| /* |
| * Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net> |
| * Copyright (c) 2013 Paul B Mahol |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <float.h> |
| #include <math.h> |
| |
| #include "libavutil/opt.h" |
| #include "audio.h" |
| #include "avfilter.h" |
| #include "internal.h" |
| |
| #define HISTOGRAM_SIZE 8192 |
| #define HISTOGRAM_MAX (HISTOGRAM_SIZE-1) |
| |
| #define MEASURE_ALL UINT_MAX |
| #define MEASURE_NONE 0 |
| |
| #define MEASURE_DC_OFFSET (1 << 0) |
| #define MEASURE_MIN_LEVEL (1 << 1) |
| #define MEASURE_MAX_LEVEL (1 << 2) |
| #define MEASURE_MIN_DIFFERENCE (1 << 3) |
| #define MEASURE_MAX_DIFFERENCE (1 << 4) |
| #define MEASURE_MEAN_DIFFERENCE (1 << 5) |
| #define MEASURE_RMS_DIFFERENCE (1 << 6) |
| #define MEASURE_PEAK_LEVEL (1 << 7) |
| #define MEASURE_RMS_LEVEL (1 << 8) |
| #define MEASURE_RMS_PEAK (1 << 9) |
| #define MEASURE_RMS_TROUGH (1 << 10) |
| #define MEASURE_CREST_FACTOR (1 << 11) |
| #define MEASURE_FLAT_FACTOR (1 << 12) |
| #define MEASURE_PEAK_COUNT (1 << 13) |
| #define MEASURE_BIT_DEPTH (1 << 14) |
| #define MEASURE_DYNAMIC_RANGE (1 << 15) |
| #define MEASURE_ZERO_CROSSINGS (1 << 16) |
| #define MEASURE_ZERO_CROSSINGS_RATE (1 << 17) |
| #define MEASURE_NUMBER_OF_SAMPLES (1 << 18) |
| #define MEASURE_NUMBER_OF_NANS (1 << 19) |
| #define MEASURE_NUMBER_OF_INFS (1 << 20) |
| #define MEASURE_NUMBER_OF_DENORMALS (1 << 21) |
| #define MEASURE_NOISE_FLOOR (1 << 22) |
| #define MEASURE_NOISE_FLOOR_COUNT (1 << 23) |
| |
| #define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL) |
| |
| typedef struct ChannelStats { |
| double last; |
| double last_non_zero; |
| double min_non_zero; |
| double sigma_x, sigma_x2; |
| double avg_sigma_x2, min_sigma_x2, max_sigma_x2; |
| double min, max; |
| double nmin, nmax; |
| double min_run, max_run; |
| double min_runs, max_runs; |
| double min_diff, max_diff; |
| double diff1_sum; |
| double diff1_sum_x2; |
| uint64_t mask, imask; |
| uint64_t min_count, max_count; |
| uint64_t noise_floor_count; |
| uint64_t zero_runs; |
| uint64_t nb_samples; |
| uint64_t nb_nans; |
| uint64_t nb_infs; |
| uint64_t nb_denormals; |
| double *win_samples; |
| unsigned histogram[HISTOGRAM_SIZE]; |
| int win_pos; |
| int max_index; |
| double noise_floor; |
| } ChannelStats; |
| |
| typedef struct AudioStatsContext { |
| const AVClass *class; |
| ChannelStats *chstats; |
| int nb_channels; |
| uint64_t tc_samples; |
| double time_constant; |
| double mult; |
| int metadata; |
| int reset_count; |
| int nb_frames; |
| int maxbitdepth; |
| int measure_perchannel; |
| int measure_overall; |
| int is_float; |
| int is_double; |
| } AudioStatsContext; |
| |
| #define OFFSET(x) offsetof(AudioStatsContext, x) |
| #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
| |
| static const AVOption astats_options[] = { |
| { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, .01, 10, FLAGS }, |
| { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, |
| { "reset", "recalculate stats after this many frames", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS }, |
| { "measure_perchannel", "only measure_perchannel these per-channel statistics", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" }, |
| { "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, "measure" }, |
| { "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, "measure" }, |
| { "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, "measure" }, |
| { "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, "measure" }, |
| { "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, "measure" }, |
| { "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
| { "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
| { "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
| { "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, "measure" }, |
| { "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, "measure" }, |
| { "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, "measure" }, |
| { "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, "measure" }, |
| { "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, "measure" }, |
| { "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, "measure" }, |
| { "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, "measure" }, |
| { "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, "measure" }, |
| { "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, "measure" }, |
| { "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, "measure" }, |
| { "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, "measure" }, |
| { "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, "measure" }, |
| { "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, "measure" }, |
| { "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, "measure" }, |
| { "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, "measure" }, |
| { "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, "measure" }, |
| { "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, "measure" }, |
| { "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, "measure" }, |
| { "measure_overall", "only measure_perchannel these overall statistics", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(astats); |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| AVFilterFormats *formats; |
| AVFilterChannelLayouts *layouts; |
| static const enum AVSampleFormat sample_fmts[] = { |
| AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P, |
| AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P, |
| AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P, |
| AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP, |
| AV_SAMPLE_FMT_NONE |
| }; |
| int ret; |
| |
| layouts = ff_all_channel_counts(); |
| if (!layouts) |
| return AVERROR(ENOMEM); |
| ret = ff_set_common_channel_layouts(ctx, layouts); |
| if (ret < 0) |
| return ret; |
| |
| formats = ff_make_format_list(sample_fmts); |
| if (!formats) |
| return AVERROR(ENOMEM); |
| ret = ff_set_common_formats(ctx, formats); |
| if (ret < 0) |
| return ret; |
| |
| formats = ff_all_samplerates(); |
| if (!formats) |
| return AVERROR(ENOMEM); |
| return ff_set_common_samplerates(ctx, formats); |
| } |
| |
| static void reset_stats(AudioStatsContext *s) |
| { |
| int c; |
| |
| for (c = 0; c < s->nb_channels; c++) { |
| ChannelStats *p = &s->chstats[c]; |
| |
| p->min = p->nmin = p->min_sigma_x2 = DBL_MAX; |
| p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX; |
| p->min_non_zero = DBL_MAX; |
| p->min_diff = DBL_MAX; |
| p->max_diff = 0; |
| p->sigma_x = 0; |
| p->sigma_x2 = 0; |
| p->avg_sigma_x2 = 0; |
| p->min_run = 0; |
| p->max_run = 0; |
| p->min_runs = 0; |
| p->max_runs = 0; |
| p->diff1_sum = 0; |
| p->diff1_sum_x2 = 0; |
| p->mask = 0; |
| p->imask = 0xFFFFFFFFFFFFFFFF; |
| p->min_count = 0; |
| p->max_count = 0; |
| p->zero_runs = 0; |
| p->nb_samples = 0; |
| p->nb_nans = 0; |
| p->nb_infs = 0; |
| p->nb_denormals = 0; |
| p->last = NAN; |
| p->noise_floor = NAN; |
| p->noise_floor_count = 0; |
| p->win_pos = 0; |
| memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples)); |
| memset(p->histogram, 0, sizeof(p->histogram)); |
| } |
| } |
| |
| static int config_output(AVFilterLink *outlink) |
| { |
| AudioStatsContext *s = outlink->src->priv; |
| |
| s->chstats = av_calloc(sizeof(*s->chstats), outlink->channels); |
| if (!s->chstats) |
| return AVERROR(ENOMEM); |
| |
| s->tc_samples = 5 * s->time_constant * outlink->sample_rate + .5; |
| s->nb_channels = outlink->channels; |
| |
| for (int i = 0; i < s->nb_channels; i++) { |
| ChannelStats *p = &s->chstats[i]; |
| |
| p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples)); |
| if (!p->win_samples) |
| return AVERROR(ENOMEM); |
| } |
| |
| s->mult = exp((-1 / s->time_constant / outlink->sample_rate)); |
| s->nb_frames = 0; |
| s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8; |
| s->is_double = outlink->format == AV_SAMPLE_FMT_DBL || |
| outlink->format == AV_SAMPLE_FMT_DBLP; |
| |
| s->is_float = outlink->format == AV_SAMPLE_FMT_FLT || |
| outlink->format == AV_SAMPLE_FMT_FLTP; |
| |
| reset_stats(s); |
| |
| return 0; |
| } |
| |
| static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth) |
| { |
| unsigned result = s->maxbitdepth; |
| |
| mask = mask & (~imask); |
| |
| for (; result && !(mask & 1); --result, mask >>= 1); |
| |
| depth->den = result; |
| depth->num = 0; |
| |
| for (; result; --result, mask >>= 1) |
| if (mask & 1) |
| depth->num++; |
| } |
| |
| static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d) |
| { |
| if (d < p->min) |
| p->min = d; |
| if (d > p->max) |
| p->max = d; |
| } |
| |
| static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i) |
| { |
| double drop; |
| int index; |
| |
| if (d < p->min) { |
| p->min = d; |
| p->nmin = nd; |
| p->min_run = 1; |
| p->min_runs = 0; |
| p->min_count = 1; |
| } else if (d == p->min) { |
| p->min_count++; |
| p->min_run = d == p->last ? p->min_run + 1 : 1; |
| } else if (p->last == p->min) { |
| p->min_runs += p->min_run * p->min_run; |
| } |
| |
| if (d != 0 && FFABS(d) < p->min_non_zero) |
| p->min_non_zero = FFABS(d); |
| |
| if (d > p->max) { |
| p->max = d; |
| p->nmax = nd; |
| p->max_run = 1; |
| p->max_runs = 0; |
| p->max_count = 1; |
| } else if (d == p->max) { |
| p->max_count++; |
| p->max_run = d == p->last ? p->max_run + 1 : 1; |
| } else if (p->last == p->max) { |
| p->max_runs += p->max_run * p->max_run; |
| } |
| |
| if (d != 0) { |
| p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero); |
| p->last_non_zero = d; |
| } |
| |
| p->sigma_x += nd; |
| p->sigma_x2 += nd * nd; |
| p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd; |
| if (!isnan(p->last)) { |
| p->min_diff = FFMIN(p->min_diff, fabs(d - p->last)); |
| p->max_diff = FFMAX(p->max_diff, fabs(d - p->last)); |
| p->diff1_sum += fabs(d - p->last); |
| p->diff1_sum_x2 += (d - p->last) * (d - p->last); |
| } |
| p->last = d; |
| p->mask |= i; |
| p->imask &= i; |
| |
| drop = p->win_samples[p->win_pos]; |
| p->win_samples[p->win_pos] = nd; |
| index = av_clip(FFABS(nd) * HISTOGRAM_MAX, 0, HISTOGRAM_MAX); |
| p->max_index = FFMAX(p->max_index, index); |
| p->histogram[index]++; |
| if (!isnan(p->noise_floor)) |
| p->histogram[av_clip(FFABS(drop) * HISTOGRAM_MAX, 0, HISTOGRAM_MAX)]--; |
| p->win_pos++; |
| |
| while (p->histogram[p->max_index] == 0) |
| p->max_index--; |
| if (p->win_pos >= s->tc_samples || !isnan(p->noise_floor)) { |
| double noise_floor = 1.; |
| |
| for (int i = p->max_index; i >= 0; i--) { |
| if (p->histogram[i]) { |
| noise_floor = i / (double)HISTOGRAM_MAX; |
| break; |
| } |
| } |
| |
| if (isnan(p->noise_floor)) { |
| p->noise_floor = noise_floor; |
| p->noise_floor_count = 1; |
| } else { |
| if (noise_floor < p->noise_floor) { |
| p->noise_floor = noise_floor; |
| p->noise_floor_count = 1; |
| } else if (noise_floor == p->noise_floor) { |
| p->noise_floor_count++; |
| } |
| } |
| } |
| |
| if (p->win_pos >= s->tc_samples) { |
| p->win_pos = 0; |
| } |
| |
| if (p->nb_samples >= s->tc_samples) { |
| p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2); |
| p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2); |
| } |
| p->nb_samples++; |
| } |
| |
| static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d) |
| { |
| int type = fpclassify(d); |
| |
| p->nb_nans += type == FP_NAN; |
| p->nb_infs += type == FP_INFINITE; |
| p->nb_denormals += type == FP_SUBNORMAL; |
| } |
| |
| static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d) |
| { |
| int type = fpclassify(d); |
| |
| p->nb_nans += type == FP_NAN; |
| p->nb_infs += type == FP_INFINITE; |
| p->nb_denormals += type == FP_SUBNORMAL; |
| } |
| |
| static void set_meta(AVDictionary **metadata, int chan, const char *key, |
| const char *fmt, double val) |
| { |
| uint8_t value[128]; |
| uint8_t key2[128]; |
| |
| snprintf(value, sizeof(value), fmt, val); |
| if (chan) |
| snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key); |
| else |
| snprintf(key2, sizeof(key2), "lavfi.astats.%s", key); |
| av_dict_set(metadata, key2, value, 0); |
| } |
| |
| #define LINEAR_TO_DB(x) (log10(x) * 20) |
| |
| static void set_metadata(AudioStatsContext *s, AVDictionary **metadata) |
| { |
| uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; |
| uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0; |
| double min_runs = 0, max_runs = 0, |
| min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, |
| nmin = DBL_MAX, nmax =-DBL_MAX, |
| max_sigma_x = 0, |
| diff1_sum = 0, |
| diff1_sum_x2 = 0, |
| sigma_x = 0, |
| sigma_x2 = 0, |
| noise_floor = 0, |
| min_sigma_x2 = DBL_MAX, |
| max_sigma_x2 =-DBL_MAX; |
| AVRational depth; |
| int c; |
| |
| for (c = 0; c < s->nb_channels; c++) { |
| ChannelStats *p = &s->chstats[c]; |
| |
| if (p->nb_samples < s->tc_samples) |
| p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples; |
| |
| min = FFMIN(min, p->min); |
| max = FFMAX(max, p->max); |
| nmin = FFMIN(nmin, p->nmin); |
| nmax = FFMAX(nmax, p->nmax); |
| min_diff = FFMIN(min_diff, p->min_diff); |
| max_diff = FFMAX(max_diff, p->max_diff); |
| diff1_sum += p->diff1_sum; |
| diff1_sum_x2 += p->diff1_sum_x2; |
| min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2); |
| max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); |
| sigma_x += p->sigma_x; |
| sigma_x2 += p->sigma_x2; |
| noise_floor = FFMAX(noise_floor, p->noise_floor); |
| noise_floor_count += p->noise_floor_count; |
| min_count += p->min_count; |
| max_count += p->max_count; |
| min_runs += p->min_runs; |
| max_runs += p->max_runs; |
| mask |= p->mask; |
| imask &= p->imask; |
| nb_samples += p->nb_samples; |
| nb_nans += p->nb_nans; |
| nb_infs += p->nb_infs; |
| nb_denormals += p->nb_denormals; |
| if (fabs(p->sigma_x) > fabs(max_sigma_x)) |
| max_sigma_x = p->sigma_x; |
| |
| if (s->measure_perchannel & MEASURE_DC_OFFSET) |
| set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples); |
| if (s->measure_perchannel & MEASURE_MIN_LEVEL) |
| set_meta(metadata, c + 1, "Min_level", "%f", p->min); |
| if (s->measure_perchannel & MEASURE_MAX_LEVEL) |
| set_meta(metadata, c + 1, "Max_level", "%f", p->max); |
| if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) |
| set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff); |
| if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) |
| set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff); |
| if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) |
| set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1)); |
| if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) |
| set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); |
| if (s->measure_perchannel & MEASURE_PEAK_LEVEL) |
| set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); |
| if (s->measure_perchannel & MEASURE_RMS_LEVEL) |
| set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); |
| if (s->measure_perchannel & MEASURE_RMS_PEAK) |
| set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); |
| if (s->measure_perchannel & MEASURE_RMS_TROUGH) |
| set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2))); |
| if (s->measure_perchannel & MEASURE_CREST_FACTOR) |
| set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1); |
| if (s->measure_perchannel & MEASURE_FLAT_FACTOR) |
| set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); |
| if (s->measure_perchannel & MEASURE_PEAK_COUNT) |
| set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count)); |
| if (s->measure_perchannel & MEASURE_NOISE_FLOOR) |
| set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor)); |
| if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) |
| set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count); |
| if (s->measure_perchannel & MEASURE_BIT_DEPTH) { |
| bit_depth(s, p->mask, p->imask, &depth); |
| set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num); |
| set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den); |
| } |
| if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) |
| set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); |
| if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) |
| set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs); |
| if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) |
| set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples); |
| if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) |
| set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans); |
| if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) |
| set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs); |
| if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) |
| set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals); |
| } |
| |
| if (s->measure_overall & MEASURE_DC_OFFSET) |
| set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels)); |
| if (s->measure_overall & MEASURE_MIN_LEVEL) |
| set_meta(metadata, 0, "Overall.Min_level", "%f", min); |
| if (s->measure_overall & MEASURE_MAX_LEVEL) |
| set_meta(metadata, 0, "Overall.Max_level", "%f", max); |
| if (s->measure_overall & MEASURE_MIN_DIFFERENCE) |
| set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff); |
| if (s->measure_overall & MEASURE_MAX_DIFFERENCE) |
| set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff); |
| if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) |
| set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels)); |
| if (s->measure_overall & MEASURE_RMS_DIFFERENCE) |
| set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); |
| if (s->measure_overall & MEASURE_PEAK_LEVEL) |
| set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax))); |
| if (s->measure_overall & MEASURE_RMS_LEVEL) |
| set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); |
| if (s->measure_overall & MEASURE_RMS_PEAK) |
| set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2))); |
| if (s->measure_overall & MEASURE_RMS_TROUGH) |
| set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2))); |
| if (s->measure_overall & MEASURE_FLAT_FACTOR) |
| set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); |
| if (s->measure_overall & MEASURE_PEAK_COUNT) |
| set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels); |
| if (s->measure_overall & MEASURE_NOISE_FLOOR) |
| set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor)); |
| if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) |
| set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels); |
| if (s->measure_overall & MEASURE_BIT_DEPTH) { |
| bit_depth(s, mask, imask, &depth); |
| set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num); |
| set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den); |
| } |
| if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) |
| set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels); |
| if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) |
| set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels); |
| if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) |
| set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels); |
| if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) |
| set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels); |
| } |
| |
| #define UPDATE_STATS_P(type, update_func, update_float, channel_func) \ |
| for (int c = start; c < end; c++) { \ |
| ChannelStats *p = &s->chstats[c]; \ |
| const type *src = (const type *)data[c]; \ |
| const type * const srcend = src + samples; \ |
| for (; src < srcend; src++) { \ |
| update_func; \ |
| update_float; \ |
| } \ |
| channel_func; \ |
| } |
| |
| #define UPDATE_STATS_I(type, update_func, update_float, channel_func) \ |
| for (int c = start; c < end; c++) { \ |
| ChannelStats *p = &s->chstats[c]; \ |
| const type *src = (const type *)data[0]; \ |
| const type * const srcend = src + samples * channels; \ |
| for (src += c; src < srcend; src += channels) { \ |
| update_func; \ |
| update_float; \ |
| } \ |
| channel_func; \ |
| } |
| |
| #define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \ |
| if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \ |
| UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \ |
| } else { \ |
| UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \ |
| } |
| |
| static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
| { |
| AudioStatsContext *s = ctx->priv; |
| AVFilterLink *inlink = ctx->inputs[0]; |
| AVFrame *buf = arg; |
| const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data; |
| const int channels = s->nb_channels; |
| const int samples = buf->nb_samples; |
| const int start = (buf->channels * jobnr) / nb_jobs; |
| const int end = (buf->channels * (jobnr+1)) / nb_jobs; |
| |
| switch (inlink->format) { |
| case AV_SAMPLE_FMT_DBLP: |
| UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63))); |
| break; |
| case AV_SAMPLE_FMT_DBL: |
| UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63))); |
| break; |
| case AV_SAMPLE_FMT_FLTP: |
| UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31))); |
| break; |
| case AV_SAMPLE_FMT_FLT: |
| UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31))); |
| break; |
| case AV_SAMPLE_FMT_S64P: |
| UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src); |
| break; |
| case AV_SAMPLE_FMT_S64: |
| UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src); |
| break; |
| case AV_SAMPLE_FMT_S32P: |
| UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src); |
| break; |
| case AV_SAMPLE_FMT_S32: |
| UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src); |
| break; |
| case AV_SAMPLE_FMT_S16P: |
| UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src); |
| break; |
| case AV_SAMPLE_FMT_S16: |
| UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *buf) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| AudioStatsContext *s = ctx->priv; |
| AVDictionary **metadata = &buf->metadata; |
| |
| if (s->reset_count > 0) { |
| if (s->nb_frames >= s->reset_count) { |
| reset_stats(s); |
| s->nb_frames = 0; |
| } |
| s->nb_frames++; |
| } |
| |
| ctx->internal->execute(ctx, filter_channel, buf, NULL, FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx))); |
| |
| if (s->metadata) |
| set_metadata(s, metadata); |
| |
| return ff_filter_frame(inlink->dst->outputs[0], buf); |
| } |
| |
| static void print_stats(AVFilterContext *ctx) |
| { |
| AudioStatsContext *s = ctx->priv; |
| uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; |
| uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0; |
| double min_runs = 0, max_runs = 0, |
| min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, |
| nmin = DBL_MAX, nmax =-DBL_MAX, |
| max_sigma_x = 0, |
| diff1_sum_x2 = 0, |
| diff1_sum = 0, |
| sigma_x = 0, |
| sigma_x2 = 0, |
| noise_floor = 0, |
| min_sigma_x2 = DBL_MAX, |
| max_sigma_x2 =-DBL_MAX; |
| AVRational depth; |
| int c; |
| |
| for (c = 0; c < s->nb_channels; c++) { |
| ChannelStats *p = &s->chstats[c]; |
| |
| if (p->nb_samples < s->tc_samples) |
| p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples; |
| |
| min = FFMIN(min, p->min); |
| max = FFMAX(max, p->max); |
| nmin = FFMIN(nmin, p->nmin); |
| nmax = FFMAX(nmax, p->nmax); |
| min_diff = FFMIN(min_diff, p->min_diff); |
| max_diff = FFMAX(max_diff, p->max_diff); |
| diff1_sum_x2 += p->diff1_sum_x2; |
| diff1_sum += p->diff1_sum; |
| min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2); |
| max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); |
| sigma_x += p->sigma_x; |
| sigma_x2 += p->sigma_x2; |
| noise_floor = FFMAX(noise_floor, p->noise_floor); |
| min_count += p->min_count; |
| max_count += p->max_count; |
| noise_floor_count += p->noise_floor_count; |
| min_runs += p->min_runs; |
| max_runs += p->max_runs; |
| mask |= p->mask; |
| imask &= p->imask; |
| nb_samples += p->nb_samples; |
| nb_nans += p->nb_nans; |
| nb_infs += p->nb_infs; |
| nb_denormals += p->nb_denormals; |
| if (fabs(p->sigma_x) > fabs(max_sigma_x)) |
| max_sigma_x = p->sigma_x; |
| |
| av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1); |
| if (s->measure_perchannel & MEASURE_DC_OFFSET) |
| av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples); |
| if (s->measure_perchannel & MEASURE_MIN_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min); |
| if (s->measure_perchannel & MEASURE_MAX_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max); |
| if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff); |
| if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff); |
| if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1)); |
| if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); |
| if (s->measure_perchannel & MEASURE_PEAK_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); |
| if (s->measure_perchannel & MEASURE_RMS_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); |
| if (s->measure_perchannel & MEASURE_RMS_PEAK) |
| av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); |
| if (s->measure_perchannel & MEASURE_RMS_TROUGH) |
| if (p->min_sigma_x2 != 1) |
| av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2))); |
| if (s->measure_perchannel & MEASURE_CREST_FACTOR) |
| av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1); |
| if (s->measure_perchannel & MEASURE_FLAT_FACTOR) |
| av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); |
| if (s->measure_perchannel & MEASURE_PEAK_COUNT) |
| av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count); |
| if (s->measure_perchannel & MEASURE_NOISE_FLOOR) |
| av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor)); |
| if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) |
| av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count); |
| if (s->measure_perchannel & MEASURE_BIT_DEPTH) { |
| bit_depth(s, p->mask, p->imask, &depth); |
| av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); |
| } |
| if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) |
| av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); |
| if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) |
| av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs); |
| if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) |
| av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples); |
| if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) |
| av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans); |
| if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) |
| av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs); |
| if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) |
| av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals); |
| } |
| |
| av_log(ctx, AV_LOG_INFO, "Overall\n"); |
| if (s->measure_overall & MEASURE_DC_OFFSET) |
| av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels)); |
| if (s->measure_overall & MEASURE_MIN_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min); |
| if (s->measure_overall & MEASURE_MAX_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max); |
| if (s->measure_overall & MEASURE_MIN_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff); |
| if (s->measure_overall & MEASURE_MAX_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff); |
| if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels)); |
| if (s->measure_overall & MEASURE_RMS_DIFFERENCE) |
| av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); |
| if (s->measure_overall & MEASURE_PEAK_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax))); |
| if (s->measure_overall & MEASURE_RMS_LEVEL) |
| av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); |
| if (s->measure_overall & MEASURE_RMS_PEAK) |
| av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2))); |
| if (s->measure_overall & MEASURE_RMS_TROUGH) |
| if (min_sigma_x2 != 1) |
| av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2))); |
| if (s->measure_overall & MEASURE_FLAT_FACTOR) |
| av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); |
| if (s->measure_overall & MEASURE_PEAK_COUNT) |
| av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels); |
| if (s->measure_overall & MEASURE_NOISE_FLOOR) |
| av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor)); |
| if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) |
| av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels); |
| if (s->measure_overall & MEASURE_BIT_DEPTH) { |
| bit_depth(s, mask, imask, &depth); |
| av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); |
| } |
| if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) |
| av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels); |
| if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) |
| av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels); |
| if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) |
| av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels); |
| if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) |
| av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels); |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| AudioStatsContext *s = ctx->priv; |
| |
| if (s->nb_channels) |
| print_stats(ctx); |
| if (s->chstats) { |
| for (int i = 0; i < s->nb_channels; i++) { |
| ChannelStats *p = &s->chstats[i]; |
| |
| av_freep(&p->win_samples); |
| } |
| } |
| av_freep(&s->chstats); |
| } |
| |
| static const AVFilterPad astats_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_AUDIO, |
| .filter_frame = filter_frame, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad astats_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_AUDIO, |
| .config_props = config_output, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_af_astats = { |
| .name = "astats", |
| .description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."), |
| .query_formats = query_formats, |
| .priv_size = sizeof(AudioStatsContext), |
| .priv_class = &astats_class, |
| .uninit = uninit, |
| .inputs = astats_inputs, |
| .outputs = astats_outputs, |
| .flags = AVFILTER_FLAG_SLICE_THREADS, |
| }; |