| /* |
| * Copyright (c) 2020 |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * DNN native backend implementation. |
| */ |
| |
| #include "libavutil/avassert.h" |
| #include "dnn_backend_native_layer_avgpool.h" |
| |
| int dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
| { |
| AvgPoolParams *avgpool_params; |
| int dnn_size = 0; |
| avgpool_params = av_malloc(sizeof(*avgpool_params)); |
| if(!avgpool_params) |
| return 0; |
| |
| avgpool_params->strides = (int32_t)avio_rl32(model_file_context); |
| avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); |
| avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); |
| dnn_size += 12; |
| |
| if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ |
| av_freep(&avgpool_params); |
| return 0; |
| } |
| |
| layer->params = avgpool_params; |
| layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
| layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
| dnn_size += 8; |
| |
| if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
| return 0; |
| } |
| return dnn_size; |
| } |
| |
| int dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, |
| int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
| { |
| float *output; |
| int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; |
| int32_t input_operand_index = input_operand_indexes[0]; |
| int number = operands[input_operand_index].dims[0]; |
| int height = operands[input_operand_index].dims[1]; |
| int width = operands[input_operand_index].dims[2]; |
| int channel = operands[input_operand_index].dims[3]; |
| const float *input = operands[input_operand_index].data; |
| const AvgPoolParams *avgpool_params = (const AvgPoolParams *)parameters; |
| |
| int kernel_strides = avgpool_params->strides; |
| int src_linesize = width * channel; |
| DnnOperand *output_operand = &operands[output_operand_index]; |
| |
| /** |
| * When padding_method = SAME, the tensorflow will only padding the hald number of 0 pxiels |
| * except the remainders. |
| * Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 |
| * and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, |
| * and 5 - 2 - 1 = 2 lines after the last line of input image. |
| * and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, |
| * and 7 - 2 - 2 = 3 lines after the last line of input image. |
| */ |
| if (avgpool_params->padding_method == SAME) { |
| height_end = height; |
| width_end = width; |
| height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); |
| width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); |
| height_radius = height_radius < 0 ? 0 : height_radius >> 1; |
| width_radius = width_radius < 0 ? 0 : width_radius >> 1; |
| output_height = ceil(height / (kernel_strides * 1.0)); |
| output_width = ceil(width / (kernel_strides * 1.0)); |
| } else { |
| av_assert0(avgpool_params->padding_method == VALID); |
| height_end = height - avgpool_params->kernel_size + 1; |
| width_end = width - avgpool_params->kernel_size + 1; |
| height_radius = 0; |
| width_radius = 0; |
| output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); |
| output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); |
| } |
| |
| output_operand->dims[0] = number; |
| output_operand->dims[1] = output_height; |
| output_operand->dims[2] = output_width; |
| // not support pooling in channel dimension now |
| output_operand->dims[3] = channel; |
| output_operand->data_type = operands[input_operand_index].data_type; |
| output_operand->length = calculate_operand_data_length(output_operand); |
| if (output_operand->length <= 0) { |
| av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
| return DNN_ERROR; |
| } |
| output_operand->data = av_realloc(output_operand->data, output_operand->length); |
| if (!output_operand->data) { |
| av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
| return DNN_ERROR; |
| } |
| output = output_operand->data; |
| |
| for (int y = 0; y < height_end; y += kernel_strides) { |
| for (int x = 0; x < width_end; x += kernel_strides) { |
| for (int n_channel = 0; n_channel < channel; ++n_channel) { |
| output[n_channel] = 0.0; |
| kernel_area = 0; |
| for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { |
| for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { |
| float input_pel; |
| int y_pos = y + (kernel_y - height_radius); |
| int x_pos = x + (kernel_x - width_radius); |
| if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { |
| input_pel = 0.0; |
| } else { |
| kernel_area++; |
| input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; |
| } |
| output[n_channel] += input_pel; |
| } |
| } |
| output[n_channel] /= kernel_area; |
| } |
| output += channel; |
| } |
| } |
| |
| return 0; |
| } |