| /* |
| * Copyright (c) 2018 Sergey Lavrushkin |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * Filter implementing image super-resolution using deep convolutional networks. |
| * https://arxiv.org/abs/1501.00092 |
| * https://arxiv.org/abs/1609.05158 |
| */ |
| |
| #include "avfilter.h" |
| #include "formats.h" |
| #include "internal.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/pixdesc.h" |
| #include "libavformat/avio.h" |
| #include "libswscale/swscale.h" |
| #include "dnn_interface.h" |
| |
| typedef struct SRContext { |
| const AVClass *class; |
| |
| char *model_filename; |
| DNNBackendType backend_type; |
| DNNModule *dnn_module; |
| DNNModel *model; |
| int scale_factor; |
| struct SwsContext *sws_uv_scale; |
| int sws_uv_height; |
| struct SwsContext *sws_pre_scale; |
| } SRContext; |
| |
| #define OFFSET(x) offsetof(SRContext, x) |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM |
| static const AVOption sr_options[] = { |
| { "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, |
| { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, |
| #if (CONFIG_LIBTENSORFLOW == 1) |
| { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, |
| #endif |
| { "scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS }, |
| { "model", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(sr); |
| |
| static av_cold int init(AVFilterContext *context) |
| { |
| SRContext *sr_context = context->priv; |
| |
| sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type); |
| if (!sr_context->dnn_module){ |
| av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); |
| return AVERROR(ENOMEM); |
| } |
| |
| if (!sr_context->model_filename){ |
| av_log(context, AV_LOG_ERROR, "model file for network was not specified\n"); |
| return AVERROR(EIO); |
| } |
| if (!sr_context->dnn_module->load_model) { |
| av_log(context, AV_LOG_ERROR, "load_model for network was not specified\n"); |
| return AVERROR(EIO); |
| } |
| sr_context->model = (sr_context->dnn_module->load_model)(sr_context->model_filename, NULL, NULL); |
| if (!sr_context->model){ |
| av_log(context, AV_LOG_ERROR, "could not load DNN model\n"); |
| return AVERROR(EIO); |
| } |
| |
| return 0; |
| } |
| |
| static int query_formats(AVFilterContext *context) |
| { |
| const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, |
| AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, |
| AV_PIX_FMT_NONE}; |
| AVFilterFormats *formats_list; |
| |
| formats_list = ff_make_format_list(pixel_formats); |
| if (!formats_list){ |
| av_log(context, AV_LOG_ERROR, "could not create formats list\n"); |
| return AVERROR(ENOMEM); |
| } |
| |
| return ff_set_common_formats(context, formats_list); |
| } |
| |
| static int config_output(AVFilterLink *outlink) |
| { |
| AVFilterContext *context = outlink->src; |
| SRContext *ctx = context->priv; |
| DNNReturnType result; |
| AVFilterLink *inlink = context->inputs[0]; |
| int out_width, out_height; |
| |
| // have a try run in case that the dnn model resize the frame |
| result = ctx->model->get_output(ctx->model->model, "x", inlink->w, inlink->h, |
| "y", &out_width, &out_height); |
| if (result != DNN_SUCCESS) { |
| av_log(ctx, AV_LOG_ERROR, "could not get output from the model\n"); |
| return AVERROR(EIO); |
| } |
| |
| if (inlink->w != out_width || inlink->h != out_height) { |
| //espcn |
| outlink->w = out_width; |
| outlink->h = out_height; |
| if (inlink->format != AV_PIX_FMT_GRAY8){ |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| int sws_src_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); |
| int sws_src_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); |
| int sws_dst_h = AV_CEIL_RSHIFT(outlink->h, desc->log2_chroma_h); |
| int sws_dst_w = AV_CEIL_RSHIFT(outlink->w, desc->log2_chroma_w); |
| ctx->sws_uv_scale = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8, |
| sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8, |
| SWS_BICUBIC, NULL, NULL, NULL); |
| ctx->sws_uv_height = sws_src_h; |
| } |
| } else { |
| //srcnn |
| outlink->w = out_width * ctx->scale_factor; |
| outlink->h = out_height * ctx->scale_factor; |
| ctx->sws_pre_scale = sws_getContext(inlink->w, inlink->h, inlink->format, |
| outlink->w, outlink->h, outlink->format, |
| SWS_BICUBIC, NULL, NULL, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterContext *context = inlink->dst; |
| SRContext *ctx = context->priv; |
| AVFilterLink *outlink = context->outputs[0]; |
| AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| DNNReturnType dnn_result; |
| const char *model_output_name = "y"; |
| |
| if (!out){ |
| av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); |
| av_frame_free(&in); |
| return AVERROR(ENOMEM); |
| } |
| av_frame_copy_props(out, in); |
| |
| if (ctx->sws_pre_scale) { |
| sws_scale(ctx->sws_pre_scale, |
| (const uint8_t **)in->data, in->linesize, 0, in->height, |
| out->data, out->linesize); |
| dnn_result = (ctx->dnn_module->execute_model)(ctx->model, "x", out, |
| (const char **)&model_output_name, 1, out); |
| } else { |
| dnn_result = (ctx->dnn_module->execute_model)(ctx->model, "x", in, |
| (const char **)&model_output_name, 1, out); |
| } |
| |
| if (dnn_result != DNN_SUCCESS){ |
| av_log(ctx, AV_LOG_ERROR, "failed to execute loaded model\n"); |
| av_frame_free(&in); |
| av_frame_free(&out); |
| return AVERROR(EIO); |
| } |
| |
| if (ctx->sws_uv_scale) { |
| sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 1), in->linesize + 1, |
| 0, ctx->sws_uv_height, out->data + 1, out->linesize + 1); |
| sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 2), in->linesize + 2, |
| 0, ctx->sws_uv_height, out->data + 2, out->linesize + 2); |
| } |
| |
| av_frame_free(&in); |
| return ff_filter_frame(outlink, out); |
| } |
| |
| static av_cold void uninit(AVFilterContext *context) |
| { |
| SRContext *sr_context = context->priv; |
| |
| if (sr_context->dnn_module){ |
| (sr_context->dnn_module->free_model)(&sr_context->model); |
| av_freep(&sr_context->dnn_module); |
| } |
| |
| sws_freeContext(sr_context->sws_uv_scale); |
| sws_freeContext(sr_context->sws_pre_scale); |
| } |
| |
| static const AVFilterPad sr_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad sr_outputs[] = { |
| { |
| .name = "default", |
| .config_props = config_output, |
| .type = AVMEDIA_TYPE_VIDEO, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_sr = { |
| .name = "sr", |
| .description = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."), |
| .priv_size = sizeof(SRContext), |
| .init = init, |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = sr_inputs, |
| .outputs = sr_outputs, |
| .priv_class = &sr_class, |
| }; |