| /***************************************************************************** |
| * sofalizer.c : SOFAlizer filter for virtual binaural acoustics |
| ***************************************************************************** |
| * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda, |
| * Acoustics Research Institute (ARI), Vienna, Austria |
| * |
| * Authors: Andreas Fuchs <andi.fuchs.mail@gmail.com> |
| * Wolfgang Hrauda <wolfgang.hrauda@gmx.at> |
| * |
| * SOFAlizer project coordinator at ARI, main developer of SOFA: |
| * Piotr Majdak <piotr@majdak.at> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU Lesser General Public License as published by |
| * the Free Software Foundation; either version 2.1 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA. |
| *****************************************************************************/ |
| |
| #include <math.h> |
| #include <mysofa.h> |
| |
| #include "libavcodec/avfft.h" |
| #include "libavutil/avstring.h" |
| #include "libavutil/channel_layout.h" |
| #include "libavutil/float_dsp.h" |
| #include "libavutil/intmath.h" |
| #include "libavutil/opt.h" |
| #include "avfilter.h" |
| #include "filters.h" |
| #include "internal.h" |
| #include "audio.h" |
| |
| #define TIME_DOMAIN 0 |
| #define FREQUENCY_DOMAIN 1 |
| |
| typedef struct MySofa { /* contains data of one SOFA file */ |
| struct MYSOFA_HRTF *hrtf; |
| struct MYSOFA_LOOKUP *lookup; |
| struct MYSOFA_NEIGHBORHOOD *neighborhood; |
| int ir_samples; /* length of one impulse response (IR) */ |
| int n_samples; /* ir_samples to next power of 2 */ |
| float *lir, *rir; /* IRs (time-domain) */ |
| float *fir; |
| int max_delay; |
| } MySofa; |
| |
| typedef struct VirtualSpeaker { |
| uint8_t set; |
| float azim; |
| float elev; |
| } VirtualSpeaker; |
| |
| typedef struct SOFAlizerContext { |
| const AVClass *class; |
| |
| char *filename; /* name of SOFA file */ |
| MySofa sofa; /* contains data of the SOFA file */ |
| |
| int sample_rate; /* sample rate from SOFA file */ |
| float *speaker_azim; /* azimuth of the virtual loudspeakers */ |
| float *speaker_elev; /* elevation of the virtual loudspeakers */ |
| char *speakers_pos; /* custom positions of the virtual loudspeakers */ |
| float lfe_gain; /* initial gain for the LFE channel */ |
| float gain_lfe; /* gain applied to LFE channel */ |
| int lfe_channel; /* LFE channel position in channel layout */ |
| |
| int n_conv; /* number of channels to convolute */ |
| |
| /* buffer variables (for convolution) */ |
| float *ringbuffer[2]; /* buffers input samples, length of one buffer: */ |
| /* no. input ch. (incl. LFE) x buffer_length */ |
| int write[2]; /* current write position to ringbuffer */ |
| int buffer_length; /* is: longest IR plus max. delay in all SOFA files */ |
| /* then choose next power of 2 */ |
| int n_fft; /* number of samples in one FFT block */ |
| int nb_samples; |
| |
| /* netCDF variables */ |
| int *delay[2]; /* broadband delay for each channel/IR to be convolved */ |
| |
| float *data_ir[2]; /* IRs for all channels to be convolved */ |
| /* (this excludes the LFE) */ |
| float *temp_src[2]; |
| FFTComplex *temp_fft[2]; /* Array to hold FFT values */ |
| FFTComplex *temp_afft[2]; /* Array to accumulate FFT values prior to IFFT */ |
| |
| /* control variables */ |
| float gain; /* filter gain (in dB) */ |
| float rotation; /* rotation of virtual loudspeakers (in degrees) */ |
| float elevation; /* elevation of virtual loudspeakers (in deg.) */ |
| float radius; /* distance virtual loudspeakers to listener (in metres) */ |
| int type; /* processing type */ |
| int framesize; /* size of buffer */ |
| int normalize; /* should all IRs be normalized upon import ? */ |
| int interpolate; /* should wanted IRs be interpolated from neighbors ? */ |
| int minphase; /* should all IRs be minphased upon import ? */ |
| float anglestep; /* neighbor search angle step, in agles */ |
| float radstep; /* neighbor search radius step, in meters */ |
| |
| VirtualSpeaker vspkrpos[64]; |
| |
| FFTContext *fft[2], *ifft[2]; |
| FFTComplex *data_hrtf[2]; |
| |
| AVFloatDSPContext *fdsp; |
| } SOFAlizerContext; |
| |
| static int close_sofa(struct MySofa *sofa) |
| { |
| if (sofa->neighborhood) |
| mysofa_neighborhood_free(sofa->neighborhood); |
| sofa->neighborhood = NULL; |
| if (sofa->lookup) |
| mysofa_lookup_free(sofa->lookup); |
| sofa->lookup = NULL; |
| if (sofa->hrtf) |
| mysofa_free(sofa->hrtf); |
| sofa->hrtf = NULL; |
| av_freep(&sofa->fir); |
| |
| return 0; |
| } |
| |
| static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate) |
| { |
| struct SOFAlizerContext *s = ctx->priv; |
| struct MYSOFA_HRTF *mysofa; |
| char *license; |
| int ret; |
| |
| mysofa = mysofa_load(filename, &ret); |
| s->sofa.hrtf = mysofa; |
| if (ret || !mysofa) { |
| av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename); |
| return AVERROR(EINVAL); |
| } |
| |
| ret = mysofa_check(mysofa); |
| if (ret != MYSOFA_OK) { |
| av_log(ctx, AV_LOG_ERROR, "Selected SOFA file is invalid. Please select valid SOFA file.\n"); |
| return ret; |
| } |
| |
| if (s->normalize) |
| mysofa_loudness(s->sofa.hrtf); |
| |
| if (s->minphase) |
| mysofa_minphase(s->sofa.hrtf, 0.01f); |
| |
| mysofa_tocartesian(s->sofa.hrtf); |
| |
| s->sofa.lookup = mysofa_lookup_init(s->sofa.hrtf); |
| if (s->sofa.lookup == NULL) |
| return AVERROR(EINVAL); |
| |
| if (s->interpolate) |
| s->sofa.neighborhood = mysofa_neighborhood_init_withstepdefine(s->sofa.hrtf, |
| s->sofa.lookup, |
| s->anglestep, |
| s->radstep); |
| |
| s->sofa.fir = av_calloc(s->sofa.hrtf->N * s->sofa.hrtf->R, sizeof(*s->sofa.fir)); |
| if (!s->sofa.fir) |
| return AVERROR(ENOMEM); |
| |
| if (mysofa->DataSamplingRate.elements != 1) |
| return AVERROR(EINVAL); |
| av_log(ctx, AV_LOG_DEBUG, "Original IR length: %d.\n", mysofa->N); |
| *samplingrate = mysofa->DataSamplingRate.values[0]; |
| license = mysofa_getAttribute(mysofa->attributes, (char *)"License"); |
| if (license) |
| av_log(ctx, AV_LOG_INFO, "SOFA license: %s\n", license); |
| |
| return 0; |
| } |
| |
| static int parse_channel_name(AVFilterContext *ctx, char **arg, int *rchannel) |
| { |
| int len, i, channel_id = 0; |
| int64_t layout, layout0; |
| char buf[8] = {0}; |
| |
| /* try to parse a channel name, e.g. "FL" */ |
| if (av_sscanf(*arg, "%7[A-Z]%n", buf, &len)) { |
| layout0 = layout = av_get_channel_layout(buf); |
| /* channel_id <- first set bit in layout */ |
| for (i = 32; i > 0; i >>= 1) { |
| if (layout >= 1LL << i) { |
| channel_id += i; |
| layout >>= i; |
| } |
| } |
| /* reject layouts that are not a single channel */ |
| if (channel_id >= 64 || layout0 != 1LL << channel_id) { |
| av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf); |
| return AVERROR(EINVAL); |
| } |
| *rchannel = channel_id; |
| *arg += len; |
| return 0; |
| } else if (av_sscanf(*arg, "%d%n", &channel_id, &len) == 1) { |
| if (channel_id < 0 || channel_id >= 64) { |
| av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%d\' as channel number.\n", channel_id); |
| return AVERROR(EINVAL); |
| } |
| *rchannel = channel_id; |
| *arg += len; |
| return 0; |
| } |
| return AVERROR(EINVAL); |
| } |
| |
| static void parse_speaker_pos(AVFilterContext *ctx, int64_t in_channel_layout) |
| { |
| SOFAlizerContext *s = ctx->priv; |
| char *arg, *tokenizer, *p, *args = av_strdup(s->speakers_pos); |
| |
| if (!args) |
| return; |
| p = args; |
| |
| while ((arg = av_strtok(p, "|", &tokenizer))) { |
| float azim, elev; |
| int out_ch_id; |
| |
| p = NULL; |
| if (parse_channel_name(ctx, &arg, &out_ch_id)) { |
| continue; |
| } |
| if (av_sscanf(arg, "%f %f", &azim, &elev) == 2) { |
| s->vspkrpos[out_ch_id].set = 1; |
| s->vspkrpos[out_ch_id].azim = azim; |
| s->vspkrpos[out_ch_id].elev = elev; |
| } else if (av_sscanf(arg, "%f", &azim) == 1) { |
| s->vspkrpos[out_ch_id].set = 1; |
| s->vspkrpos[out_ch_id].azim = azim; |
| s->vspkrpos[out_ch_id].elev = 0; |
| } |
| } |
| |
| av_free(args); |
| } |
| |
| static int get_speaker_pos(AVFilterContext *ctx, |
| float *speaker_azim, float *speaker_elev) |
| { |
| struct SOFAlizerContext *s = ctx->priv; |
| uint64_t channels_layout = ctx->inputs[0]->channel_layout; |
| float azim[64] = { 0 }; |
| float elev[64] = { 0 }; |
| int m, ch, n_conv = ctx->inputs[0]->channels; /* get no. input channels */ |
| |
| if (n_conv < 0 || n_conv > 64) |
| return AVERROR(EINVAL); |
| |
| s->lfe_channel = -1; |
| |
| if (s->speakers_pos) |
| parse_speaker_pos(ctx, channels_layout); |
| |
| /* set speaker positions according to input channel configuration: */ |
| for (m = 0, ch = 0; ch < n_conv && m < 64; m++) { |
| uint64_t mask = channels_layout & (1ULL << m); |
| |
| switch (mask) { |
| case AV_CH_FRONT_LEFT: azim[ch] = 30; break; |
| case AV_CH_FRONT_RIGHT: azim[ch] = 330; break; |
| case AV_CH_FRONT_CENTER: azim[ch] = 0; break; |
| case AV_CH_LOW_FREQUENCY: |
| case AV_CH_LOW_FREQUENCY_2: s->lfe_channel = ch; break; |
| case AV_CH_BACK_LEFT: azim[ch] = 150; break; |
| case AV_CH_BACK_RIGHT: azim[ch] = 210; break; |
| case AV_CH_BACK_CENTER: azim[ch] = 180; break; |
| case AV_CH_SIDE_LEFT: azim[ch] = 90; break; |
| case AV_CH_SIDE_RIGHT: azim[ch] = 270; break; |
| case AV_CH_FRONT_LEFT_OF_CENTER: azim[ch] = 15; break; |
| case AV_CH_FRONT_RIGHT_OF_CENTER: azim[ch] = 345; break; |
| case AV_CH_TOP_CENTER: azim[ch] = 0; |
| elev[ch] = 90; break; |
| case AV_CH_TOP_FRONT_LEFT: azim[ch] = 30; |
| elev[ch] = 45; break; |
| case AV_CH_TOP_FRONT_CENTER: azim[ch] = 0; |
| elev[ch] = 45; break; |
| case AV_CH_TOP_FRONT_RIGHT: azim[ch] = 330; |
| elev[ch] = 45; break; |
| case AV_CH_TOP_BACK_LEFT: azim[ch] = 150; |
| elev[ch] = 45; break; |
| case AV_CH_TOP_BACK_RIGHT: azim[ch] = 210; |
| elev[ch] = 45; break; |
| case AV_CH_TOP_BACK_CENTER: azim[ch] = 180; |
| elev[ch] = 45; break; |
| case AV_CH_WIDE_LEFT: azim[ch] = 90; break; |
| case AV_CH_WIDE_RIGHT: azim[ch] = 270; break; |
| case AV_CH_SURROUND_DIRECT_LEFT: azim[ch] = 90; break; |
| case AV_CH_SURROUND_DIRECT_RIGHT: azim[ch] = 270; break; |
| case AV_CH_STEREO_LEFT: azim[ch] = 90; break; |
| case AV_CH_STEREO_RIGHT: azim[ch] = 270; break; |
| case 0: break; |
| default: |
| return AVERROR(EINVAL); |
| } |
| |
| if (s->vspkrpos[m].set) { |
| azim[ch] = s->vspkrpos[m].azim; |
| elev[ch] = s->vspkrpos[m].elev; |
| } |
| |
| if (mask) |
| ch++; |
| } |
| |
| memcpy(speaker_azim, azim, n_conv * sizeof(float)); |
| memcpy(speaker_elev, elev, n_conv * sizeof(float)); |
| |
| return 0; |
| |
| } |
| |
| typedef struct ThreadData { |
| AVFrame *in, *out; |
| int *write; |
| int **delay; |
| float **ir; |
| int *n_clippings; |
| float **ringbuffer; |
| float **temp_src; |
| FFTComplex **temp_fft; |
| FFTComplex **temp_afft; |
| } ThreadData; |
| |
| static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
| { |
| SOFAlizerContext *s = ctx->priv; |
| ThreadData *td = arg; |
| AVFrame *in = td->in, *out = td->out; |
| int offset = jobnr; |
| int *write = &td->write[jobnr]; |
| const int *const delay = td->delay[jobnr]; |
| const float *const ir = td->ir[jobnr]; |
| int *n_clippings = &td->n_clippings[jobnr]; |
| float *ringbuffer = td->ringbuffer[jobnr]; |
| float *temp_src = td->temp_src[jobnr]; |
| const int ir_samples = s->sofa.ir_samples; /* length of one IR */ |
| const int n_samples = s->sofa.n_samples; |
| const int planar = in->format == AV_SAMPLE_FMT_FLTP; |
| const int mult = 1 + !planar; |
| const float *src = (const float *)in->extended_data[0]; /* get pointer to audio input buffer */ |
| float *dst = (float *)out->extended_data[jobnr * planar]; /* get pointer to audio output buffer */ |
| const int in_channels = s->n_conv; /* number of input channels */ |
| /* ring buffer length is: longest IR plus max. delay -> next power of 2 */ |
| const int buffer_length = s->buffer_length; |
| /* -1 for AND instead of MODULO (applied to powers of 2): */ |
| const uint32_t modulo = (uint32_t)buffer_length - 1; |
| float *buffer[64]; /* holds ringbuffer for each input channel */ |
| int wr = *write; |
| int read; |
| int i, l; |
| |
| if (!planar) |
| dst += offset; |
| |
| for (l = 0; l < in_channels; l++) { |
| /* get starting address of ringbuffer for each input channel */ |
| buffer[l] = ringbuffer + l * buffer_length; |
| } |
| |
| for (i = 0; i < in->nb_samples; i++) { |
| const float *temp_ir = ir; /* using same set of IRs for each sample */ |
| |
| dst[0] = 0; |
| if (planar) { |
| for (l = 0; l < in_channels; l++) { |
| const float *srcp = (const float *)in->extended_data[l]; |
| |
| /* write current input sample to ringbuffer (for each channel) */ |
| buffer[l][wr] = srcp[i]; |
| } |
| } else { |
| for (l = 0; l < in_channels; l++) { |
| /* write current input sample to ringbuffer (for each channel) */ |
| buffer[l][wr] = src[l]; |
| } |
| } |
| |
| /* loop goes through all channels to be convolved */ |
| for (l = 0; l < in_channels; l++) { |
| const float *const bptr = buffer[l]; |
| |
| if (l == s->lfe_channel) { |
| /* LFE is an input channel but requires no convolution */ |
| /* apply gain to LFE signal and add to output buffer */ |
| dst[0] += *(buffer[s->lfe_channel] + wr) * s->gain_lfe; |
| temp_ir += n_samples; |
| continue; |
| } |
| |
| /* current read position in ringbuffer: input sample write position |
| * - delay for l-th ch. + diff. betw. IR length and buffer length |
| * (mod buffer length) */ |
| read = (wr - delay[l] - (ir_samples - 1) + buffer_length) & modulo; |
| |
| if (read + ir_samples < buffer_length) { |
| memmove(temp_src, bptr + read, ir_samples * sizeof(*temp_src)); |
| } else { |
| int len = FFMIN(n_samples - (read % ir_samples), buffer_length - read); |
| |
| memmove(temp_src, bptr + read, len * sizeof(*temp_src)); |
| memmove(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src)); |
| } |
| |
| /* multiply signal and IR, and add up the results */ |
| dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, FFALIGN(ir_samples, 32)); |
| temp_ir += n_samples; |
| } |
| |
| /* clippings counter */ |
| if (fabsf(dst[0]) > 1) |
| n_clippings[0]++; |
| |
| /* move output buffer pointer by +2 to get to next sample of processed channel: */ |
| dst += mult; |
| src += in_channels; |
| wr = (wr + 1) & modulo; /* update ringbuffer write position */ |
| } |
| |
| *write = wr; /* remember write position in ringbuffer for next call */ |
| |
| return 0; |
| } |
| |
| static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
| { |
| SOFAlizerContext *s = ctx->priv; |
| ThreadData *td = arg; |
| AVFrame *in = td->in, *out = td->out; |
| int offset = jobnr; |
| int *write = &td->write[jobnr]; |
| FFTComplex *hrtf = s->data_hrtf[jobnr]; /* get pointers to current HRTF data */ |
| int *n_clippings = &td->n_clippings[jobnr]; |
| float *ringbuffer = td->ringbuffer[jobnr]; |
| const int ir_samples = s->sofa.ir_samples; /* length of one IR */ |
| const int planar = in->format == AV_SAMPLE_FMT_FLTP; |
| const int mult = 1 + !planar; |
| float *dst = (float *)out->extended_data[jobnr * planar]; /* get pointer to audio output buffer */ |
| const int in_channels = s->n_conv; /* number of input channels */ |
| /* ring buffer length is: longest IR plus max. delay -> next power of 2 */ |
| const int buffer_length = s->buffer_length; |
| /* -1 for AND instead of MODULO (applied to powers of 2): */ |
| const uint32_t modulo = (uint32_t)buffer_length - 1; |
| FFTComplex *fft_in = s->temp_fft[jobnr]; /* temporary array for FFT input/output data */ |
| FFTComplex *fft_acc = s->temp_afft[jobnr]; |
| FFTContext *ifft = s->ifft[jobnr]; |
| FFTContext *fft = s->fft[jobnr]; |
| const int n_conv = s->n_conv; |
| const int n_fft = s->n_fft; |
| const float fft_scale = 1.0f / s->n_fft; |
| FFTComplex *hrtf_offset; |
| int wr = *write; |
| int n_read; |
| int i, j; |
| |
| if (!planar) |
| dst += offset; |
| |
| /* find minimum between number of samples and output buffer length: |
| * (important, if one IR is longer than the output buffer) */ |
| n_read = FFMIN(ir_samples, in->nb_samples); |
| for (j = 0; j < n_read; j++) { |
| /* initialize output buf with saved signal from overflow buf */ |
| dst[mult * j] = ringbuffer[wr]; |
| ringbuffer[wr] = 0.0f; /* re-set read samples to zero */ |
| /* update ringbuffer read/write position */ |
| wr = (wr + 1) & modulo; |
| } |
| |
| /* initialize rest of output buffer with 0 */ |
| for (j = n_read; j < in->nb_samples; j++) { |
| dst[mult * j] = 0; |
| } |
| |
| /* fill FFT accumulation with 0 */ |
| memset(fft_acc, 0, sizeof(FFTComplex) * n_fft); |
| |
| for (i = 0; i < n_conv; i++) { |
| const float *src = (const float *)in->extended_data[i * planar]; /* get pointer to audio input buffer */ |
| |
| if (i == s->lfe_channel) { /* LFE */ |
| if (in->format == AV_SAMPLE_FMT_FLT) { |
| for (j = 0; j < in->nb_samples; j++) { |
| /* apply gain to LFE signal and add to output buffer */ |
| dst[2 * j] += src[i + j * in_channels] * s->gain_lfe; |
| } |
| } else { |
| for (j = 0; j < in->nb_samples; j++) { |
| /* apply gain to LFE signal and add to output buffer */ |
| dst[j] += src[j] * s->gain_lfe; |
| } |
| } |
| continue; |
| } |
| |
| /* outer loop: go through all input channels to be convolved */ |
| offset = i * n_fft; /* no. samples already processed */ |
| hrtf_offset = hrtf + offset; |
| |
| /* fill FFT input with 0 (we want to zero-pad) */ |
| memset(fft_in, 0, sizeof(FFTComplex) * n_fft); |
| |
| if (in->format == AV_SAMPLE_FMT_FLT) { |
| for (j = 0; j < in->nb_samples; j++) { |
| /* prepare input for FFT */ |
| /* write all samples of current input channel to FFT input array */ |
| fft_in[j].re = src[j * in_channels + i]; |
| } |
| } else { |
| for (j = 0; j < in->nb_samples; j++) { |
| /* prepare input for FFT */ |
| /* write all samples of current input channel to FFT input array */ |
| fft_in[j].re = src[j]; |
| } |
| } |
| |
| /* transform input signal of current channel to frequency domain */ |
| av_fft_permute(fft, fft_in); |
| av_fft_calc(fft, fft_in); |
| for (j = 0; j < n_fft; j++) { |
| const FFTComplex *hcomplex = hrtf_offset + j; |
| const float re = fft_in[j].re; |
| const float im = fft_in[j].im; |
| |
| /* complex multiplication of input signal and HRTFs */ |
| /* output channel (real): */ |
| fft_acc[j].re += re * hcomplex->re - im * hcomplex->im; |
| /* output channel (imag): */ |
| fft_acc[j].im += re * hcomplex->im + im * hcomplex->re; |
| } |
| } |
| |
| /* transform output signal of current channel back to time domain */ |
| av_fft_permute(ifft, fft_acc); |
| av_fft_calc(ifft, fft_acc); |
| |
| for (j = 0; j < in->nb_samples; j++) { |
| /* write output signal of current channel to output buffer */ |
| dst[mult * j] += fft_acc[j].re * fft_scale; |
| } |
| |
| for (j = 0; j < ir_samples - 1; j++) { /* overflow length is IR length - 1 */ |
| /* write the rest of output signal to overflow buffer */ |
| int write_pos = (wr + j) & modulo; |
| |
| *(ringbuffer + write_pos) += fft_acc[in->nb_samples + j].re * fft_scale; |
| } |
| |
| /* go through all samples of current output buffer: count clippings */ |
| for (i = 0; i < out->nb_samples; i++) { |
| /* clippings counter */ |
| if (fabsf(dst[i * mult]) > 1) { /* if current output sample > 1 */ |
| n_clippings[0]++; |
| } |
| } |
| |
| /* remember read/write position in ringbuffer for next call */ |
| *write = wr; |
| |
| return 0; |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| SOFAlizerContext *s = ctx->priv; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| int n_clippings[2] = { 0 }; |
| ThreadData td; |
| AVFrame *out; |
| |
| out = ff_get_audio_buffer(outlink, in->nb_samples); |
| if (!out) { |
| av_frame_free(&in); |
| return AVERROR(ENOMEM); |
| } |
| av_frame_copy_props(out, in); |
| |
| td.in = in; td.out = out; td.write = s->write; |
| td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings; |
| td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src; |
| td.temp_fft = s->temp_fft; |
| td.temp_afft = s->temp_afft; |
| |
| if (s->type == TIME_DOMAIN) { |
| ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2); |
| } else if (s->type == FREQUENCY_DOMAIN) { |
| ctx->internal->execute(ctx, sofalizer_fast_convolute, &td, NULL, 2); |
| } |
| emms_c(); |
| |
| /* display error message if clipping occurred */ |
| if (n_clippings[0] + n_clippings[1] > 0) { |
| av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n", |
| n_clippings[0] + n_clippings[1], out->nb_samples * 2); |
| } |
| |
| av_frame_free(&in); |
| return ff_filter_frame(outlink, out); |
| } |
| |
| static int activate(AVFilterContext *ctx) |
| { |
| AVFilterLink *inlink = ctx->inputs[0]; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| SOFAlizerContext *s = ctx->priv; |
| AVFrame *in; |
| int ret; |
| |
| FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); |
| |
| if (s->nb_samples) |
| ret = ff_inlink_consume_samples(inlink, s->nb_samples, s->nb_samples, &in); |
| else |
| ret = ff_inlink_consume_frame(inlink, &in); |
| if (ret < 0) |
| return ret; |
| if (ret > 0) |
| return filter_frame(inlink, in); |
| |
| FF_FILTER_FORWARD_STATUS(inlink, outlink); |
| FF_FILTER_FORWARD_WANTED(outlink, inlink); |
| |
| return FFERROR_NOT_READY; |
| } |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| struct SOFAlizerContext *s = ctx->priv; |
| AVFilterFormats *formats = NULL; |
| AVFilterChannelLayouts *layouts = NULL; |
| int ret, sample_rates[] = { 48000, -1 }; |
| static const enum AVSampleFormat sample_fmts[] = { |
| AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE |
| }; |
| |
| formats = ff_make_format_list(sample_fmts); |
| if (!formats) |
| return AVERROR(ENOMEM); |
| ret = ff_set_common_formats(ctx, formats); |
| if (ret) |
| return ret; |
| |
| layouts = ff_all_channel_layouts(); |
| if (!layouts) |
| return AVERROR(ENOMEM); |
| |
| ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->outcfg.channel_layouts); |
| if (ret) |
| return ret; |
| |
| layouts = NULL; |
| ret = ff_add_channel_layout(&layouts, AV_CH_LAYOUT_STEREO); |
| if (ret) |
| return ret; |
| |
| ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->incfg.channel_layouts); |
| if (ret) |
| return ret; |
| |
| sample_rates[0] = s->sample_rate; |
| formats = ff_make_format_list(sample_rates); |
| if (!formats) |
| return AVERROR(ENOMEM); |
| return ff_set_common_samplerates(ctx, formats); |
| } |
| |
| static int getfilter_float(AVFilterContext *ctx, float x, float y, float z, |
| float *left, float *right, |
| float *delay_left, float *delay_right) |
| { |
| struct SOFAlizerContext *s = ctx->priv; |
| float c[3], delays[2]; |
| float *fl, *fr; |
| int nearest; |
| int *neighbors; |
| float *res; |
| |
| c[0] = x, c[1] = y, c[2] = z; |
| nearest = mysofa_lookup(s->sofa.lookup, c); |
| if (nearest < 0) |
| return AVERROR(EINVAL); |
| |
| if (s->interpolate) { |
| neighbors = mysofa_neighborhood(s->sofa.neighborhood, nearest); |
| res = mysofa_interpolate(s->sofa.hrtf, c, |
| nearest, neighbors, |
| s->sofa.fir, delays); |
| } else { |
| if (s->sofa.hrtf->DataDelay.elements > s->sofa.hrtf->R) { |
| delays[0] = s->sofa.hrtf->DataDelay.values[nearest * s->sofa.hrtf->R]; |
| delays[1] = s->sofa.hrtf->DataDelay.values[nearest * s->sofa.hrtf->R + 1]; |
| } else { |
| delays[0] = s->sofa.hrtf->DataDelay.values[0]; |
| delays[1] = s->sofa.hrtf->DataDelay.values[1]; |
| } |
| res = s->sofa.hrtf->DataIR.values + nearest * s->sofa.hrtf->N * s->sofa.hrtf->R; |
| } |
| |
| *delay_left = delays[0]; |
| *delay_right = delays[1]; |
| |
| fl = res; |
| fr = res + s->sofa.hrtf->N; |
| |
| memcpy(left, fl, sizeof(float) * s->sofa.hrtf->N); |
| memcpy(right, fr, sizeof(float) * s->sofa.hrtf->N); |
| |
| return 0; |
| } |
| |
| static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int sample_rate) |
| { |
| struct SOFAlizerContext *s = ctx->priv; |
| int n_samples; |
| int ir_samples; |
| int n_conv = s->n_conv; /* no. channels to convolve */ |
| int n_fft; |
| float delay_l; /* broadband delay for each IR */ |
| float delay_r; |
| int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */ |
| float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */ |
| FFTComplex *data_hrtf_l = NULL; |
| FFTComplex *data_hrtf_r = NULL; |
| FFTComplex *fft_in_l = NULL; |
| FFTComplex *fft_in_r = NULL; |
| float *data_ir_l = NULL; |
| float *data_ir_r = NULL; |
| int offset = 0; /* used for faster pointer arithmetics in for-loop */ |
| int i, j, azim_orig = azim, elev_orig = elev; |
| int ret = 0; |
| int n_current; |
| int n_max = 0; |
| |
| av_log(ctx, AV_LOG_DEBUG, "IR length: %d.\n", s->sofa.hrtf->N); |
| s->sofa.ir_samples = s->sofa.hrtf->N; |
| s->sofa.n_samples = 1 << (32 - ff_clz(s->sofa.ir_samples)); |
| |
| n_samples = s->sofa.n_samples; |
| ir_samples = s->sofa.ir_samples; |
| |
| if (s->type == TIME_DOMAIN) { |
| s->data_ir[0] = av_calloc(n_samples, sizeof(float) * s->n_conv); |
| s->data_ir[1] = av_calloc(n_samples, sizeof(float) * s->n_conv); |
| |
| if (!s->data_ir[0] || !s->data_ir[1]) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| } |
| |
| s->delay[0] = av_calloc(s->n_conv, sizeof(int)); |
| s->delay[1] = av_calloc(s->n_conv, sizeof(int)); |
| |
| if (!s->delay[0] || !s->delay[1]) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| /* get temporary IR for L and R channel */ |
| data_ir_l = av_calloc(n_conv * n_samples, sizeof(*data_ir_l)); |
| data_ir_r = av_calloc(n_conv * n_samples, sizeof(*data_ir_r)); |
| if (!data_ir_r || !data_ir_l) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| if (s->type == TIME_DOMAIN) { |
| s->temp_src[0] = av_calloc(n_samples, sizeof(float)); |
| s->temp_src[1] = av_calloc(n_samples, sizeof(float)); |
| if (!s->temp_src[0] || !s->temp_src[1]) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| } |
| |
| s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim)); |
| s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev)); |
| if (!s->speaker_azim || !s->speaker_elev) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| /* get speaker positions */ |
| if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) { |
| av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n"); |
| goto fail; |
| } |
| |
| for (i = 0; i < s->n_conv; i++) { |
| float coordinates[3]; |
| |
| /* load and store IRs and corresponding delays */ |
| azim = (int)(s->speaker_azim[i] + azim_orig) % 360; |
| elev = (int)(s->speaker_elev[i] + elev_orig) % 90; |
| |
| coordinates[0] = azim; |
| coordinates[1] = elev; |
| coordinates[2] = radius; |
| |
| mysofa_s2c(coordinates); |
| |
| /* get id of IR closest to desired position */ |
| ret = getfilter_float(ctx, coordinates[0], coordinates[1], coordinates[2], |
| data_ir_l + n_samples * i, |
| data_ir_r + n_samples * i, |
| &delay_l, &delay_r); |
| if (ret < 0) |
| goto fail; |
| |
| s->delay[0][i] = delay_l * sample_rate; |
| s->delay[1][i] = delay_r * sample_rate; |
| |
| s->sofa.max_delay = FFMAX3(s->sofa.max_delay, s->delay[0][i], s->delay[1][i]); |
| } |
| |
| /* get size of ringbuffer (longest IR plus max. delay) */ |
| /* then choose next power of 2 for performance optimization */ |
| n_current = n_samples + s->sofa.max_delay; |
| /* length of longest IR plus max. delay */ |
| n_max = FFMAX(n_max, n_current); |
| |
| /* buffer length is longest IR plus max. delay -> next power of 2 |
| (32 - count leading zeros gives required exponent) */ |
| s->buffer_length = 1 << (32 - ff_clz(n_max)); |
| s->n_fft = n_fft = 1 << (32 - ff_clz(n_max + s->framesize)); |
| |
| if (s->type == FREQUENCY_DOMAIN) { |
| av_fft_end(s->fft[0]); |
| av_fft_end(s->fft[1]); |
| s->fft[0] = av_fft_init(av_log2(s->n_fft), 0); |
| s->fft[1] = av_fft_init(av_log2(s->n_fft), 0); |
| av_fft_end(s->ifft[0]); |
| av_fft_end(s->ifft[1]); |
| s->ifft[0] = av_fft_init(av_log2(s->n_fft), 1); |
| s->ifft[1] = av_fft_init(av_log2(s->n_fft), 1); |
| |
| if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) { |
| av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft); |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| } |
| |
| if (s->type == TIME_DOMAIN) { |
| s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); |
| s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); |
| } else if (s->type == FREQUENCY_DOMAIN) { |
| /* get temporary HRTF memory for L and R channel */ |
| data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * n_conv); |
| data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * n_conv); |
| if (!data_hrtf_r || !data_hrtf_l) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float)); |
| s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float)); |
| s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
| s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
| s->temp_afft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
| s->temp_afft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
| if (!s->temp_fft[0] || !s->temp_fft[1] || |
| !s->temp_afft[0] || !s->temp_afft[1]) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| } |
| |
| if (!s->ringbuffer[0] || !s->ringbuffer[1]) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| if (s->type == FREQUENCY_DOMAIN) { |
| fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l)); |
| fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r)); |
| if (!fft_in_l || !fft_in_r) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| } |
| |
| for (i = 0; i < s->n_conv; i++) { |
| float *lir, *rir; |
| |
| offset = i * n_samples; /* no. samples already written */ |
| |
| lir = data_ir_l + offset; |
| rir = data_ir_r + offset; |
| |
| if (s->type == TIME_DOMAIN) { |
| for (j = 0; j < ir_samples; j++) { |
| /* load reversed IRs of the specified source position |
| * sample-by-sample for left and right ear; and apply gain */ |
| s->data_ir[0][offset + j] = lir[ir_samples - 1 - j] * gain_lin; |
| s->data_ir[1][offset + j] = rir[ir_samples - 1 - j] * gain_lin; |
| } |
| } else if (s->type == FREQUENCY_DOMAIN) { |
| memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l)); |
| memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r)); |
| |
| offset = i * n_fft; /* no. samples already written */ |
| for (j = 0; j < ir_samples; j++) { |
| /* load non-reversed IRs of the specified source position |
| * sample-by-sample and apply gain, |
| * L channel is loaded to real part, R channel to imag part, |
| * IRs are shifted by L and R delay */ |
| fft_in_l[s->delay[0][i] + j].re = lir[j] * gain_lin; |
| fft_in_r[s->delay[1][i] + j].re = rir[j] * gain_lin; |
| } |
| |
| /* actually transform to frequency domain (IRs -> HRTFs) */ |
| av_fft_permute(s->fft[0], fft_in_l); |
| av_fft_calc(s->fft[0], fft_in_l); |
| memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l)); |
| av_fft_permute(s->fft[0], fft_in_r); |
| av_fft_calc(s->fft[0], fft_in_r); |
| memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r)); |
| } |
| } |
| |
| if (s->type == FREQUENCY_DOMAIN) { |
| s->data_hrtf[0] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex)); |
| s->data_hrtf[1] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex)); |
| if (!s->data_hrtf[0] || !s->data_hrtf[1]) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| memcpy(s->data_hrtf[0], data_hrtf_l, /* copy HRTF data to */ |
| sizeof(FFTComplex) * n_conv * n_fft); /* filter struct */ |
| memcpy(s->data_hrtf[1], data_hrtf_r, |
| sizeof(FFTComplex) * n_conv * n_fft); |
| } |
| |
| fail: |
| av_freep(&data_hrtf_l); /* free temporary HRTF memory */ |
| av_freep(&data_hrtf_r); |
| |
| av_freep(&data_ir_l); /* free temprary IR memory */ |
| av_freep(&data_ir_r); |
| |
| av_freep(&fft_in_l); /* free temporary FFT memory */ |
| av_freep(&fft_in_r); |
| |
| return ret; |
| } |
| |
| static av_cold int init(AVFilterContext *ctx) |
| { |
| SOFAlizerContext *s = ctx->priv; |
| int ret; |
| |
| if (!s->filename) { |
| av_log(ctx, AV_LOG_ERROR, "Valid SOFA filename must be set.\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| /* preload SOFA file, */ |
| ret = preload_sofa(ctx, s->filename, &s->sample_rate); |
| if (ret) { |
| /* file loading error */ |
| av_log(ctx, AV_LOG_ERROR, "Error while loading SOFA file: '%s'\n", s->filename); |
| } else { /* no file loading error, resampling not required */ |
| av_log(ctx, AV_LOG_DEBUG, "File '%s' loaded.\n", s->filename); |
| } |
| |
| if (ret) { |
| av_log(ctx, AV_LOG_ERROR, "No valid SOFA file could be loaded. Please specify valid SOFA file.\n"); |
| return ret; |
| } |
| |
| s->fdsp = avpriv_float_dsp_alloc(0); |
| if (!s->fdsp) |
| return AVERROR(ENOMEM); |
| |
| return 0; |
| } |
| |
| static int config_input(AVFilterLink *inlink) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| SOFAlizerContext *s = ctx->priv; |
| int ret; |
| |
| if (s->type == FREQUENCY_DOMAIN) |
| s->nb_samples = s->framesize; |
| |
| /* gain -3 dB per channel */ |
| s->gain_lfe = expf((s->gain - 3 * inlink->channels + s->lfe_gain) / 20 * M_LN10); |
| |
| s->n_conv = inlink->channels; |
| |
| /* load IRs to data_ir[0] and data_ir[1] for required directions */ |
| if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius, inlink->sample_rate)) < 0) |
| return ret; |
| |
| av_log(ctx, AV_LOG_DEBUG, "Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n", |
| inlink->sample_rate, s->n_conv, inlink->channels, s->buffer_length); |
| |
| return 0; |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| SOFAlizerContext *s = ctx->priv; |
| |
| close_sofa(&s->sofa); |
| av_fft_end(s->ifft[0]); |
| av_fft_end(s->ifft[1]); |
| av_fft_end(s->fft[0]); |
| av_fft_end(s->fft[1]); |
| s->ifft[0] = NULL; |
| s->ifft[1] = NULL; |
| s->fft[0] = NULL; |
| s->fft[1] = NULL; |
| av_freep(&s->delay[0]); |
| av_freep(&s->delay[1]); |
| av_freep(&s->data_ir[0]); |
| av_freep(&s->data_ir[1]); |
| av_freep(&s->ringbuffer[0]); |
| av_freep(&s->ringbuffer[1]); |
| av_freep(&s->speaker_azim); |
| av_freep(&s->speaker_elev); |
| av_freep(&s->temp_src[0]); |
| av_freep(&s->temp_src[1]); |
| av_freep(&s->temp_afft[0]); |
| av_freep(&s->temp_afft[1]); |
| av_freep(&s->temp_fft[0]); |
| av_freep(&s->temp_fft[1]); |
| av_freep(&s->data_hrtf[0]); |
| av_freep(&s->data_hrtf[1]); |
| av_freep(&s->fdsp); |
| } |
| |
| #define OFFSET(x) offsetof(SOFAlizerContext, x) |
| #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
| |
| static const AVOption sofalizer_options[] = { |
| { "sofa", "sofa filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, |
| { "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS }, |
| { "rotation", "set rotation" , OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -360, 360, .flags = FLAGS }, |
| { "elevation", "set elevation", OFFSET(elevation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -90, 90, .flags = FLAGS }, |
| { "radius", "set radius", OFFSET(radius), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 5, .flags = FLAGS }, |
| { "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" }, |
| { "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" }, |
| { "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" }, |
| { "speakers", "set speaker custom positions", OFFSET(speakers_pos), AV_OPT_TYPE_STRING, {.str=0}, 0, 0, .flags = FLAGS }, |
| { "lfegain", "set lfe gain", OFFSET(lfe_gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20,40, .flags = FLAGS }, |
| { "framesize", "set frame size", OFFSET(framesize), AV_OPT_TYPE_INT, {.i64=1024},1024,96000, .flags = FLAGS }, |
| { "normalize", "normalize IRs", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags = FLAGS }, |
| { "interpolate","interpolate IRs from neighbors", OFFSET(interpolate),AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, .flags = FLAGS }, |
| { "minphase", "minphase IRs", OFFSET(minphase), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, .flags = FLAGS }, |
| { "anglestep", "set neighbor search angle step", OFFSET(anglestep), AV_OPT_TYPE_FLOAT, {.dbl=.5}, 0.01, 10, .flags = FLAGS }, |
| { "radstep", "set neighbor search radius step", OFFSET(radstep), AV_OPT_TYPE_FLOAT, {.dbl=.01}, 0.01, 1, .flags = FLAGS }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(sofalizer); |
| |
| static const AVFilterPad inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_AUDIO, |
| .config_props = config_input, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_AUDIO, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_af_sofalizer = { |
| .name = "sofalizer", |
| .description = NULL_IF_CONFIG_SMALL("SOFAlizer (Spatially Oriented Format for Acoustics)."), |
| .priv_size = sizeof(SOFAlizerContext), |
| .priv_class = &sofalizer_class, |
| .init = init, |
| .activate = activate, |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = inputs, |
| .outputs = outputs, |
| .flags = AVFILTER_FLAG_SLICE_THREADS, |
| }; |