else |
| #define check_thread_pos(td, otd, mb_x_check, mb_y_check) while(0) |
| #define update_pos(td, mb_y, mb_x) while(0) |
| #endif |
| |
| static av_always_inline int decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, |
| int jobnr, int threadnr, int is_vp7) |
| { |
| VP8Context *s = avctx->priv_data; |
| VP8ThreadData *prev_td, *next_td, *td = &s->thread_data[threadnr]; |
| int mb_y = atomic_load(&td->thread_mb_pos) >> 16; |
| int mb_x, mb_xy = mb_y * s->mb_width; |
| int num_jobs = s->num_jobs; |
| VP8Frame *curframe = s->curframe, *prev_frame = s->prev_frame; |
| VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions - 1)]; |
| VP8Macroblock *mb; |
| uint8_t *dst[3] = { |
| curframe->tf.f->data[0] + 16 * mb_y * s->linesize, |
| curframe->tf.f->data[1] + 8 * mb_y * s->uvlinesize, |
| curframe->tf.f->data[2] + 8 * mb_y * s->uvlinesize |
| }; |
| |
| if (vpX_rac_is_end(c)) |
| return AVERROR_INVALIDDATA; |
| |
| if (mb_y == 0) |
| prev_td = td; |
| else |
| prev_td = &s->thread_data[(jobnr + num_jobs - 1) % num_jobs]; |
| if (mb_y == s->mb_height - 1) |
| next_td = td; |
| else |
| next_td = &s->thread_data[(jobnr + 1) % num_jobs]; |
| if (s->mb_layout == 1) |
| mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1); |
| else { |
| // Make sure the previous frame has read its segmentation map, |
| // if we re-use the same map. |
| if (prev_frame && s->segmentation.enabled && |
| !s->segmentation.update_map) |
| ff_thread_await_progress(&prev_frame->tf, mb_y, 0); |
| mb = s->macroblocks + (s->mb_height - mb_y - 1) * 2; |
| memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock |
| AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101); |
| } |
| |
| if (!is_vp7 || mb_y == 0) |
| memset(td->left_nnz, 0, sizeof(td->left_nnz)); |
| |
| td->mv_bounds.mv_min.x = -MARGIN; |
| td->mv_bounds.mv_max.x = ((s->mb_width - 1) << 6) + MARGIN; |
| |
| for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) { |
| if (vpX_rac_is_end(c)) |
| return AVERROR_INVALIDDATA; |
| // Wait for previous thread to read mb_x+2, and reach mb_y-1. |
| if (prev_td != td) { |
| if (threadnr != 0) { |
| check_thread_pos(td, prev_td, |
| mb_x + (is_vp7 ? 2 : 1), |
| mb_y - (is_vp7 ? 2 : 1)); |
| } else { |
| check_thread_pos(td, prev_td, |
| mb_x + (is_vp7 ? 2 : 1) + s->mb_width + 3, |
| mb_y - (is_vp7 ? 2 : 1)); |
| } |
| } |
| |
| s->vdsp.prefetch(dst[0] + (mb_x & 3) * 4 * s->linesize + 64, |
| s->linesize, 4); |
| s->vdsp.prefetch(dst[1] + (mb_x & 7) * s->uvlinesize + 64, |
| dst[2] - dst[1], 2); |
| |
| if (!s->mb_layout) |
| decode_mb_mode(s, &td->mv_bounds, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy, |
| prev_frame && prev_frame->seg_map ? |
| prev_frame->seg_map->data + mb_xy : NULL, 0, is_vp7); |
| |
| prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS); |
| |
| if (!mb->skip) |
| decode_mb_coeffs(s, td, c, mb, s->top_nnz[mb_x], td->left_nnz, is_vp7); |
| |
| if (mb->mode <= MODE_I4x4) |
| intra_predict(s, td, dst, mb, mb_x, mb_y, is_vp7); |
| else |
| inter_predict(s, td, dst, mb, mb_x, mb_y); |
| |
| prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN); |
| |
| if (!mb->skip) { |
| idct_mb(s, td, dst, mb); |
| } else { |
| AV_ZERO64(td->left_nnz); |
| AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned |
| |
| /* Reset DC block predictors if they would exist |
| * if the mb had coefficients */ |
| if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) |