| /* |
| * Copyright (c) 2019 Guo Yejun |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <math.h> |
| #include "libavfilter/dnn/dnn_backend_native_layer_pad.h" |
| |
| #define EPSON 0.00001 |
| |
| static int test_with_mode_symmetric(void) |
| { |
| // the input data and expected data are generated with below python code. |
| /* |
| x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
| y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC') |
| data = np.arange(48).reshape(1, 4, 4, 3); |
| |
| sess=tf.Session() |
| sess.run(tf.global_variables_initializer()) |
| output = sess.run(y, feed_dict={x: data}) |
| |
| print(list(data.flatten())) |
| print(list(output.flatten())) |
| print(data.shape) |
| print(output.shape) |
| */ |
| |
| LayerPadParams params; |
| DnnOperand operands[2]; |
| int32_t input_indexes[1]; |
| float input[1*4*4*3] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 |
| }; |
| float expected_output[1*9*9*3] = { |
| 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0, |
| 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, |
| 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, |
| 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, |
| 34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, |
| 44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0, |
| 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, |
| 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 |
| }; |
| float *output; |
| |
| params.mode = LPMP_SYMMETRIC; |
| params.paddings[0][0] = 0; |
| params.paddings[0][1] = 0; |
| params.paddings[1][0] = 2; |
| params.paddings[1][1] = 3; |
| params.paddings[2][0] = 3; |
| params.paddings[2][1] = 2; |
| params.paddings[3][0] = 0; |
| params.paddings[3][1] = 0; |
| |
| operands[0].data = input; |
| operands[0].dims[0] = 1; |
| operands[0].dims[1] = 4; |
| operands[0].dims[2] = 4; |
| operands[0].dims[3] = 3; |
| operands[1].data = NULL; |
| |
| input_indexes[0] = 0; |
| dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); |
| |
| output = operands[1].data; |
| for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
| if (fabs(output[i] - expected_output[i]) > EPSON) { |
| printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
| av_freep(&output); |
| return 1; |
| } |
| } |
| |
| av_freep(&output); |
| return 0; |
| |
| } |
| |
| static int test_with_mode_reflect(void) |
| { |
| // the input data and expected data are generated with below python code. |
| /* |
| x = tf.placeholder(tf.float32, shape=[3, None, None, 3]) |
| y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT') |
| data = np.arange(36).reshape(3, 2, 2, 3); |
| |
| sess=tf.Session() |
| sess.run(tf.global_variables_initializer()) |
| output = sess.run(y, feed_dict={x: data}) |
| |
| print(list(data.flatten())) |
| print(list(output.flatten())) |
| print(data.shape) |
| print(output.shape) |
| */ |
| |
| LayerPadParams params; |
| DnnOperand operands[2]; |
| int32_t input_indexes[1]; |
| float input[3*2*2*3] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 |
| }; |
| float expected_output[6*2*2*3] = { |
| 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, |
| 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, |
| 35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 |
| }; |
| float *output; |
| |
| params.mode = LPMP_REFLECT; |
| params.paddings[0][0] = 1; |
| params.paddings[0][1] = 2; |
| params.paddings[1][0] = 0; |
| params.paddings[1][1] = 0; |
| params.paddings[2][0] = 0; |
| params.paddings[2][1] = 0; |
| params.paddings[3][0] = 0; |
| params.paddings[3][1] = 0; |
| |
| operands[0].data = input; |
| operands[0].dims[0] = 3; |
| operands[0].dims[1] = 2; |
| operands[0].dims[2] = 2; |
| operands[0].dims[3] = 3; |
| operands[1].data = NULL; |
| |
| input_indexes[0] = 0; |
| dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); |
| |
| output = operands[1].data; |
| for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
| if (fabs(output[i] - expected_output[i]) > EPSON) { |
| printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
| av_freep(&output); |
| return 1; |
| } |
| } |
| |
| av_freep(&output); |
| return 0; |
| |
| } |
| |
| static int test_with_mode_constant(void) |
| { |
| // the input data and expected data are generated with below python code. |
| /* |
| x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
| y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', constant_values=728) |
| data = np.arange(12).reshape(1, 2, 2, 3); |
| |
| sess=tf.Session() |
| sess.run(tf.global_variables_initializer()) |
| output = sess.run(y, feed_dict={x: data}) |
| |
| print(list(data.flatten())) |
| print(list(output.flatten())) |
| print(data.shape) |
| print(output.shape) |
| */ |
| |
| LayerPadParams params; |
| DnnOperand operands[2]; |
| int32_t input_indexes[1]; |
| float input[1*2*2*3] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 |
| }; |
| float expected_output[1*3*2*6] = { |
| 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, |
| 728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0, |
| 728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0 |
| }; |
| float *output; |
| |
| params.mode = LPMP_CONSTANT; |
| params.constant_values = 728; |
| params.paddings[0][0] = 0; |
| params.paddings[0][1] = 0; |
| params.paddings[1][0] = 1; |
| params.paddings[1][1] = 0; |
| params.paddings[2][0] = 0; |
| params.paddings[2][1] = 0; |
| params.paddings[3][0] = 1; |
| params.paddings[3][1] = 2; |
| |
| operands[0].data = input; |
| operands[0].dims[0] = 1; |
| operands[0].dims[1] = 2; |
| operands[0].dims[2] = 2; |
| operands[0].dims[3] = 3; |
| operands[1].data = NULL; |
| |
| input_indexes[0] = 0; |
| dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); |
| |
| output = operands[1].data; |
| for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
| if (fabs(output[i] - expected_output[i]) > EPSON) { |
| printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
| av_freep(&output); |
| return 1; |
| } |
| } |
| |
| av_freep(&output); |
| return 0; |
| |
| } |
| |
| int main(int argc, char **argv) |
| { |
| if (test_with_mode_symmetric()) |
| return 1; |
| |
| if (test_with_mode_reflect()) |
| return 1; |
| |
| if (test_with_mode_constant()) |
| return 1; |
| } |