blob: 94473cd5b3d806ee826d6e32a2396d9d1580c67d [file] [log] [blame] [edit]
/*
* Copyright (c) 2019 Eugene Lyapustin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* 360 video conversion filter.
* Principle of operation:
*
* (for each pixel in output frame)
* 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)
* 2) Apply 360 operations (rotation, mirror) to (x, y, z)
* 3) Calculate pixel position (u, v) in input frame
* 4) Calculate interpolation window and weight for each pixel
*
* (for each frame)
* 5) Remap input frame to output frame using precalculated data
*/
#include <math.h>
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/pixdesc.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "v360.h"
typedef struct ThreadData {
AVFrame *in;
AVFrame *out;
} ThreadData;
#define OFFSET(x) offsetof(V360Context, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption v360_options[] = {
{ "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, "in" },
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "in" },
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "in" },
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "in" },
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "in" },
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" },
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" },
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "in" },
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, "in" },
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, "in" },
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, "in" },
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, "in" },
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, "in" },
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, "in" },
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, "in" },
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, "in" },
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, "in" },
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, "in" },
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, "in" },
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "in" },
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "in" },
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "in" },
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "in" },
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "in" },
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" },
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "out" },
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "out" },
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "out" },
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "out" },
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" },
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" },
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "out" },
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, "out" },
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, "out" },
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, "out" },
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, "out" },
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, "out" },
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, "out" },
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, "out" },
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, "out" },
{"perspective", "perspective", 0, AV_OPT_TYPE_CONST, {.i64=PERSPECTIVE}, 0, 0, FLAGS, "out" },
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, "out" },
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, "out" },
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, "out" },
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "out" },
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "out" },
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "out" },
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "out" },
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "out" },
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" },
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
{ "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
{ "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
{ "lagrange9", "lagrange9 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LAGRANGE9}, 0, 0, FLAGS, "interp" },
{ "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
{ "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
{ "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
{ "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
{ "sp16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, "interp" },
{ "spline16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, "interp" },
{ "gauss", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, "interp" },
{ "gaussian", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, "interp" },
{ "mitchell", "mitchell interpolation", 0, AV_OPT_TYPE_CONST, {.i64=MITCHELL}, 0, 0, FLAGS, "interp" },
{ "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "w"},
{ "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "h"},
{ "in_stereo", "input stereo format", OFFSET(in_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, "stereo" },
{"out_stereo", "output stereo format", OFFSET(out_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, "stereo" },
{ "2d", "2d mono", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_2D}, 0, 0, FLAGS, "stereo" },
{ "sbs", "side by side", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_SBS}, 0, 0, FLAGS, "stereo" },
{ "tb", "top bottom", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_TB}, 0, 0, FLAGS, "stereo" },
{ "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "in_forder"},
{"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "out_forder"},
{ "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "in_frot"},
{ "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "out_frot"},
{ "in_pad", "percent input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, "in_pad"},
{ "out_pad", "percent output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, "out_pad"},
{ "fin_pad", "fixed input cubemap pads", OFFSET(fin_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, "fin_pad"},
{ "fout_pad", "fixed output cubemap pads", OFFSET(fout_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, "fout_pad"},
{ "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, "yaw"},
{ "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, "pitch"},
{ "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, "roll"},
{ "rorder", "rotation order", OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"}, 0, 0,TFLAGS, "rorder"},
{ "h_fov", "output horizontal field of view",OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.00001f, 360.f,TFLAGS, "h_fov"},
{ "v_fov", "output vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.00001f, 360.f,TFLAGS, "v_fov"},
{ "d_fov", "output diagonal field of view", OFFSET(d_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, "d_fov"},
{ "h_flip", "flip out video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "h_flip"},
{ "v_flip", "flip out video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "v_flip"},
{ "d_flip", "flip out video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "d_flip"},
{ "ih_flip", "flip in video horizontally", OFFSET(ih_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "ih_flip"},
{ "iv_flip", "flip in video vertically", OFFSET(iv_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, "iv_flip"},
{ "in_trans", "transpose video input", OFFSET(in_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "in_transpose"},
{ "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "out_transpose"},
{ "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.00001f, 360.f,TFLAGS, "ih_fov"},
{ "iv_fov", "input vertical field of view", OFFSET(iv_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.00001f, 360.f,TFLAGS, "iv_fov"},
{ "id_fov", "input diagonal field of view", OFFSET(id_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, "id_fov"},
{"alpha_mask", "build mask in alpha plane", OFFSET(alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "alpha"},
{ NULL }
};
AVFILTER_DEFINE_CLASS(v360);
static int query_formats(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
static const enum AVPixelFormat pix_fmts[] = {
// YUVA444
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_YUVA444P16,
// YUVA422
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_YUVA422P16,
// YUVA420
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
// YUVJ
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
// YUV444
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
// YUV440
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV440P12,
// YUV422
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9,
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
// YUV420
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
// YUV411
AV_PIX_FMT_YUV411P,
// YUV410
AV_PIX_FMT_YUV410P,
// GBR
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
// GBRA
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
// GRAY
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat alpha_pix_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(s->alpha ? alpha_pix_fmts : pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
#define DEFINE_REMAP1_LINE(bits, div) \
static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
ptrdiff_t in_linesize, \
const int16_t *const u, const int16_t *const v, \
const int16_t *const ker) \
{ \
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
uint##bits##_t *d = (uint##bits##_t *)dst; \
\
in_linesize /= div; \
\
for (int x = 0; x < width; x++) \
d[x] = s[v[x] * in_linesize + u[x]]; \
}
DEFINE_REMAP1_LINE( 8, 1)
DEFINE_REMAP1_LINE(16, 2)
/**
* Generate remapping function with a given window size and pixel depth.
*
* @param ws size of interpolation window
* @param bits number of bits per pixel
*/
#define DEFINE_REMAP(ws, bits) \
static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
ThreadData *td = arg; \
const V360Context *s = ctx->priv; \
const SliceXYRemap *r = &s->slice_remap[jobnr]; \
const AVFrame *in = td->in; \
AVFrame *out = td->out; \
\
for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) { \
for (int plane = 0; plane < s->nb_planes; plane++) { \
const unsigned map = s->map[plane]; \
const int in_linesize = in->linesize[plane]; \
const int out_linesize = out->linesize[plane]; \
const int uv_linesize = s->uv_linesize[plane]; \
const int in_offset_w = stereo ? s->in_offset_w[plane] : 0; \
const int in_offset_h = stereo ? s->in_offset_h[plane] : 0; \
const int out_offset_w = stereo ? s->out_offset_w[plane] : 0; \
const int out_offset_h = stereo ? s->out_offset_h[plane] : 0; \
const uint8_t *const src = in->data[plane] + \
in_offset_h * in_linesize + in_offset_w * (bits >> 3); \
uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3); \
const uint8_t *mask = plane == 3 ? r->mask : NULL; \
const int width = s->pr_width[plane]; \
const int height = s->pr_height[plane]; \
\
const int slice_start = (height * jobnr ) / nb_jobs; \
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
\
for (int y = slice_start; y < slice_end && !mask; y++) { \
const int16_t *const u = r->u[map] + (y - slice_start) * uv_linesize * ws * ws; \
const int16_t *const v = r->v[map] + (y - slice_start) * uv_linesize * ws * ws; \
const int16_t *const ker = r->ker[map] + (y - slice_start) * uv_linesize * ws * ws; \
\
s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \
} \
\
for (int y = slice_start; y < slice_end && mask; y++) { \
memcpy(dst + y * out_linesize, mask + \
(y - slice_start) * width * (bits >> 3), width * (bits >> 3)); \
} \
} \
} \
\
return 0; \
}
DEFINE_REMAP(1, 8)
DEFINE_REMAP(2, 8)
DEFINE_REMAP(3, 8)
DEFINE_REMAP(4, 8)
DEFINE_REMAP(1, 16)
DEFINE_REMAP(2, 16)
DEFINE_REMAP(3, 16)
DEFINE_REMAP(4, 16)
#define DEFINE_REMAP_LINE(ws, bits, div) \
static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
ptrdiff_t in_linesize, \
const int16_t *const u, const int16_t *const v, \
const int16_t *const ker) \
{ \
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
uint##bits##_t *d = (uint##bits##_t *)dst; \
\
in_linesize /= div; \
\
for (int x = 0; x < width; x++) { \
const int16_t *const uu = u + x * ws * ws; \
const int16_t *const vv = v + x * ws * ws; \
const int16_t *const kker = ker + x * ws * ws; \
int tmp = 0; \
\
for (int i = 0; i < ws; i++) { \
const int iws = i * ws; \
for (int j = 0; j < ws; j++) { \
tmp += kker[iws + j] * s[vv[iws + j] * in_linesize + uu[iws + j]]; \
} \
} \
\
d[x] = av_clip_uint##bits(tmp >> 14); \
} \
}
DEFINE_REMAP_LINE(2, 8, 1)
DEFINE_REMAP_LINE(3, 8, 1)
DEFINE_REMAP_LINE(4, 8, 1)
DEFINE_REMAP_LINE(2, 16, 2)
DEFINE_REMAP_LINE(3, 16, 2)
DEFINE_REMAP_LINE(4, 16, 2)
void ff_v360_init(V360Context *s, int depth)
{
switch (s->interp) {
case NEAREST:
s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c;
break;
case BILINEAR:
s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c;
break;
case LAGRANGE9:
s->remap_line = depth <= 8 ? remap3_8bit_line_c : remap3_16bit_line_c;
break;
case BICUBIC:
case LANCZOS:
case SPLINE16:
case GAUSSIAN:
case MITCHELL:
s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c;
break;
}
if (ARCH_X86)
ff_v360_init_x86(s, depth);
}
/**
* Save nearest pixel coordinates for remapping.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void nearest_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
const int i = lrintf(dv) + 1;
const int j = lrintf(du) + 1;
u[0] = rmap->u[i][j];
v[0] = rmap->v[i][j];
}
/**
* Calculate kernel for bilinear interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void bilinear_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
u[i * 2 + j] = rmap->u[i + 1][j + 1];
v[i * 2 + j] = rmap->v[i + 1][j + 1];
}
}
ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f);
ker[1] = lrintf( du * (1.f - dv) * 16385.f);
ker[2] = lrintf((1.f - du) * dv * 16385.f);
ker[3] = lrintf( du * dv * 16385.f);
}
/**
* Calculate 1-dimensional lagrange coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_lagrange_coeffs(float t, float *coeffs)
{
coeffs[0] = (t - 1.f) * (t - 2.f) * 0.5f;
coeffs[1] = -t * (t - 2.f);
coeffs[2] = t * (t - 1.f) * 0.5f;
}
/**
* Calculate kernel for lagrange interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void lagrange_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[3];
float dv_coeffs[3];
calculate_lagrange_coeffs(du, du_coeffs);
calculate_lagrange_coeffs(dv, dv_coeffs);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
u[i * 3 + j] = rmap->u[i + 1][j + 1];
v[i * 3 + j] = rmap->v[i + 1][j + 1];
ker[i * 3 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional cubic coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_bicubic_coeffs(float t, float *coeffs)
{
const float tt = t * t;
const float ttt = t * t * t;
coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f;
coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f;
coeffs[2] = t + tt / 2.f - ttt / 2.f;
coeffs[3] = - t / 6.f + ttt / 6.f;
}
/**
* Calculate kernel for bicubic interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void bicubic_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_bicubic_coeffs(du, du_coeffs);
calculate_bicubic_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional lanczos coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_lanczos_coeffs(float t, float *coeffs)
{
float sum = 0.f;
for (int i = 0; i < 4; i++) {
const float x = M_PI * (t - i + 1);
if (x == 0.f) {
coeffs[i] = 1.f;
} else {
coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
}
sum += coeffs[i];
}
for (int i = 0; i < 4; i++) {
coeffs[i] /= sum;
}
}
/**
* Calculate kernel for lanczos interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_lanczos_coeffs(du, du_coeffs);
calculate_lanczos_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional spline16 coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static void calculate_spline16_coeffs(float t, float *coeffs)
{
coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t;
coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f;
coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t;
coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t;
}
/**
* Calculate kernel for spline16 interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void spline16_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_spline16_coeffs(du, du_coeffs);
calculate_spline16_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional gaussian coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static void calculate_gaussian_coeffs(float t, float *coeffs)
{
float sum = 0.f;
for (int i = 0; i < 4; i++) {
const float x = t - (i - 1);
if (x == 0.f) {
coeffs[i] = 1.f;
} else {
coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f);
}
sum += coeffs[i];
}
for (int i = 0; i < 4; i++) {
coeffs[i] /= sum;
}
}
/**
* Calculate kernel for gaussian interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void gaussian_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_gaussian_coeffs(du, du_coeffs);
calculate_gaussian_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional cubic_bc_spline coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static void calculate_cubic_bc_coeffs(float t, float *coeffs,
float b, float c)
{
float sum = 0.f;
float p0 = (6.f - 2.f * b) / 6.f,
p2 = (-18.f + 12.f * b + 6.f * c) / 6.f,
p3 = (12.f - 9.f * b - 6.f * c) / 6.f,
q0 = (8.f * b + 24.f * c) / 6.f,
q1 = (-12.f * b - 48.f * c) / 6.f,
q2 = (6.f * b + 30.f * c) / 6.f,
q3 = (-b - 6.f * c) / 6.f;
for (int i = 0; i < 4; i++) {
const float x = fabsf(t - i + 1.f);
if (x < 1.f) {
coeffs[i] = (p0 + x * x * (p2 + x * p3)) *
(p0 + x * x * (p2 + x * p3 / 2.f) / 4.f);
} else if (x < 2.f) {
coeffs[i] = (q0 + x * (q1 + x * (q2 + x * q3))) *
(q0 + x * (q1 + x * (q2 + x / 2.f * q3) / 2.f) / 2.f);
} else {
coeffs[i] = 0.f;
}
sum += coeffs[i];
}
for (int i = 0; i < 4; i++) {
coeffs[i] /= sum;
}
}
/**
* Calculate kernel for mitchell interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void mitchell_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_cubic_bc_coeffs(du, du_coeffs, 1.f / 3.f, 1.f / 3.f);
calculate_cubic_bc_coeffs(dv, dv_coeffs, 1.f / 3.f, 1.f / 3.f);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Modulo operation with only positive remainders.
*
* @param a dividend
* @param b divisor
*
* @return positive remainder of (a / b)
*/
static inline int mod(int a, int b)
{
const int res = a % b;
if (res < 0) {
return res + b;
} else {
return res;
}
}
/**
* Reflect y operation.
*
* @param y input vertical position
* @param h input height
*/
static inline int reflecty(int y, int h)
{
if (y < 0) {
y = -y;
} else if (y >= h) {
y = 2 * h - 1 - y;
}
return av_clip(y, 0, h - 1);
}
/**
* Reflect x operation for equirect.
*
* @param x input horizontal position
* @param y input vertical position
* @param w input width
* @param h input height
*/
static inline int ereflectx(int x, int y, int w, int h)
{
if (y < 0 || y >= h)
x += w / 2;
return mod(x, w);
}
/**
* Reflect x operation.
*
* @param x input horizontal position
* @param y input vertical position
* @param w input width
* @param h input height
*/
static inline int reflectx(int x, int y, int w, int h)
{
if (y < 0 || y >= h)
return w - 1 - x;
return mod(x, w);
}
/**
* Convert char to corresponding direction.
* Used for cubemap options.
*/
static int get_direction(char c)
{
switch (c) {
case 'r':
return RIGHT;
case 'l':
return LEFT;
case 'u':
return UP;
case 'd':
return DOWN;
case 'f':
return FRONT;
case 'b':
return BACK;
default:
return -1;
}
}
/**
* Convert char to corresponding rotation angle.
* Used for cubemap options.
*/
static int get_rotation(char c)
{
switch (c) {
case '0':
return ROT_0;
case '1':
return ROT_90;
case '2':
return ROT_180;
case '3':
return ROT_270;
default:
return -1;
}
}
/**
* Convert char to corresponding rotation order.
*/
static int get_rorder(char c)
{
switch (c) {
case 'Y':
case 'y':
return YAW;
case 'P':
case 'p':
return PITCH;
case 'R':
case 'r':
return ROLL;
default:
return -1;
}
}
/**
* Prepare data for processing cubemap input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cube_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int face = 0; face < NB_FACES; face++) {
const char c = s->in_forder[face];
int direction;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
direction = get_direction(c);
if (direction == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect direction symbol '%c' in in_forder option.\n", c);
return AVERROR(EINVAL);
}
s->in_cubemap_face_order[direction] = face;
}
for (int face = 0; face < NB_FACES; face++) {
const char c = s->in_frot[face];
int rotation;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
rotation = get_rotation(c);
if (rotation == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect rotation symbol '%c' in in_frot option.\n", c);
return AVERROR(EINVAL);
}
s->in_cubemap_face_rotation[face] = rotation;
}
return 0;
}
/**
* Prepare data for processing cubemap output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cube_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int face = 0; face < NB_FACES; face++) {
const char c = s->out_forder[face];
int direction;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
direction = get_direction(c);
if (direction == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect direction symbol '%c' in out_forder option.\n", c);
return AVERROR(EINVAL);
}
s->out_cubemap_direction_order[face] = direction;
}
for (int face = 0; face < NB_FACES; face++) {
const char c = s->out_frot[face];
int rotation;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
rotation = get_rotation(c);
if (rotation == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect rotation symbol '%c' in out_frot option.\n", c);
return AVERROR(EINVAL);
}
s->out_cubemap_face_rotation[face] = rotation;
}
return 0;
}
static inline void rotate_cube_face(float *uf, float *vf, int rotation)
{
float tmp;
switch (rotation) {
case ROT_0:
break;
case ROT_90:
tmp = *uf;
*uf = -*vf;
*vf = tmp;
break;
case ROT_180:
*uf = -*uf;
*vf = -*vf;
break;
case ROT_270:
tmp = -*uf;
*uf = *vf;
*vf = tmp;
break;
default:
av_assert0(0);
}
}
static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
{
float tmp;
switch (rotation) {
case ROT_0:
break;
case ROT_90:
tmp = -*uf;
*uf = *vf;
*vf = tmp;
break;
case ROT_180:
*uf = -*uf;
*vf = -*vf;
break;
case ROT_270:
tmp = *uf;
*uf = -*vf;
*vf = tmp;
break;
default:
av_assert0(0);
}
}
/**
* Normalize vector.
*
* @param vec vector
*/
static void normalize_vector(float *vec)
{
const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
vec[0] /= norm;
vec[1] /= norm;
vec[2] /= norm;
}
/**
* Calculate 3D coordinates on sphere for corresponding cubemap position.
* Common operation for every cubemap.
*
* @param s filter private context
* @param uf horizontal cubemap coordinate [0, 1)
* @param vf vertical cubemap coordinate [0, 1)
* @param face face of cubemap
* @param vec coordinates on sphere
* @param scalew scale for uf
* @param scaleh scale for vf
*/
static void cube_to_xyz(const V360Context *s,
float uf, float vf, int face,
float *vec, float scalew, float scaleh)
{
const int direction = s->out_cubemap_direction_order[face];
float l_x, l_y, l_z;
uf /= scalew;
vf /= scaleh;
rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
switch (direction) {
case RIGHT:
l_x = 1.f;
l_y = vf;
l_z = -uf;
break;
case LEFT:
l_x = -1.f;
l_y = vf;
l_z = uf;
break;
case UP:
l_x = uf;
l_y = -1.f;
l_z = vf;
break;
case DOWN:
l_x = uf;
l_y = 1.f;
l_z = -vf;
break;
case FRONT:
l_x = uf;
l_y = vf;
l_z = 1.f;
break;
case BACK:
l_x = -uf;
l_y = vf;
l_z = -1.f;
break;
default:
av_assert0(0);
}
vec[0] = l_x;
vec[1] = l_y;
vec[2] = l_z;
normalize_vector(vec);
}
/**
* Calculate cubemap position for corresponding 3D coordinates on sphere.
* Common operation for every cubemap.
*
* @param s filter private context
* @param vec coordinated on sphere
* @param uf horizontal cubemap coordinate [0, 1)
* @param vf vertical cubemap coordinate [0, 1)
* @param direction direction of view
*/
static void xyz_to_cube(const V360Context *s,
const float *vec,
float *uf, float *vf, int *direction)
{
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
float phi_norm, theta_threshold;
int face;
if (phi >= -M_PI_4 && phi < M_PI_4) {
*direction = FRONT;
phi_norm = phi;
} else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
*direction = LEFT;
phi_norm = phi + M_PI_2;
} else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
*direction = RIGHT;
phi_norm = phi - M_PI_2;
} else {
*direction = BACK;
phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
}
theta_threshold = atanf(cosf(phi_norm));
if (theta > theta_threshold) {
*direction = DOWN;
} else if (theta < -theta_threshold) {
*direction = UP;
}
switch (*direction) {
case RIGHT:
*uf = -vec[2] / vec[0];
*vf = vec[1] / vec[0];
break;
case LEFT:
*uf = -vec[2] / vec[0];
*vf = -vec[1] / vec[0];
break;
case UP:
*uf = -vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case DOWN:
*uf = vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case FRONT:
*uf = vec[0] / vec[2];
*vf = vec[1] / vec[2];
break;
case BACK:
*uf = vec[0] / vec[2];
*vf = -vec[1] / vec[2];
break;
default:
av_assert0(0);
}
face = s->in_cubemap_face_order[*direction];
rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
}
/**
* Find position on another cube face in case of overflow/underflow.
* Used for calculation of interpolation window.
*
* @param s filter private context
* @param uf horizontal cubemap coordinate
* @param vf vertical cubemap coordinate
* @param direction direction of view
* @param new_uf new horizontal cubemap coordinate
* @param new_vf new vertical cubemap coordinate
* @param face face position on cubemap
*/
static void process_cube_coordinates(const V360Context *s,
float uf, float vf, int direction,
float *new_uf, float *new_vf, int *face)
{
/*
* Cubemap orientation
*
* width
* <------->
* +-------+
* | | U
* | up | h ------->
* +-------+-------+-------+-------+ ^ e |
* | | | | | | i V |
* | left | front | right | back | | g |
* +-------+-------+-------+-------+ v h v
* | | t
* | down |
* +-------+
*/
*face = s->in_cubemap_face_order[direction];
rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
// There are no pixels to use in this case
*new_uf = uf;
*new_vf = vf;
} else if (uf < -1.f) {
uf += 2.f;
switch (direction) {
case RIGHT:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case LEFT:
direction = BACK;
*new_uf = uf;
*new_vf = vf;
break;
case UP:
direction = LEFT;
*new_uf = vf;
*new_vf = -uf;
break;
case DOWN:
direction = LEFT;
*new_uf = -vf;
*new_vf = uf;
break;
case FRONT:
direction = LEFT;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = RIGHT;
*new_uf = uf;
*new_vf = vf;
break;
default:
av_assert0(0);
}
} else if (uf >= 1.f) {
uf -= 2.f;
switch (direction) {
case RIGHT:
direction = BACK;
*new_uf = uf;
*new_vf = vf;
break;
case LEFT:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case UP:
direction = RIGHT;
*new_uf = -vf;
*new_vf = uf;
break;
case DOWN:
direction = RIGHT;
*new_uf = vf;
*new_vf = -uf;
break;
case FRONT:
direction = RIGHT;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = LEFT;
*new_uf = uf;
*new_vf = vf;
break;
default:
av_assert0(0);
}
} else if (vf < -1.f) {
vf += 2.f;
switch (direction) {
case RIGHT:
direction = UP;
*new_uf = vf;
*new_vf = -uf;
break;
case LEFT:
direction = UP;
*new_uf = -vf;
*new_vf = uf;
break;
case UP:
direction = BACK;
*new_uf = -uf;
*new_vf = -vf;
break;
case DOWN:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case FRONT:
direction = UP;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = UP;
*new_uf = -uf;
*new_vf = -vf;
break;
default:
av_assert0(0);
}
} else if (vf >= 1.f) {
vf -= 2.f;
switch (direction) {
case RIGHT:
direction = DOWN;
*new_uf = -vf;
*new_vf = uf;
break;
case LEFT:
direction = DOWN;
*new_uf = vf;
*new_vf = -uf;
break;
case UP:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case DOWN:
direction = BACK;
*new_uf = -uf;
*new_vf = -vf;
break;
case FRONT:
direction = DOWN;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = DOWN;
*new_uf = -uf;
*new_vf = -vf;
break;
default:
av_assert0(0);
}
} else {
// Inside cube face
*new_uf = uf;
*new_vf = vf;
}
*face = s->in_cubemap_face_order[direction];
rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cube3x2_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad;
const float ew = width / 3.f;
const float eh = height / 2.f;
const int u_face = floorf(i / ew);
const int v_face = floorf(j / eh);
const int face = u_face + 3 * v_face;
const int u_shift = ceilf(ew * u_face);
const int v_shift = ceilf(eh * v_face);
const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
return 1;
}
/**
* Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cube3x2(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad;
const float ew = width / 3.f;
const float eh = height / 2.f;
float uf, vf;
int ui, vi;
int ewi, ehi;
int direction, face;
int u_face, v_face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= scalew;
vf *= scaleh;
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int new_ui = ui + j - 1;
int new_vi = vi + i - 1;
int u_shift, v_shift;
int new_ewi, new_ehi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
u_shift = ceilf(ew * u_face);
v_shift = ceilf(eh * v_face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= scalew;
vf /= scaleh;
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= scalew;
vf *= scaleh;
u_face = face % 3;
v_face = face / 3;
u_shift = ceilf(ew * u_face);
v_shift = ceilf(eh * v_face);
new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
}
us[i][j] = u_shift + new_ui;
vs[i][j] = v_shift + new_vi;
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cube1x6_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / width : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 6.f) : 1.f - s->out_pad;
const float ew = width;
const float eh = height / 6.f;
const int face = floorf(j / eh);
const int v_shift = ceilf(eh * face);
const int ehi = ceilf(eh * (face + 1)) - v_shift;
const float uf = 2.f * (i + 0.5f) / ew - 1.f;
const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cube6x1_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 6.f) : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / height : 1.f - s->out_pad;
const float ew = width / 6.f;
const float eh = height;
const int face = floorf(i / ew);
const int u_shift = ceilf(ew * face);
const int ewi = ceilf(ew * (face + 1)) - u_shift;
const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
const float vf = 2.f * (j + 0.5f) / eh - 1.f;
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
return 1;
}
/**
* Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cube1x6(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / width : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 6.f) : 1.f - s->in_pad;
const float eh = height / 6.f;
const int ewi = width;
float uf, vf;
int ui, vi;
int ehi;
int direction, face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= scalew;
vf *= scaleh;
face = s->in_cubemap_face_order[direction];
ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int new_ui = ui + j - 1;
int new_vi = vi + i - 1;
int v_shift;
int new_ehi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
v_shift = ceilf(eh * face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= scalew;
vf /= scaleh;
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= scalew;
vf *= scaleh;
v_shift = ceilf(eh * face);
new_ehi = ceilf(eh * (face + 1)) - v_shift;
new_ui = av_clip(lrintf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1);
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
}
us[i][j] = new_ui;
vs[i][j] = v_shift + new_vi;
}
}
return 1;
}
/**
* Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cube6x1(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 6.f) : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / height : 1.f - s->in_pad;
const float ew = width / 6.f;
const int ehi = height;
float uf, vf;
int ui, vi;
int ewi;
int direction, face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= scalew;
vf *= scaleh;
face = s->in_cubemap_face_order[direction];
ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int new_ui = ui + j - 1;
int new_vi = vi + i - 1;
int u_shift;
int new_ewi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
u_shift = ceilf(ew * face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= scalew;
vf /= scaleh;
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= scalew;
vf *= scaleh;
u_shift = ceilf(ew * face);
new_ewi = ceilf(ew * (face + 1)) - u_shift;
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
new_vi = av_clip(lrintf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1);
}
us[i][j] = u_shift + new_ui;
vs[i][j] = new_vi;
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int equirect_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float phi = ((2.f * i + 0.5f) / width - 1.f) * M_PI;
const float theta = ((2.f * j + 0.5f) / height - 1.f) * M_PI_2;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in half equirectangular format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int hequirect_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float phi = ((2.f * i + 0.5f) / width - 1.f) * M_PI_2;
const float theta = ((2.f * j + 0.5f) / height - 1.f) * M_PI_2;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
/**
* Prepare data for processing stereographic output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_stereographic_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in stereographic format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int stereographic_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = ((2.f * i + 1.f) / width - 1.f) * s->flat_range[0];
const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
const float r = hypotf(x, y);
const float theta = atanf(r) * 2.f;
const float sin_theta = sinf(theta);
vec[0] = x / r * sin_theta;
vec[1] = y / r * sin_theta;
vec[2] = cosf(theta);
normalize_vector(vec);
return 1;
}
/**
* Prepare data for processing stereographic input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_stereographic_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
return 0;
}
/**
* Calculate frame position in stereographic format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_stereographic(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = tanf(theta * 0.5f);
const float c = r / hypotf(vec[0], vec[1]);
const float x = vec[0] * c / s->iflat_range[0];
const float y = vec[1] * c / s->iflat_range[1];
const float uf = (x + 1.f) * width / 2.f;
const float vf = (y + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
*du = visible ? uf - ui : 0.f;
*dv = visible ? vf - vi : 0.f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Prepare data for processing equisolid output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_equisolid_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = sinf(s->h_fov * M_PI / 720.f);
s->flat_range[1] = sinf(s->v_fov * M_PI / 720.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in equisolid format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int equisolid_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = ((2.f * i + 1.f) / width - 1.f) * s->flat_range[0];
const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
const float r = hypotf(x, y);
const float theta = asinf(r) * 2.f;
const float sin_theta = sinf(theta);
vec[0] = x / r * sin_theta;
vec[1] = y / r * sin_theta;
vec[2] = cosf(theta);
normalize_vector(vec);
return 1;
}
/**
* Prepare data for processing equisolid input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_equisolid_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
return 0;
}
/**
* Calculate frame position in equisolid format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_equisolid(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = sinf(theta * 0.5f);
const float c = r / hypotf(vec[0], vec[1]);
const float x = vec[0] * c / s->iflat_range[0];
const float y = vec[1] * c / s->iflat_range[1];
const float uf = (x + 1.f) * width / 2.f;
const float vf = (y + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
*du = visible ? uf - ui : 0.f;
*dv = visible ? vf - vi : 0.f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Prepare data for processing orthographic output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_orthographic_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = sinf(FFMIN(s->h_fov, 180.f) * M_PI / 360.f);
s->flat_range[1] = sinf(FFMIN(s->v_fov, 180.f) * M_PI / 360.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in orthographic format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int orthographic_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = ((2.f * i + 1.f) / width - 1.f) * s->flat_range[0];
const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1];
const float r = hypotf(x, y);
const float theta = asinf(r);
vec[0] = x;
vec[1] = y;
vec[2] = cosf(theta);
normalize_vector(vec);
return 1;
}
/**
* Prepare data for processing orthographic input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_orthographic_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 180.f) * M_PI / 360.f);
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 180.f) * M_PI / 360.f);
return 0;
}
/**
* Calculate frame position in orthographic format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_orthographic(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = sinf(theta);
const float c = r / hypotf(vec[0], vec[1]);
const float x = vec[0] * c / s->iflat_range[0];
const float y = vec[1] * c / s->iflat_range[1];
const float uf = (x + 1.f) * width / 2.f;
const float vf = (y + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = vec[2] >= 0.f && isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
*du = visible ? uf - ui : 0.f;
*dv = visible ? vf - vi : 0.f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_equirect(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
const float uf = (phi / M_PI + 1.f) * width / 2.f;
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = ereflectx(ui + j - 1, vi + i - 1, width, height);
vs[i][j] = reflecty(vi + i - 1, height);
}
}
return 1;
}
/**
* Calculate frame position in half equirectangular format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_hequirect(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
const float uf = (phi / M_PI_2 + 1.f) * width / 2.f;
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = phi >= -M_PI_2 && phi <= M_PI_2;
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return visible;
}
/**
* Prepare data for processing flat input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_flat_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f);
s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
return 0;
}
/**
* Calculate frame position in flat format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_flat(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = tanf(theta);
const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height);
const float zf = vec[2];
const float h = hypotf(vec[0], vec[1]);
const float c = h <= 1e-6f ? 1.f : rr / h;
float uf = vec[0] * c / s->iflat_range[0];
float vf = vec[1] * c / s->iflat_range[1];
int visible, ui, vi;
uf = zf >= 0.f ? (uf + 1.f) * width / 2.f : 0.f;
vf = zf >= 0.f ? (vf + 1.f) * height / 2.f : 0.f;
ui = floorf(uf);
vi = floorf(vf);
visible = vi >= 0 && vi < height && ui >= 0 && ui < width && zf >= 0.f;
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Calculate frame position in mercator format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_mercator(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]);
const float theta = vec[1];
const float uf = (phi / M_PI + 1.f) * width / 2.f;
const float vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in mercator format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int mercator_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float phi = ((2.f * i + 1.f) / width - 1.f) * M_PI + M_PI_2;
const float y = ((2.f * j + 1.f) / height - 1.f) * M_PI;
const float div = expf(2.f * y) + 1.f;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = 2.f * expf(y) / div;
const float cos_theta = (expf(2.f * y) - 1.f) / div;
vec[0] = -sin_theta * cos_phi;
vec[1] = cos_theta;
vec[2] = sin_theta * sin_phi;
return 1;
}
/**
* Calculate frame position in ball format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_ball(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float l = hypotf(vec[0], vec[1]);
const float r = sqrtf(1.f - vec[2]) / M_SQRT2;
const float uf = (1.f + r * vec[0] / (l > 0.f ? l : 1.f)) * width * 0.5f;
const float vf = (1.f + r * vec[1] / (l > 0.f ? l : 1.f)) * height * 0.5f;
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in ball format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int ball_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = (2.f * i + 1.f) / width - 1.f;
const float y = (2.f * j + 1.f) / height - 1.f;
const float l = hypotf(x, y);
if (l <= 1.f) {
const float z = 2.f * l * sqrtf(1.f - l * l);
vec[0] = z * x / (l > 0.f ? l : 1.f);
vec[1] = z * y / (l > 0.f ? l : 1.f);
vec[2] = 1.f - 2.f * l * l;
} else {
vec[0] = 0.f;
vec[1] = 1.f;
vec[2] = 0.f;
return 0;
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in hammer format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int hammer_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = ((2.f * i + 1.f) / width - 1.f);
const float y = ((2.f * j + 1.f) / height - 1.f);
const float xx = x * x;
const float yy = y * y;
const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f);
const float a = M_SQRT2 * x * z;
const float b = 2.f * z * z - 1.f;
const float aa = a * a;
const float bb = b * b;
const float w = sqrtf(1.f - 2.f * yy * z * z);
vec[0] = w * 2.f * a * b / (aa + bb);
vec[1] = M_SQRT2 * y * z;
vec[2] = w * (bb - aa) / (aa + bb);
normalize_vector(vec);
return 1;
}
/**
* Calculate frame position in hammer format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_hammer(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = atan2f(vec[0], vec[2]);
const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f));
const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z;
const float y = vec[1] / z;
const float uf = (x + 1.f) * width / 2.f;
const float vf = (y + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int sinusoidal_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float theta = ((2.f * j + 1.f) / height - 1.f) * M_PI_2;
const float phi = ((2.f * i + 1.f) / width - 1.f) * M_PI / cosf(theta);
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
normalize_vector(vec);
return 1;
}
/**
* Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_sinusoidal(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = asinf(vec[1]);
const float phi = atan2f(vec[0], vec[2]) * cosf(theta);
const float uf = (phi / M_PI + 1.f) * width / 2.f;
const float vf = (theta / M_PI_2 + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}