| /* |
| * Copyright (c) 2019 Xuewei Meng |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * Filter implementing image derain filter using deep convolutional networks. |
| * http://openaccess.thecvf.com/content_ECCV_2018/html/Xia_Li_Recurrent_Squeeze-and-Excitation_Context_ECCV_2018_paper.html |
| */ |
| |
| #include "libavformat/avio.h" |
| #include "libavutil/opt.h" |
| #include "avfilter.h" |
| #include "dnn_interface.h" |
| #include "formats.h" |
| #include "internal.h" |
| |
| typedef struct DRContext { |
| const AVClass *class; |
| |
| int filter_type; |
| char *model_filename; |
| DNNBackendType backend_type; |
| DNNModule *dnn_module; |
| DNNModel *model; |
| } DRContext; |
| |
| #define OFFSET(x) offsetof(DRContext, x) |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM |
| static const AVOption derain_options[] = { |
| { "filter_type", "filter type(derain/dehaze)", OFFSET(filter_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "type" }, |
| { "derain", "derain filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "type" }, |
| { "dehaze", "dehaze filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "type" }, |
| { "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, |
| { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, |
| #if (CONFIG_LIBTENSORFLOW == 1) |
| { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, |
| #endif |
| { "model", "path to model file", OFFSET(model_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(derain); |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| AVFilterFormats *formats; |
| const enum AVPixelFormat pixel_fmts[] = { |
| AV_PIX_FMT_RGB24, |
| AV_PIX_FMT_NONE |
| }; |
| |
| formats = ff_make_format_list(pixel_fmts); |
| |
| return ff_set_common_formats(ctx, formats); |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| DRContext *dr_context = ctx->priv; |
| DNNReturnType dnn_result; |
| const char *model_output_name = "y"; |
| AVFrame *out; |
| |
| out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!out) { |
| av_log(ctx, AV_LOG_ERROR, "could not allocate memory for output frame\n"); |
| av_frame_free(&in); |
| return AVERROR(ENOMEM); |
| } |
| av_frame_copy_props(out, in); |
| |
| dnn_result = (dr_context->dnn_module->execute_model)(dr_context->model, "x", in, &model_output_name, 1, out); |
| if (dnn_result != DNN_SUCCESS){ |
| av_log(ctx, AV_LOG_ERROR, "failed to execute model\n"); |
| av_frame_free(&in); |
| return AVERROR(EIO); |
| } |
| |
| av_frame_free(&in); |
| |
| return ff_filter_frame(outlink, out); |
| } |
| |
| static av_cold int init(AVFilterContext *ctx) |
| { |
| DRContext *dr_context = ctx->priv; |
| |
| dr_context->dnn_module = ff_get_dnn_module(dr_context->backend_type); |
| if (!dr_context->dnn_module) { |
| av_log(ctx, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); |
| return AVERROR(ENOMEM); |
| } |
| if (!dr_context->model_filename) { |
| av_log(ctx, AV_LOG_ERROR, "model file for network is not specified\n"); |
| return AVERROR(EINVAL); |
| } |
| if (!dr_context->dnn_module->load_model) { |
| av_log(ctx, AV_LOG_ERROR, "load_model for network is not specified\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| dr_context->model = (dr_context->dnn_module->load_model)(dr_context->model_filename, NULL, NULL); |
| if (!dr_context->model) { |
| av_log(ctx, AV_LOG_ERROR, "could not load DNN model\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| return 0; |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| DRContext *dr_context = ctx->priv; |
| |
| if (dr_context->dnn_module) { |
| (dr_context->dnn_module->free_model)(&dr_context->model); |
| av_freep(&dr_context->dnn_module); |
| } |
| } |
| |
| static const AVFilterPad derain_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad derain_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_derain = { |
| .name = "derain", |
| .description = NULL_IF_CONFIG_SMALL("Apply derain filter to the input."), |
| .priv_size = sizeof(DRContext), |
| .init = init, |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = derain_inputs, |
| .outputs = derain_outputs, |
| .priv_class = &derain_class, |
| .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, |
| }; |