| /* |
| * Copyright (C) 2010 Georg Martius <georg.martius@web.de> |
| * Copyright (C) 2010 Daniel G. Taylor <dan@programmer-art.org> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * fast deshake / depan video filter |
| * |
| * SAD block-matching motion compensation to fix small changes in |
| * horizontal and/or vertical shift. This filter helps remove camera shake |
| * from hand-holding a camera, bumping a tripod, moving on a vehicle, etc. |
| * |
| * Algorithm: |
| * - For each frame with one previous reference frame |
| * - For each block in the frame |
| * - If contrast > threshold then find likely motion vector |
| * - For all found motion vectors |
| * - Find most common, store as global motion vector |
| * - Find most likely rotation angle |
| * - Transform image along global motion |
| * |
| * TODO: |
| * - Fill frame edges based on previous/next reference frames |
| * - Fill frame edges by stretching image near the edges? |
| * - Can this be done quickly and look decent? |
| * |
| * Dark Shikari links to http://wiki.videolan.org/SoC_x264_2010#GPU_Motion_Estimation_2 |
| * for an algorithm similar to what could be used here to get the gmv |
| * It requires only a couple diamond searches + fast downscaling |
| * |
| * Special thanks to Jason Kotenko for his help with the algorithm and my |
| * inability to see simple errors in C code. |
| */ |
| |
| #include "avfilter.h" |
| #include "formats.h" |
| #include "internal.h" |
| #include "video.h" |
| #include "libavutil/common.h" |
| #include "libavutil/mem.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/pixdesc.h" |
| #include "libavutil/qsort.h" |
| |
| #include "deshake.h" |
| |
| #define OFFSET(x) offsetof(DeshakeContext, x) |
| #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
| |
| static const AVOption deshake_options[] = { |
| { "x", "set x for the rectangular search area", OFFSET(cx), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS }, |
| { "y", "set y for the rectangular search area", OFFSET(cy), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS }, |
| { "w", "set width for the rectangular search area", OFFSET(cw), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS }, |
| { "h", "set height for the rectangular search area", OFFSET(ch), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS }, |
| { "rx", "set x for the rectangular search area", OFFSET(rx), AV_OPT_TYPE_INT, {.i64=16}, 0, MAX_R, .flags = FLAGS }, |
| { "ry", "set y for the rectangular search area", OFFSET(ry), AV_OPT_TYPE_INT, {.i64=16}, 0, MAX_R, .flags = FLAGS }, |
| { "edge", "set edge mode", OFFSET(edge), AV_OPT_TYPE_INT, {.i64=FILL_MIRROR}, FILL_BLANK, FILL_COUNT-1, FLAGS, "edge"}, |
| { "blank", "fill zeroes at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_BLANK}, INT_MIN, INT_MAX, FLAGS, "edge" }, |
| { "original", "original image at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_ORIGINAL}, INT_MIN, INT_MAX, FLAGS, "edge" }, |
| { "clamp", "extruded edge value at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_CLAMP}, INT_MIN, INT_MAX, FLAGS, "edge" }, |
| { "mirror", "mirrored edge at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_MIRROR}, INT_MIN, INT_MAX, FLAGS, "edge" }, |
| { "blocksize", "set motion search blocksize", OFFSET(blocksize), AV_OPT_TYPE_INT, {.i64=8}, 4, 128, .flags = FLAGS }, |
| { "contrast", "set contrast threshold for blocks", OFFSET(contrast), AV_OPT_TYPE_INT, {.i64=125}, 1, 255, .flags = FLAGS }, |
| { "search", "set search strategy", OFFSET(search), AV_OPT_TYPE_INT, {.i64=EXHAUSTIVE}, EXHAUSTIVE, SEARCH_COUNT-1, FLAGS, "smode" }, |
| { "exhaustive", "exhaustive search", 0, AV_OPT_TYPE_CONST, {.i64=EXHAUSTIVE}, INT_MIN, INT_MAX, FLAGS, "smode" }, |
| { "less", "less exhaustive search", 0, AV_OPT_TYPE_CONST, {.i64=SMART_EXHAUSTIVE}, INT_MIN, INT_MAX, FLAGS, "smode" }, |
| { "filename", "set motion search detailed log file name", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, |
| { "opencl", "ignored", OFFSET(opencl), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, .flags = FLAGS }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(deshake); |
| |
| static int cmp(const void *a, const void *b) |
| { |
| return FFDIFFSIGN(*(const double *)a, *(const double *)b); |
| } |
| |
| /** |
| * Cleaned mean (cuts off 20% of values to remove outliers and then averages) |
| */ |
| static double clean_mean(double *values, int count) |
| { |
| double mean = 0; |
| int cut = count / 5; |
| int x; |
| |
| AV_QSORT(values, count, double, cmp); |
| |
| for (x = cut; x < count - cut; x++) { |
| mean += values[x]; |
| } |
| |
| return mean / (count - cut * 2); |
| } |
| |
| /** |
| * Find the most likely shift in motion between two frames for a given |
| * macroblock. Test each block against several shifts given by the rx |
| * and ry attributes. Searches using a simple matrix of those shifts and |
| * chooses the most likely shift by the smallest difference in blocks. |
| */ |
| static void find_block_motion(DeshakeContext *deshake, uint8_t *src1, |
| uint8_t *src2, int cx, int cy, int stride, |
| IntMotionVector *mv) |
| { |
| int x, y; |
| int diff; |
| int smallest = INT_MAX; |
| int tmp, tmp2; |
| |
| #define CMP(i, j) deshake->sad(src1 + cy * stride + cx, stride,\ |
| src2 + (j) * stride + (i), stride) |
| |
| if (deshake->search == EXHAUSTIVE) { |
| // Compare every possible position - this is sloooow! |
| for (y = -deshake->ry; y <= deshake->ry; y++) { |
| for (x = -deshake->rx; x <= deshake->rx; x++) { |
| diff = CMP(cx - x, cy - y); |
| if (diff < smallest) { |
| smallest = diff; |
| mv->x = x; |
| mv->y = y; |
| } |
| } |
| } |
| } else if (deshake->search == SMART_EXHAUSTIVE) { |
| // Compare every other possible position and find the best match |
| for (y = -deshake->ry + 1; y < deshake->ry; y += 2) { |
| for (x = -deshake->rx + 1; x < deshake->rx; x += 2) { |
| diff = CMP(cx - x, cy - y); |
| if (diff < smallest) { |
| smallest = diff; |
| mv->x = x; |
| mv->y = y; |
| } |
| } |
| } |
| |
| // Hone in on the specific best match around the match we found above |
| tmp = mv->x; |
| tmp2 = mv->y; |
| |
| for (y = tmp2 - 1; y <= tmp2 + 1; y++) { |
| for (x = tmp - 1; x <= tmp + 1; x++) { |
| if (x == tmp && y == tmp2) |
| continue; |
| |
| diff = CMP(cx - x, cy - y); |
| if (diff < smallest) { |
| smallest = diff; |
| mv->x = x; |
| mv->y = y; |
| } |
| } |
| } |
| } |
| |
| if (smallest > 512) { |
| mv->x = -1; |
| mv->y = -1; |
| } |
| emms_c(); |
| //av_log(NULL, AV_LOG_ERROR, "%d\n", smallest); |
| //av_log(NULL, AV_LOG_ERROR, "Final: (%d, %d) = %d x %d\n", cx, cy, mv->x, mv->y); |
| } |
| |
| /** |
| * Find the contrast of a given block. When searching for global motion we |
| * really only care about the high contrast blocks, so using this method we |
| * can actually skip blocks we don't care much about. |
| */ |
| static int block_contrast(uint8_t *src, int x, int y, int stride, int blocksize) |
| { |
| int highest = 0; |
| int lowest = 255; |
| int i, j, pos; |
| |
| for (i = 0; i <= blocksize * 2; i++) { |
| // We use a width of 16 here to match the sad function |
| for (j = 0; j <= 15; j++) { |
| pos = (y + i) * stride + (x + j); |
| if (src[pos] < lowest) |
| lowest = src[pos]; |
| else if (src[pos] > highest) { |
| highest = src[pos]; |
| } |
| } |
| } |
| |
| return highest - lowest; |
| } |
| |
| /** |
| * Find the rotation for a given block. |
| */ |
| static double block_angle(int x, int y, int cx, int cy, IntMotionVector *shift) |
| { |
| double a1, a2, diff; |
| |
| a1 = atan2(y - cy, x - cx); |
| a2 = atan2(y - cy + shift->y, x - cx + shift->x); |
| |
| diff = a2 - a1; |
| |
| return (diff > M_PI) ? diff - 2 * M_PI : |
| (diff < -M_PI) ? diff + 2 * M_PI : |
| diff; |
| } |
| |
| /** |
| * Find the estimated global motion for a scene given the most likely shift |
| * for each block in the frame. The global motion is estimated to be the |
| * same as the motion from most blocks in the frame, so if most blocks |
| * move one pixel to the right and two pixels down, this would yield a |
| * motion vector (1, -2). |
| */ |
| static void find_motion(DeshakeContext *deshake, uint8_t *src1, uint8_t *src2, |
| int width, int height, int stride, Transform *t) |
| { |
| int x, y; |
| IntMotionVector mv = {0, 0}; |
| int count_max_value = 0; |
| int contrast; |
| |
| int pos; |
| int center_x = 0, center_y = 0; |
| double p_x, p_y; |
| |
| av_fast_malloc(&deshake->angles, &deshake->angles_size, width * height / (16 * deshake->blocksize) * sizeof(*deshake->angles)); |
| |
| // Reset counts to zero |
| for (x = 0; x < deshake->rx * 2 + 1; x++) { |
| for (y = 0; y < deshake->ry * 2 + 1; y++) { |
| deshake->counts[x][y] = 0; |
| } |
| } |
| |
| pos = 0; |
| // Find motion for every block and store the motion vector in the counts |
| for (y = deshake->ry; y < height - deshake->ry - (deshake->blocksize * 2); y += deshake->blocksize * 2) { |
| // We use a width of 16 here to match the sad function |
| for (x = deshake->rx; x < width - deshake->rx - 16; x += 16) { |
| // If the contrast is too low, just skip this block as it probably |
| // won't be very useful to us. |
| contrast = block_contrast(src2, x, y, stride, deshake->blocksize); |
| if (contrast > deshake->contrast) { |
| //av_log(NULL, AV_LOG_ERROR, "%d\n", contrast); |
| find_block_motion(deshake, src1, src2, x, y, stride, &mv); |
| if (mv.x != -1 && mv.y != -1) { |
| deshake->counts[mv.x + deshake->rx][mv.y + deshake->ry] += 1; |
| if (x > deshake->rx && y > deshake->ry) |
| deshake->angles[pos++] = block_angle(x, y, 0, 0, &mv); |
| |
| center_x += mv.x; |
| center_y += mv.y; |
| } |
| } |
| } |
| } |
| |
| if (pos) { |
| center_x /= pos; |
| center_y /= pos; |
| t->angle = clean_mean(deshake->angles, pos); |
| if (t->angle < 0.001) |
| t->angle = 0; |
| } else { |
| t->angle = 0; |
| } |
| |
| // Find the most common motion vector in the frame and use it as the gmv |
| for (y = deshake->ry * 2; y >= 0; y--) { |
| for (x = 0; x < deshake->rx * 2 + 1; x++) { |
| //av_log(NULL, AV_LOG_ERROR, "%5d ", deshake->counts[x][y]); |
| if (deshake->counts[x][y] > count_max_value) { |
| t->vec.x = x - deshake->rx; |
| t->vec.y = y - deshake->ry; |
| count_max_value = deshake->counts[x][y]; |
| } |
| } |
| //av_log(NULL, AV_LOG_ERROR, "\n"); |
| } |
| |
| p_x = (center_x - width / 2.0); |
| p_y = (center_y - height / 2.0); |
| t->vec.x += (cos(t->angle)-1)*p_x - sin(t->angle)*p_y; |
| t->vec.y += sin(t->angle)*p_x + (cos(t->angle)-1)*p_y; |
| |
| // Clamp max shift & rotation? |
| t->vec.x = av_clipf(t->vec.x, -deshake->rx * 2, deshake->rx * 2); |
| t->vec.y = av_clipf(t->vec.y, -deshake->ry * 2, deshake->ry * 2); |
| t->angle = av_clipf(t->angle, -0.1, 0.1); |
| |
| //av_log(NULL, AV_LOG_ERROR, "%d x %d\n", avg->x, avg->y); |
| } |
| |
| static int deshake_transform_c(AVFilterContext *ctx, |
| int width, int height, int cw, int ch, |
| const float *matrix_y, const float *matrix_uv, |
| enum InterpolateMethod interpolate, |
| enum FillMethod fill, AVFrame *in, AVFrame *out) |
| { |
| int i = 0, ret = 0; |
| const float *matrixs[3]; |
| int plane_w[3], plane_h[3]; |
| matrixs[0] = matrix_y; |
| matrixs[1] = matrixs[2] = matrix_uv; |
| plane_w[0] = width; |
| plane_w[1] = plane_w[2] = cw; |
| plane_h[0] = height; |
| plane_h[1] = plane_h[2] = ch; |
| |
| for (i = 0; i < 3; i++) { |
| // Transform the luma and chroma planes |
| ret = avfilter_transform(in->data[i], out->data[i], in->linesize[i], out->linesize[i], |
| plane_w[i], plane_h[i], matrixs[i], interpolate, fill); |
| if (ret < 0) |
| return ret; |
| } |
| return ret; |
| } |
| |
| static av_cold int init(AVFilterContext *ctx) |
| { |
| DeshakeContext *deshake = ctx->priv; |
| |
| deshake->refcount = 20; // XXX: add to options? |
| deshake->blocksize /= 2; |
| deshake->blocksize = av_clip(deshake->blocksize, 4, 128); |
| |
| if (deshake->rx % 16) { |
| av_log(ctx, AV_LOG_ERROR, "rx must be a multiple of 16\n"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if (deshake->filename) |
| deshake->fp = fopen(deshake->filename, "w"); |
| if (deshake->fp) |
| fwrite("Ori x, Avg x, Fin x, Ori y, Avg y, Fin y, Ori angle, Avg angle, Fin angle, Ori zoom, Avg zoom, Fin zoom\n", 1, 104, deshake->fp); |
| |
| // Quadword align left edge of box for MMX code, adjust width if necessary |
| // to keep right margin |
| if (deshake->cx > 0) { |
| deshake->cw += deshake->cx - (deshake->cx & ~15); |
| deshake->cx &= ~15; |
| } |
| deshake->transform = deshake_transform_c; |
| |
| av_log(ctx, AV_LOG_VERBOSE, "cx: %d, cy: %d, cw: %d, ch: %d, rx: %d, ry: %d, edge: %d blocksize: %d contrast: %d search: %d\n", |
| deshake->cx, deshake->cy, deshake->cw, deshake->ch, |
| deshake->rx, deshake->ry, deshake->edge, deshake->blocksize * 2, deshake->contrast, deshake->search); |
| |
| return 0; |
| } |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| static const enum AVPixelFormat pix_fmts[] = { |
| AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, |
| AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, |
| AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_NONE |
| }; |
| AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); |
| if (!fmts_list) |
| return AVERROR(ENOMEM); |
| return ff_set_common_formats(ctx, fmts_list); |
| } |
| |
| static int config_props(AVFilterLink *link) |
| { |
| DeshakeContext *deshake = link->dst->priv; |
| |
| deshake->ref = NULL; |
| deshake->last.vec.x = 0; |
| deshake->last.vec.y = 0; |
| deshake->last.angle = 0; |
| deshake->last.zoom = 0; |
| |
| return 0; |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| DeshakeContext *deshake = ctx->priv; |
| av_frame_free(&deshake->ref); |
| av_freep(&deshake->angles); |
| deshake->angles_size = 0; |
| if (deshake->fp) |
| fclose(deshake->fp); |
| } |
| |
| static int filter_frame(AVFilterLink *link, AVFrame *in) |
| { |
| DeshakeContext *deshake = link->dst->priv; |
| AVFilterLink *outlink = link->dst->outputs[0]; |
| AVFrame *out; |
| Transform t = {{0},0}, orig = {{0},0}; |
| float matrix_y[9], matrix_uv[9]; |
| float alpha = 2.0 / deshake->refcount; |
| char tmp[256]; |
| int ret = 0; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(link->format); |
| const int chroma_width = AV_CEIL_RSHIFT(link->w, desc->log2_chroma_w); |
| const int chroma_height = AV_CEIL_RSHIFT(link->h, desc->log2_chroma_h); |
| int aligned; |
| float transform_zoom; |
| |
| out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!out) { |
| av_frame_free(&in); |
| return AVERROR(ENOMEM); |
| } |
| av_frame_copy_props(out, in); |
| |
| aligned = !((intptr_t)in->data[0] & 15 | in->linesize[0] & 15); |
| deshake->sad = av_pixelutils_get_sad_fn(4, 4, aligned, deshake); // 16x16, 2nd source unaligned |
| if (!deshake->sad) |
| return AVERROR(EINVAL); |
| |
| if (deshake->cx < 0 || deshake->cy < 0 || deshake->cw < 0 || deshake->ch < 0) { |
| // Find the most likely global motion for the current frame |
| find_motion(deshake, (deshake->ref == NULL) ? in->data[0] : deshake->ref->data[0], in->data[0], link->w, link->h, in->linesize[0], &t); |
| } else { |
| uint8_t *src1 = (deshake->ref == NULL) ? in->data[0] : deshake->ref->data[0]; |
| uint8_t *src2 = in->data[0]; |
| |
| deshake->cx = FFMIN(deshake->cx, link->w); |
| deshake->cy = FFMIN(deshake->cy, link->h); |
| |
| if ((unsigned)deshake->cx + (unsigned)deshake->cw > link->w) deshake->cw = link->w - deshake->cx; |
| if ((unsigned)deshake->cy + (unsigned)deshake->ch > link->h) deshake->ch = link->h - deshake->cy; |
| |
| // Quadword align right margin |
| deshake->cw &= ~15; |
| |
| src1 += deshake->cy * in->linesize[0] + deshake->cx; |
| src2 += deshake->cy * in->linesize[0] + deshake->cx; |
| |
| find_motion(deshake, src1, src2, deshake->cw, deshake->ch, in->linesize[0], &t); |
| } |
| |
| |
| // Copy transform so we can output it later to compare to the smoothed value |
| orig.vec.x = t.vec.x; |
| orig.vec.y = t.vec.y; |
| orig.angle = t.angle; |
| orig.zoom = t.zoom; |
| |
| // Generate a one-sided moving exponential average |
| deshake->avg.vec.x = alpha * t.vec.x + (1.0 - alpha) * deshake->avg.vec.x; |
| deshake->avg.vec.y = alpha * t.vec.y + (1.0 - alpha) * deshake->avg.vec.y; |
| deshake->avg.angle = alpha * t.angle + (1.0 - alpha) * deshake->avg.angle; |
| deshake->avg.zoom = alpha * t.zoom + (1.0 - alpha) * deshake->avg.zoom; |
| |
| // Remove the average from the current motion to detect the motion that |
| // is not on purpose, just as jitter from bumping the camera |
| t.vec.x -= deshake->avg.vec.x; |
| t.vec.y -= deshake->avg.vec.y; |
| t.angle -= deshake->avg.angle; |
| t.zoom -= deshake->avg.zoom; |
| |
| // Invert the motion to undo it |
| t.vec.x *= -1; |
| t.vec.y *= -1; |
| t.angle *= -1; |
| |
| // Write statistics to file |
| if (deshake->fp) { |
| snprintf(tmp, 256, "%f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n", orig.vec.x, deshake->avg.vec.x, t.vec.x, orig.vec.y, deshake->avg.vec.y, t.vec.y, orig.angle, deshake->avg.angle, t.angle, orig.zoom, deshake->avg.zoom, t.zoom); |
| fwrite(tmp, 1, strlen(tmp), deshake->fp); |
| } |
| |
| // Turn relative current frame motion into absolute by adding it to the |
| // last absolute motion |
| t.vec.x += deshake->last.vec.x; |
| t.vec.y += deshake->last.vec.y; |
| t.angle += deshake->last.angle; |
| t.zoom += deshake->last.zoom; |
| |
| // Shrink motion by 10% to keep things centered in the camera frame |
| t.vec.x *= 0.9; |
| t.vec.y *= 0.9; |
| t.angle *= 0.9; |
| |
| // Store the last absolute motion information |
| deshake->last.vec.x = t.vec.x; |
| deshake->last.vec.y = t.vec.y; |
| deshake->last.angle = t.angle; |
| deshake->last.zoom = t.zoom; |
| |
| transform_zoom = 1.0 + t.zoom / 100.0; |
| |
| // Generate a luma transformation matrix |
| ff_get_matrix(t.vec.x, t.vec.y, t.angle, transform_zoom, transform_zoom, matrix_y); |
| // Generate a chroma transformation matrix |
| ff_get_matrix(t.vec.x / (link->w / chroma_width), t.vec.y / (link->h / chroma_height), t.angle, transform_zoom, transform_zoom, matrix_uv); |
| // Transform the luma and chroma planes |
| ret = deshake->transform(link->dst, link->w, link->h, chroma_width, chroma_height, |
| matrix_y, matrix_uv, INTERPOLATE_BILINEAR, deshake->edge, in, out); |
| |
| // Cleanup the old reference frame |
| av_frame_free(&deshake->ref); |
| |
| if (ret < 0) |
| goto fail; |
| |
| // Store the current frame as the reference frame for calculating the |
| // motion of the next frame |
| deshake->ref = in; |
| |
| return ff_filter_frame(outlink, out); |
| fail: |
| av_frame_free(&out); |
| return ret; |
| } |
| |
| static const AVFilterPad deshake_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame, |
| .config_props = config_props, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad deshake_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_deshake = { |
| .name = "deshake", |
| .description = NULL_IF_CONFIG_SMALL("Stabilize shaky video."), |
| .priv_size = sizeof(DeshakeContext), |
| .init = init, |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = deshake_inputs, |
| .outputs = deshake_outputs, |
| .priv_class = &deshake_class, |
| }; |