| /* |
| * Copyright (c) 2018 Sergey Lavrushkin |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/thread.h" |
| #include "libavutil/cpu.h" |
| #include "dnn_backend_native_layer_conv2d.h" |
| |
| #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) |
| |
| //struct to pass parameters |
| typedef struct thread_common_param{ |
| DnnOperand *operands; |
| const int32_t *input_operand_indexes; |
| int32_t output_operand_index; |
| const void *parameters; |
| NativeContext *ctx; |
| float *output_data; |
| } thread_common_param; |
| |
| typedef struct thread_param{ |
| thread_common_param *thread_common_param; |
| int thread_start, thread_end; |
| } thread_param; |
| |
| int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
| { |
| ConvolutionalParams *conv_params; |
| int kernel_size; |
| int dnn_size = 0; |
| conv_params = av_malloc(sizeof(*conv_params)); |
| if (!conv_params) |
| return 0; |
| |
| conv_params->dilation = (int32_t)avio_rl32(model_file_context); |
| conv_params->padding_method = (int32_t)avio_rl32(model_file_context); |
| conv_params->activation = (int32_t)avio_rl32(model_file_context); |
| conv_params->input_num = (int32_t)avio_rl32(model_file_context); |
| conv_params->output_num = (int32_t)avio_rl32(model_file_context); |
| conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); |
| conv_params->has_bias = (int32_t)avio_rl32(model_file_context); |
| dnn_size += 28; |
| |
| kernel_size = conv_params->input_num * conv_params->output_num * |
| conv_params->kernel_size * conv_params->kernel_size; |
| dnn_size += kernel_size * 4; |
| if (conv_params->has_bias) |
| dnn_size += conv_params->output_num * 4; |
| |
| if (dnn_size > file_size || conv_params->input_num <= 0 || |
| conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ |
| av_freep(&conv_params); |
| return 0; |
| } |
| |
| conv_params->kernel = av_malloc(kernel_size * sizeof(float)); |
| if (!conv_params->kernel) { |
| av_freep(&conv_params); |
| return 0; |
| } |
| for (int i = 0; i < kernel_size; ++i) { |
| conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); |
| } |
| |
| conv_params->biases = NULL; |
| if (conv_params->has_bias) { |
| conv_params->biases = av_malloc(conv_params->output_num * sizeof(float)); |
| if (!conv_params->biases){ |
| av_freep(&conv_params->kernel); |
| av_freep(&conv_params); |
| return 0; |
| } |
| for (int i = 0; i < conv_params->output_num; ++i){ |
| conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); |
| } |
| } |
| |
| layer->params = conv_params; |
| |
| layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
| layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
| dnn_size += 8; |
| |
| if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
| return 0; |
| } |
| |
| return dnn_size; |
| } |
| |
| static void * dnn_execute_layer_conv2d_thread(void *threadarg) |
| { |
| //pass parameters |
| thread_param *thread_param = (struct thread_param *)threadarg; |
| thread_common_param *thread_common_param = thread_param->thread_common_param; |
| DnnOperand *operands = thread_common_param->operands; |
| int32_t input_operand_index = thread_common_param->input_operand_indexes[0]; |
| int height = operands[input_operand_index].dims[1]; |
| int width = operands[input_operand_index].dims[2]; |
| int channel = operands[input_operand_index].dims[3]; |
| const float *input = operands[input_operand_index].data; |
| const ConvolutionalParams *conv_params = (const ConvolutionalParams *)(thread_common_param->parameters); |
| |
| int radius = conv_params->kernel_size >> 1; |
| int src_linesize = width * conv_params->input_num; |
| int filter_linesize = conv_params->kernel_size * conv_params->input_num; |
| int filter_size = conv_params->kernel_size * filter_linesize; |
| int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; |
| |
| float *output = thread_common_param->output_data; |
| output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size); |
| |
| av_assert0(channel == conv_params->input_num); |
| |
| for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) { |
| for (int x = pad_size; x < width - pad_size; ++x) { |
| for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) { |
| if (conv_params->has_bias) |
| output[n_filter] = conv_params->biases[n_filter]; |
| else |
| output[n_filter] = 0.f; |
| |
| for (int ch = 0; ch < conv_params->input_num; ++ch) { |
| for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) { |
| for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) { |
| float input_pel; |
| if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) { |
| int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height); |
| int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width); |
| input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
| } else { |
| int y_pos = y + (kernel_y - radius) * conv_params->dilation; |
| int x_pos = x + (kernel_x - radius) * conv_params->dilation; |
| input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 : |
| input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
| } |
| |
| |
| output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + |
| kernel_x * conv_params->input_num + ch]; |
| } |
| } |
| } |
| switch (conv_params->activation){ |
| case RELU: |
| output[n_filter] = FFMAX(output[n_filter], 0.0); |
| break; |
| case TANH: |
| output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; |
| break; |
| case SIGMOID: |
| output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); |
| break; |
| case NONE: |
| break; |
| case LEAKY_RELU: |
| output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); |
| } |
| } |
| output += conv_params->output_num; |
| } |
| } |
| return (void *)DNN_SUCCESS; |
| } |
| |
| |
| int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, |
| int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
| { |
| int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count()) |
| ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads); |
| #if HAVE_PTHREAD_CANCEL |
| pthread_t *thread_id = av_malloc(thread_num * sizeof(pthread_t)); |
| int thread_stride; |
| #endif |
| thread_param **thread_param = av_malloc(thread_num * sizeof(*thread_param)); |
| thread_common_param thread_common_param; |
| const ConvolutionalParams *conv_params = (const ConvolutionalParams *)(parameters); |
| int height = operands[input_operand_indexes[0]].dims[1]; |
| int width = operands[input_operand_indexes[0]].dims[2]; |
| int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; |
| DnnOperand *output_operand = &operands[output_operand_index]; |
| |
| output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0]; |
| output_operand->dims[1] = height - pad_size * 2; |
| output_operand->dims[2] = width - pad_size * 2; |
| output_operand->dims[3] = conv_params->output_num; |
| output_operand->data_type = operands[input_operand_indexes[0]].data_type; |
| output_operand->length = calculate_operand_data_length(output_operand); |
| if (output_operand->length <= 0) { |
| av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
| return DNN_ERROR; |
| } |
| output_operand->data = av_realloc(output_operand->data, output_operand->length); |
| if (!output_operand->data) { |
| av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
| return DNN_ERROR; |
| } |
| thread_common_param.output_data = output_operand->data; |
| thread_common_param.operands = operands; |
| thread_common_param.input_operand_indexes = input_operand_indexes; |
| thread_common_param.output_operand_index = output_operand_index; |
| thread_common_param.parameters = parameters; |
| thread_common_param.ctx = ctx; |
| |
| #if HAVE_PTHREAD_CANCEL |
| thread_stride = (height - pad_size * 2) / thread_num; |
| //create threads |
| for (int i = 0; i < thread_num; i++){ |
| thread_param[i] = av_malloc(sizeof(**thread_param)); |
| thread_param[i]->thread_common_param = &thread_common_param; |
| thread_param[i]->thread_start = thread_stride * i + pad_size; |
| thread_param[i]->thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i]->thread_start + thread_stride); |
| pthread_create(&thread_id[i], NULL, dnn_execute_layer_conv2d_thread, (void *)thread_param[i]); |
| } |
| |
| //join threads, res gets function return |
| for (int i = 0; i < thread_num; i++){ |
| pthread_join(thread_id[i], NULL); |
| } |
| |
| //release memory |
| av_free(thread_id); |
| |
| for (int i = 0; i < thread_num; i++){ |
| av_free(thread_param[i]); |
| } |
| #else |
| thread_param[0] = av_malloc(sizeof(**thread_param)); |
| thread_param[0]->thread_common_param = &thread_common_param; |
| thread_param[0]->thread_start = pad_size; |
| thread_param[0]->thread_end = height - pad_size; |
| dnn_execute_layer_conv2d_thread((void *)thread_param[0]); |
| av_free(thread_param[0]); |
| #endif |
| |
| av_free(thread_param); |
| return DNN_SUCCESS; |
| } |