| /* |
| * Copyright (c) 2016 Muhammad Faiz <mfcc64@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/opt.h" |
| #include "libavutil/eval.h" |
| #include "libavutil/avassert.h" |
| #include "libavcodec/avfft.h" |
| #include "avfilter.h" |
| #include "internal.h" |
| #include "audio.h" |
| |
| #define RDFT_BITS_MIN 4 |
| #define RDFT_BITS_MAX 16 |
| |
| enum WindowFunc { |
| WFUNC_RECTANGULAR, |
| WFUNC_HANN, |
| WFUNC_HAMMING, |
| WFUNC_BLACKMAN, |
| WFUNC_NUTTALL3, |
| WFUNC_MNUTTALL3, |
| WFUNC_NUTTALL, |
| WFUNC_BNUTTALL, |
| WFUNC_BHARRIS, |
| WFUNC_TUKEY, |
| NB_WFUNC |
| }; |
| |
| enum Scale { |
| SCALE_LINLIN, |
| SCALE_LINLOG, |
| SCALE_LOGLIN, |
| SCALE_LOGLOG, |
| NB_SCALE |
| }; |
| |
| #define NB_GAIN_ENTRY_MAX 4096 |
| typedef struct GainEntry { |
| double freq; |
| double gain; |
| } GainEntry; |
| |
| typedef struct OverlapIndex { |
| int buf_idx; |
| int overlap_idx; |
| } OverlapIndex; |
| |
| typedef struct FIREqualizerContext { |
| const AVClass *class; |
| |
| RDFTContext *analysis_rdft; |
| RDFTContext *analysis_irdft; |
| RDFTContext *rdft; |
| RDFTContext *irdft; |
| FFTContext *fft_ctx; |
| RDFTContext *cepstrum_rdft; |
| RDFTContext *cepstrum_irdft; |
| int analysis_rdft_len; |
| int rdft_len; |
| int cepstrum_len; |
| |
| float *analysis_buf; |
| float *dump_buf; |
| float *kernel_tmp_buf; |
| float *kernel_buf; |
| float *cepstrum_buf; |
| float *conv_buf; |
| OverlapIndex *conv_idx; |
| int fir_len; |
| int nsamples_max; |
| int64_t next_pts; |
| int frame_nsamples_max; |
| int remaining; |
| |
| char *gain_cmd; |
| char *gain_entry_cmd; |
| const char *gain; |
| const char *gain_entry; |
| double delay; |
| double accuracy; |
| int wfunc; |
| int fixed; |
| int multi; |
| int zero_phase; |
| int scale; |
| char *dumpfile; |
| int dumpscale; |
| int fft2; |
| int min_phase; |
| |
| int nb_gain_entry; |
| int gain_entry_err; |
| GainEntry gain_entry_tbl[NB_GAIN_ENTRY_MAX]; |
| } FIREqualizerContext; |
| |
| #define OFFSET(x) offsetof(FIREqualizerContext, x) |
| #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
| #define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
| |
| static const AVOption firequalizer_options[] = { |
| { "gain", "set gain curve", OFFSET(gain), AV_OPT_TYPE_STRING, { .str = "gain_interpolate(f)" }, 0, 0, TFLAGS }, |
| { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, TFLAGS }, |
| { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS }, |
| { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS }, |
| { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, "wfunc" }, |
| { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, "wfunc" }, |
| { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, "wfunc" }, |
| { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, "wfunc" }, |
| { "blackman", "blackman window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BLACKMAN }, 0, 0, FLAGS, "wfunc" }, |
| { "nuttall3", "3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL3 }, 0, 0, FLAGS, "wfunc" }, |
| { "mnuttall3", "minimum 3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_MNUTTALL3 }, 0, 0, FLAGS, "wfunc" }, |
| { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, "wfunc" }, |
| { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, "wfunc" }, |
| { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, "wfunc" }, |
| { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, "wfunc" }, |
| { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
| { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
| { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
| { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" }, |
| { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, "scale" }, |
| { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, "scale" }, |
| { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, "scale" }, |
| { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, "scale" }, |
| { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, |
| { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" }, |
| { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
| { "min_phase", "set minimum phase mode", OFFSET(min_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(firequalizer); |
| |
| static void common_uninit(FIREqualizerContext *s) |
| { |
| av_rdft_end(s->analysis_rdft); |
| av_rdft_end(s->analysis_irdft); |
| av_rdft_end(s->rdft); |
| av_rdft_end(s->irdft); |
| av_fft_end(s->fft_ctx); |
| av_rdft_end(s->cepstrum_rdft); |
| av_rdft_end(s->cepstrum_irdft); |
| s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL; |
| s->fft_ctx = NULL; |
| s->cepstrum_rdft = NULL; |
| s->cepstrum_irdft = NULL; |
| |
| av_freep(&s->analysis_buf); |
| av_freep(&s->dump_buf); |
| av_freep(&s->kernel_tmp_buf); |
| av_freep(&s->kernel_buf); |
| av_freep(&s->cepstrum_buf); |
| av_freep(&s->conv_buf); |
| av_freep(&s->conv_idx); |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| FIREqualizerContext *s = ctx->priv; |
| |
| common_uninit(s); |
| av_freep(&s->gain_cmd); |
| av_freep(&s->gain_entry_cmd); |
| } |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| AVFilterChannelLayouts *layouts; |
| AVFilterFormats *formats; |
| static const enum AVSampleFormat sample_fmts[] = { |
| AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE |
| }; |
| int ret; |
| |
| layouts = ff_all_channel_counts(); |
| if (!layouts) |
| return AVERROR(ENOMEM); |
| ret = ff_set_common_channel_layouts(ctx, layouts); |
| if (ret < 0) |
| return ret; |
| |
| formats = ff_make_format_list(sample_fmts); |
| if (!formats) |
| return AVERROR(ENOMEM); |
| ret = ff_set_common_formats(ctx, formats); |
| if (ret < 0) |
| return ret; |
| |
| formats = ff_all_samplerates(); |
| if (!formats) |
| return AVERROR(ENOMEM); |
| return ff_set_common_samplerates(ctx, formats); |
| } |
| |
| static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf, |
| OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples) |
| { |
| if (nsamples <= s->nsamples_max) { |
| float *buf = conv_buf + idx->buf_idx * s->rdft_len; |
| float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; |
| int center = s->fir_len/2; |
| int k; |
| |
| memset(buf, 0, center * sizeof(*data)); |
| memcpy(buf + center, data, nsamples * sizeof(*data)); |
| memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data)); |
| av_rdft_calc(s->rdft, buf); |
| |
| buf[0] *= kernel_buf[0]; |
| buf[1] *= kernel_buf[s->rdft_len/2]; |
| for (k = 1; k < s->rdft_len/2; k++) { |
| buf[2*k] *= kernel_buf[k]; |
| buf[2*k+1] *= kernel_buf[k]; |
| } |
| |
| av_rdft_calc(s->irdft, buf); |
| for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) |
| buf[k] += obuf[k]; |
| memcpy(data, buf, nsamples * sizeof(*data)); |
| idx->buf_idx = !idx->buf_idx; |
| idx->overlap_idx = nsamples; |
| } else { |
| while (nsamples > s->nsamples_max * 2) { |
| fast_convolute(s, kernel_buf, conv_buf, idx, data, s->nsamples_max); |
| data += s->nsamples_max; |
| nsamples -= s->nsamples_max; |
| } |
| fast_convolute(s, kernel_buf, conv_buf, idx, data, nsamples/2); |
| fast_convolute(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2); |
| } |
| } |
| |
| static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, |
| float *av_restrict conv_buf, OverlapIndex *av_restrict idx, |
| float *av_restrict data, int nsamples) |
| { |
| if (nsamples <= s->nsamples_max) { |
| float *buf = conv_buf + idx->buf_idx * s->rdft_len; |
| float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; |
| int k; |
| |
| memcpy(buf, data, nsamples * sizeof(*data)); |
| memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data)); |
| av_rdft_calc(s->rdft, buf); |
| |
| buf[0] *= kernel_buf[0]; |
| buf[1] *= kernel_buf[1]; |
| for (k = 2; k < s->rdft_len; k += 2) { |
| float re, im; |
| re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1]; |
| im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k]; |
| buf[k] = re; |
| buf[k+1] = im; |
| } |
| |
| av_rdft_calc(s->irdft, buf); |
| for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) |
| buf[k] += obuf[k]; |
| memcpy(data, buf, nsamples * sizeof(*data)); |
| idx->buf_idx = !idx->buf_idx; |
| idx->overlap_idx = nsamples; |
| } else { |
| while (nsamples > s->nsamples_max * 2) { |
| fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, s->nsamples_max); |
| data += s->nsamples_max; |
| nsamples -= s->nsamples_max; |
| } |
| fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, nsamples/2); |
| fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2); |
| } |
| } |
| |
| static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf, |
| OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples) |
| { |
| if (nsamples <= s->nsamples_max) { |
| FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len; |
| FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; |
| int center = s->fir_len/2; |
| int k; |
| float tmp; |
| |
| memset(buf, 0, center * sizeof(*buf)); |
| for (k = 0; k < nsamples; k++) { |
| buf[center+k].re = data0[k]; |
| buf[center+k].im = data1[k]; |
| } |
| memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf)); |
| av_fft_permute(s->fft_ctx, buf); |
| av_fft_calc(s->fft_ctx, buf); |
| |
| /* swap re <-> im, do backward fft using forward fft_ctx */ |
| /* normalize with 0.5f */ |
| tmp = buf[0].re; |
| buf[0].re = 0.5f * kernel_buf[0] * buf[0].im; |
| buf[0].im = 0.5f * kernel_buf[0] * tmp; |
| for (k = 1; k < s->rdft_len/2; k++) { |
| int m = s->rdft_len - k; |
| tmp = buf[k].re; |
| buf[k].re = 0.5f * kernel_buf[k] * buf[k].im; |
| buf[k].im = 0.5f * kernel_buf[k] * tmp; |
| tmp = buf[m].re; |
| buf[m].re = 0.5f * kernel_buf[k] * buf[m].im; |
| buf[m].im = 0.5f * kernel_buf[k] * tmp; |
| } |
| tmp = buf[k].re; |
| buf[k].re = 0.5f * kernel_buf[k] * buf[k].im; |
| buf[k].im = 0.5f * kernel_buf[k] * tmp; |
| |
| av_fft_permute(s->fft_ctx, buf); |
| av_fft_calc(s->fft_ctx, buf); |
| |
| for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) { |
| buf[k].re += obuf[k].re; |
| buf[k].im += obuf[k].im; |
| } |
| |
| /* swapped re <-> im */ |
| for (k = 0; k < nsamples; k++) { |
| data0[k] = buf[k].im; |
| data1[k] = buf[k].re; |
| } |
| idx->buf_idx = !idx->buf_idx; |
| idx->overlap_idx = nsamples; |
| } else { |
| while (nsamples > s->nsamples_max * 2) { |
| fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max); |
| data0 += s->nsamples_max; |
| data1 += s->nsamples_max; |
| nsamples -= s->nsamples_max; |
| } |
| fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2); |
| fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2); |
| } |
| } |
| |
| static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch) |
| { |
| FIREqualizerContext *s = ctx->priv; |
| int rate = ctx->inputs[0]->sample_rate; |
| int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG; |
| int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG; |
| int x; |
| int center = s->fir_len / 2; |
| double delay = s->zero_phase ? 0.0 : (double) center / rate; |
| double vx, ya, yb; |
| |
| if (!s->min_phase) { |
| s->analysis_buf[0] *= s->rdft_len/2; |
| for (x = 1; x <= center; x++) { |
| s->analysis_buf[x] *= s->rdft_len/2; |
| s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2; |
| } |
| } else { |
| for (x = 0; x < s->fir_len; x++) |
| s->analysis_buf[x] *= s->rdft_len/2; |
| } |
| |
| if (ch) |
| fprintf(fp, "\n\n"); |
| |
| fprintf(fp, "# time[%d] (time amplitude)\n", ch); |
| |
| if (!s->min_phase) { |
| for (x = center; x > 0; x--) |
| fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]); |
| |
| for (x = 0; x <= center; x++) |
| fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]); |
| } else { |
| for (x = 0; x < s->fir_len; x++) |
| fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]); |
| } |
| |
| av_rdft_calc(s->analysis_rdft, s->analysis_buf); |
| |
| fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch); |
| |
| for (x = 0; x <= s->analysis_rdft_len/2; x++) { |
| int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x; |
| vx = (double)x * rate / s->analysis_rdft_len; |
| if (xlog) |
| vx = log2(0.05*vx); |
| ya = s->dump_buf[i]; |
| yb = s->min_phase && (i > 1) ? hypotf(s->analysis_buf[i], s->analysis_buf[i+1]) : s->analysis_buf[i]; |
| if (s->min_phase) |
| yb = fabs(yb); |
| if (ylog) { |
| ya = 20.0 * log10(fabs(ya)); |
| yb = 20.0 * log10(fabs(yb)); |
| } |
| fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb); |
| } |
| } |
| |
| static double entry_func(void *p, double freq, double gain) |
| { |
| AVFilterContext *ctx = p; |
| FIREqualizerContext *s = ctx->priv; |
| |
| if (s->nb_gain_entry >= NB_GAIN_ENTRY_MAX) { |
| av_log(ctx, AV_LOG_ERROR, "entry table overflow.\n"); |
| s->gain_entry_err = AVERROR(EINVAL); |
| return 0; |
| } |
| |
| if (isnan(freq)) { |
| av_log(ctx, AV_LOG_ERROR, "nan frequency (%g, %g).\n", freq, gain); |
| s->gain_entry_err = AVERROR(EINVAL); |
| return 0; |
| } |
| |
| if (s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[s->nb_gain_entry - 1].freq) { |
| av_log(ctx, AV_LOG_ERROR, "unsorted frequency (%g, %g).\n", freq, gain); |
| s->gain_entry_err = AVERROR(EINVAL); |
| return 0; |
| } |
| |
| s->gain_entry_tbl[s->nb_gain_entry].freq = freq; |
| s->gain_entry_tbl[s->nb_gain_entry].gain = gain; |
| s->nb_gain_entry++; |
| return 0; |
| } |
| |
| static int gain_entry_compare(const void *key, const void *memb) |
| { |
| const double *freq = key; |
| const GainEntry *entry = memb; |
| |
| if (*freq < entry[0].freq) |
| return -1; |
| if (*freq > entry[1].freq) |
| return 1; |
| return 0; |
| } |
| |
| static double gain_interpolate_func(void *p, double freq) |
| { |
| AVFilterContext *ctx = p; |
| FIREqualizerContext *s = ctx->priv; |
| GainEntry *res; |
| double d0, d1, d; |
| |
| if (isnan(freq)) |
| return freq; |
| |
| if (!s->nb_gain_entry) |
| return 0; |
| |
| if (freq <= s->gain_entry_tbl[0].freq) |
| return s->gain_entry_tbl[0].gain; |
| |
| if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq) |
| return s->gain_entry_tbl[s->nb_gain_entry-1].gain; |
| |
| res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare); |
| av_assert0(res); |
| |
| d = res[1].freq - res[0].freq; |
| d0 = freq - res[0].freq; |
| d1 = res[1].freq - freq; |
| |
| if (d0 && d1) |
| return (d0 * res[1].gain + d1 * res[0].gain) / d; |
| |
| if (d0) |
| return res[1].gain; |
| |
| return res[0].gain; |
| } |
| |
| static double cubic_interpolate_func(void *p, double freq) |
| { |
| AVFilterContext *ctx = p; |
| FIREqualizerContext *s = ctx->priv; |
| GainEntry *res; |
| double x, x2, x3; |
| double a, b, c, d; |
| double m0, m1, m2, msum, unit; |
| |
| if (!s->nb_gain_entry) |
| return 0; |
| |
| if (freq <= s->gain_entry_tbl[0].freq) |
| return s->gain_entry_tbl[0].gain; |
| |
| if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq) |
| return s->gain_entry_tbl[s->nb_gain_entry-1].gain; |
| |
| res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare); |
| av_assert0(res); |
| |
| unit = res[1].freq - res[0].freq; |
| m0 = res != s->gain_entry_tbl ? |
| unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0; |
| m1 = res[1].gain - res[0].gain; |
| m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ? |
| unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0; |
| |
| msum = fabs(m0) + fabs(m1); |
| m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0; |
| msum = fabs(m1) + fabs(m2); |
| m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0; |
| |
| d = res[0].gain; |
| c = m0; |
| b = 3 * res[1].gain - m1 - 2 * c - 3 * d; |
| a = res[1].gain - b - c - d; |
| |
| x = (freq - res[0].freq) / unit; |
| x2 = x * x; |
| x3 = x2 * x; |
| |
| return a * x3 + b * x2 + c * x + d; |
| } |
| |
| static const char *const var_names[] = { |
| "f", |
| "sr", |
| "ch", |
| "chid", |
| "chs", |
| "chlayout", |
| NULL |
| }; |
| |
| enum VarOffset { |
| VAR_F, |
| VAR_SR, |
| VAR_CH, |
| VAR_CHID, |
| VAR_CHS, |
| VAR_CHLAYOUT, |
| VAR_NB |
| }; |
| |
| static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf) |
| { |
| int k, cepstrum_len = s->cepstrum_len, rdft_len = s->rdft_len; |
| double norm = 2.0 / cepstrum_len; |
| double minval = 1e-7 / rdft_len; |
| |
| memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf)); |
| memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf)); |
| memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 * sizeof(*rdft_buf)); |
| |
| av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf); |
| |
| s->cepstrum_buf[0] = log(FFMAX(s->cepstrum_buf[0], minval)); |
| s->cepstrum_buf[1] = log(FFMAX(s->cepstrum_buf[1], minval)); |
| |
| for (k = 2; k < cepstrum_len; k += 2) { |
| s->cepstrum_buf[k] = log(FFMAX(s->cepstrum_buf[k], minval)); |
| s->cepstrum_buf[k+1] = 0; |
| } |
| |
| av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf); |
| |
| memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf)); |
| for (k = 1; k < cepstrum_len/2; k++) |
| s->cepstrum_buf[k] *= 2; |
| |
| av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf); |
| |
| s->cepstrum_buf[0] = exp(s->cepstrum_buf[0] * norm) * norm; |
| s->cepstrum_buf[1] = exp(s->cepstrum_buf[1] * norm) * norm; |
| for (k = 2; k < cepstrum_len; k += 2) { |
| double mag = exp(s->cepstrum_buf[k] * norm) * norm; |
| double ph = s->cepstrum_buf[k+1] * norm; |
| s->cepstrum_buf[k] = mag * cos(ph); |
| s->cepstrum_buf[k+1] = mag * sin(ph); |
| } |
| |
| av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf); |
| memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf)); |
| memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf)); |
| |
| if (s->dumpfile) { |
| memset(s->analysis_buf, 0, s->analysis_rdft_len * sizeof(*s->analysis_buf)); |
| memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf)); |
| } |
| |
| } |
| |
| static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry) |
| { |
| FIREqualizerContext *s = ctx->priv; |
| AVFilterLink *inlink = ctx->inputs[0]; |
| const char *gain_entry_func_names[] = { "entry", NULL }; |
| const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL }; |
| double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL }; |
| double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL }; |
| double vars[VAR_NB]; |
| AVExpr *gain_expr; |
| int ret, k, center, ch; |
| int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG; |
| int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG; |
| FILE *dump_fp = NULL; |
| |
| s->nb_gain_entry = 0; |
| s->gain_entry_err = 0; |
| if (gain_entry) { |
| double result = 0.0; |
| ret = av_expr_parse_and_eval(&result, gain_entry, NULL, NULL, NULL, NULL, |
| gain_entry_func_names, gain_entry_funcs, ctx, 0, ctx); |
| if (ret < 0) |
| return ret; |
| if (s->gain_entry_err < 0) |
| return s->gain_entry_err; |
| } |
| |
| av_log(ctx, AV_LOG_DEBUG, "nb_gain_entry = %d.\n", s->nb_gain_entry); |
| |
| ret = av_expr_parse(&gain_expr, gain, var_names, |
| gain_func_names, gain_funcs, NULL, NULL, 0, ctx); |
| if (ret < 0) |
| return ret; |
| |
| if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = fopen(s->dumpfile, "w")))) |
| av_log(ctx, AV_LOG_WARNING, "dumping failed.\n"); |
| |
| vars[VAR_CHS] = inlink->channels; |
| vars[VAR_CHLAYOUT] = inlink->channel_layout; |
| vars[VAR_SR] = inlink->sample_rate; |
| for (ch = 0; ch < inlink->channels; ch++) { |
| float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len; |
| double result; |
| vars[VAR_CH] = ch; |
| vars[VAR_CHID] = av_channel_layout_extract_channel(inlink->channel_layout, ch); |
| vars[VAR_F] = 0.0; |
| if (xlog) |
| vars[VAR_F] = log2(0.05 * vars[VAR_F]); |
| result = av_expr_eval(gain_expr, vars, ctx); |
| s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result; |
| |
| vars[VAR_F] = 0.5 * inlink->sample_rate; |
| if (xlog) |
| vars[VAR_F] = log2(0.05 * vars[VAR_F]); |
| result = av_expr_eval(gain_expr, vars, ctx); |
| s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result; |
| |
| for (k = 1; k < s->analysis_rdft_len/2; k++) { |
| vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len); |
| if (xlog) |
| vars[VAR_F] = log2(0.05 * vars[VAR_F]); |
| result = av_expr_eval(gain_expr, vars, ctx); |
| s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result; |
| s->analysis_buf[2*k+1] = 0.0; |
| } |
| |
| if (s->dump_buf) |
| memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf)); |
| |
| av_rdft_calc(s->analysis_irdft, s->analysis_buf); |
| center = s->fir_len / 2; |
| |
| for (k = 0; k <= center; k++) { |
| double u = k * (M_PI/center); |
| double win; |
| switch (s->wfunc) { |
| case WFUNC_RECTANGULAR: |
| win = 1.0; |
| break; |
| case WFUNC_HANN: |
| win = 0.5 + 0.5 * cos(u); |
| break; |
| case WFUNC_HAMMING: |
| win = 0.53836 + 0.46164 * cos(u); |
| break; |
| case WFUNC_BLACKMAN: |
| win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u); |
| break; |
| case WFUNC_NUTTALL3: |
| win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u); |
| break; |
| case WFUNC_MNUTTALL3: |
| win = 0.4243801 + 0.4973406 * cos(u) + 0.0782793 * cos(2*u); |
| break; |
| case WFUNC_NUTTALL: |
| win = 0.355768 + 0.487396 * cos(u) + 0.144232 * cos(2*u) + 0.012604 * cos(3*u); |
| break; |
| case WFUNC_BNUTTALL: |
| win = 0.3635819 + 0.4891775 * cos(u) + 0.1365995 * cos(2*u) + 0.0106411 * cos(3*u); |
| break; |
| case WFUNC_BHARRIS: |
| win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u); |
| break; |
| case WFUNC_TUKEY: |
| win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI)); |
| break; |
| default: |
| av_assert0(0); |
| } |
| s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win; |
| if (k) |
| s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k]; |
| } |
| |
| memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf)); |
| memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf)); |
| memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf)); |
| if (s->min_phase) |
| generate_min_phase_kernel(s, rdft_buf); |
| av_rdft_calc(s->rdft, rdft_buf); |
| |
| for (k = 0; k < s->rdft_len; k++) { |
| if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) { |
| av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n"); |
| av_expr_free(gain_expr); |
| if (dump_fp) |
| fclose(dump_fp); |
| return AVERROR(EINVAL); |
| } |
| } |
| |
| if (!s->min_phase) { |
| rdft_buf[s->rdft_len-1] = rdft_buf[1]; |
| for (k = 0; k < s->rdft_len/2; k++) |
| rdft_buf[k] = rdft_buf[2*k]; |
| rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1]; |
| } |
| |
| if (dump_fp) |
| dump_fir(ctx, dump_fp, ch); |
| |
| if (!s->multi) |
| break; |
| } |
| |
| memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->channels : 1) * s->rdft_len * sizeof(*s->kernel_buf)); |
| av_expr_free(gain_expr); |
| if (dump_fp) |
| fclose(dump_fp); |
| return 0; |
| } |
| |
| #define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain) |
| #define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry) |
| |
| static int config_input(AVFilterLink *inlink) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| FIREqualizerContext *s = ctx->priv; |
| int rdft_bits; |
| |
| common_uninit(s); |
| |
| s->next_pts = 0; |
| s->frame_nsamples_max = 0; |
| |
| s->fir_len = FFMAX(2 * (int)(inlink->sample_rate * s->delay) + 1, 3); |
| s->remaining = s->fir_len - 1; |
| |
| for (rdft_bits = RDFT_BITS_MIN; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) { |
| s->rdft_len = 1 << rdft_bits; |
| s->nsamples_max = s->rdft_len - s->fir_len + 1; |
| if (s->nsamples_max * 2 >= s->fir_len) |
| break; |
| } |
| |
| if (rdft_bits > RDFT_BITS_MAX) { |
| av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R))) |
| return AVERROR(ENOMEM); |
| |
| if (s->fft2 && !s->multi && inlink->channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0))) |
| return AVERROR(ENOMEM); |
| |
| if (s->min_phase) { |
| int cepstrum_bits = rdft_bits + 2; |
| if (cepstrum_bits > RDFT_BITS_MAX) { |
| av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1); |
| s->cepstrum_rdft = av_rdft_init(cepstrum_bits, DFT_R2C); |
| s->cepstrum_irdft = av_rdft_init(cepstrum_bits, IDFT_C2R); |
| if (!s->cepstrum_rdft || !s->cepstrum_irdft) |
| return AVERROR(ENOMEM); |
| |
| s->cepstrum_len = 1 << cepstrum_bits; |
| s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf)); |
| if (!s->cepstrum_buf) |
| return AVERROR(ENOMEM); |
| } |
| |
| for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) { |
| s->analysis_rdft_len = 1 << rdft_bits; |
| if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len) |
| break; |
| } |
| |
| if (rdft_bits > RDFT_BITS_MAX) { |
| av_log(ctx, AV_LOG_ERROR, "too small accuracy, please increase it.\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R))) |
| return AVERROR(ENOMEM); |
| |
| if (s->dumpfile) { |
| s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C); |
| s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf)); |
| } |
| |
| s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf)); |
| s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_tmp_buf)); |
| s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_buf)); |
| s->conv_buf = av_calloc(2 * s->rdft_len * inlink->channels, sizeof(*s->conv_buf)); |
| s->conv_idx = av_calloc(inlink->channels, sizeof(*s->conv_idx)); |
| if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx) |
| return AVERROR(ENOMEM); |
| |
| av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n", |
| inlink->sample_rate, inlink->channels, s->analysis_rdft_len, s->rdft_len, s->fir_len, s->nsamples_max); |
| |
| if (s->fixed) |
| inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = s->nsamples_max; |
| |
| return generate_kernel(ctx, SELECT_GAIN(s), SELECT_GAIN_ENTRY(s)); |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *frame) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| FIREqualizerContext *s = ctx->priv; |
| int ch; |
| |
| if (!s->min_phase) { |
| for (ch = 0; ch + 1 < inlink->channels && s->fft_ctx; ch += 2) { |
| fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len), |
| s->conv_idx + ch, (float *) frame->extended_data[ch], |
| (float *) frame->extended_data[ch+1], frame->nb_samples); |
| } |
| |
| for ( ; ch < inlink->channels; ch++) { |
| fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0), |
| s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch, |
| (float *) frame->extended_data[ch], frame->nb_samples); |
| } |
| } else { |
| for (ch = 0; ch < inlink->channels; ch++) { |
| fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0), |
| s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch, |
| (float *) frame->extended_data[ch], frame->nb_samples); |
| } |
| } |
| |
| s->next_pts = AV_NOPTS_VALUE; |
| if (frame->pts != AV_NOPTS_VALUE) { |
| s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, av_make_q(1, inlink->sample_rate), inlink->time_base); |
| if (s->zero_phase && !s->min_phase) |
| frame->pts -= av_rescale_q(s->fir_len/2, av_make_q(1, inlink->sample_rate), inlink->time_base); |
| } |
| s->frame_nsamples_max = FFMAX(s->frame_nsamples_max, frame->nb_samples); |
| return ff_filter_frame(ctx->outputs[0], frame); |
| } |
| |
| static int request_frame(AVFilterLink *outlink) |
| { |
| AVFilterContext *ctx = outlink->src; |
| FIREqualizerContext *s= ctx->priv; |
| int ret; |
| |
| ret = ff_request_frame(ctx->inputs[0]); |
| if (ret == AVERROR_EOF && s->remaining > 0 && s->frame_nsamples_max > 0) { |
| AVFrame *frame = ff_get_audio_buffer(outlink, FFMIN(s->remaining, s->frame_nsamples_max)); |
| |
| if (!frame) |
| return AVERROR(ENOMEM); |
| |
| av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->channels, frame->format); |
| frame->pts = s->next_pts; |
| s->remaining -= frame->nb_samples; |
| ret = filter_frame(ctx->inputs[0], frame); |
| } |
| |
| return ret; |
| } |
| |
| static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, |
| char *res, int res_len, int flags) |
| { |
| FIREqualizerContext *s = ctx->priv; |
| int ret = AVERROR(ENOSYS); |
| |
| if (!strcmp(cmd, "gain")) { |
| char *gain_cmd; |
| |
| if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) { |
| av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n"); |
| return 0; |
| } |
| |
| gain_cmd = av_strdup(args); |
| if (!gain_cmd) |
| return AVERROR(ENOMEM); |
| |
| ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s)); |
| if (ret >= 0) { |
| av_freep(&s->gain_cmd); |
| s->gain_cmd = gain_cmd; |
| } else { |
| av_freep(&gain_cmd); |
| } |
| } else if (!strcmp(cmd, "gain_entry")) { |
| char *gain_entry_cmd; |
| |
| if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) { |
| av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n"); |
| return 0; |
| } |
| |
| gain_entry_cmd = av_strdup(args); |
| if (!gain_entry_cmd) |
| return AVERROR(ENOMEM); |
| |
| ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd); |
| if (ret >= 0) { |
| av_freep(&s->gain_entry_cmd); |
| s->gain_entry_cmd = gain_entry_cmd; |
| } else { |
| av_freep(&gain_entry_cmd); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static const AVFilterPad firequalizer_inputs[] = { |
| { |
| .name = "default", |
| .config_props = config_input, |
| .filter_frame = filter_frame, |
| .type = AVMEDIA_TYPE_AUDIO, |
| .needs_writable = 1, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad firequalizer_outputs[] = { |
| { |
| .name = "default", |
| .request_frame = request_frame, |
| .type = AVMEDIA_TYPE_AUDIO, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_af_firequalizer = { |
| .name = "firequalizer", |
| .description = NULL_IF_CONFIG_SMALL("Finite Impulse Response Equalizer."), |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .process_command = process_command, |
| .priv_size = sizeof(FIREqualizerContext), |
| .inputs = firequalizer_inputs, |
| .outputs = firequalizer_outputs, |
| .priv_class = &firequalizer_class, |
| }; |