| /* |
| * Copyright (c) 2003 LeFunGus, lefungus@altern.org |
| * |
| * This file is part of FFmpeg |
| * |
| * FFmpeg is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with FFmpeg; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #include <float.h> |
| |
| #include "libavutil/imgutils.h" |
| #include "libavutil/attributes.h" |
| #include "libavutil/common.h" |
| #include "libavutil/pixdesc.h" |
| #include "libavutil/intreadwrite.h" |
| #include "libavutil/opt.h" |
| |
| #include "avfilter.h" |
| #include "formats.h" |
| #include "internal.h" |
| #include "video.h" |
| |
| typedef struct VagueDenoiserContext { |
| const AVClass *class; |
| |
| float threshold; |
| float percent; |
| int method; |
| int type; |
| int nsteps; |
| int planes; |
| |
| int depth; |
| int bpc; |
| int peak; |
| int nb_planes; |
| int planeheight[4]; |
| int planewidth[4]; |
| |
| float *block; |
| float *in; |
| float *out; |
| float *tmp; |
| |
| int hlowsize[4][32]; |
| int hhighsize[4][32]; |
| int vlowsize[4][32]; |
| int vhighsize[4][32]; |
| |
| void (*thresholding)(float *block, const int width, const int height, |
| const int stride, const float threshold, |
| const float percent); |
| } VagueDenoiserContext; |
| |
| #define OFFSET(x) offsetof(VagueDenoiserContext, x) |
| #define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM |
| static const AVOption vaguedenoiser_options[] = { |
| { "threshold", "set filtering strength", OFFSET(threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.}, 0,DBL_MAX, FLAGS }, |
| { "method", "set filtering method", OFFSET(method), AV_OPT_TYPE_INT, {.i64=2 }, 0, 2, FLAGS, "method" }, |
| { "hard", "hard thresholding", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "method" }, |
| { "soft", "soft thresholding", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "method" }, |
| { "garrote", "garrote thresholding", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "method" }, |
| { "nsteps", "set number of steps", OFFSET(nsteps), AV_OPT_TYPE_INT, {.i64=6 }, 1, 32, FLAGS }, |
| { "percent", "set percent of full denoising", OFFSET(percent),AV_OPT_TYPE_FLOAT, {.dbl=85}, 0,100, FLAGS }, |
| { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=15 }, 0, 15, FLAGS }, |
| { "type", "set threshold type", OFFSET(type), AV_OPT_TYPE_INT, {.i64=0 }, 0, 1, FLAGS, "type" }, |
| { "universal", "universal (VisuShrink)", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "type" }, |
| { "bayes", "bayes (BayesShrink)", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "type" }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(vaguedenoiser); |
| |
| #define NPAD 10 |
| |
| static const float analysis_low[9] = { |
| 0.037828455506995f, -0.023849465019380f, -0.110624404418423f, 0.377402855612654f, |
| 0.852698679009403f, 0.377402855612654f, -0.110624404418423f, -0.023849465019380f, 0.037828455506995f |
| }; |
| |
| static const float analysis_high[7] = { |
| -0.064538882628938f, 0.040689417609558f, 0.418092273222212f, -0.788485616405664f, |
| 0.418092273222212f, 0.040689417609558f, -0.064538882628938f |
| }; |
| |
| static const float synthesis_low[7] = { |
| -0.064538882628938f, -0.040689417609558f, 0.418092273222212f, 0.788485616405664f, |
| 0.418092273222212f, -0.040689417609558f, -0.064538882628938f |
| }; |
| |
| static const float synthesis_high[9] = { |
| -0.037828455506995f, -0.023849465019380f, 0.110624404418423f, 0.377402855612654f, |
| -0.852698679009403f, 0.377402855612654f, 0.110624404418423f, -0.023849465019380f, -0.037828455506995f |
| }; |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| static const enum AVPixelFormat pix_fmts[] = { |
| AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, |
| AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, |
| AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, |
| AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, |
| AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, |
| AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, |
| AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, |
| AV_PIX_FMT_YUVJ411P, |
| AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, |
| AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, |
| AV_PIX_FMT_YUV440P10, |
| AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, |
| AV_PIX_FMT_YUV440P12, |
| AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14, |
| AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, |
| AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, |
| AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, |
| AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, |
| AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, |
| AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, |
| AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, |
| AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, |
| AV_PIX_FMT_NONE |
| }; |
| AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); |
| if (!fmts_list) |
| return AVERROR(ENOMEM); |
| return ff_set_common_formats(ctx, fmts_list); |
| } |
| |
| static int config_input(AVFilterLink *inlink) |
| { |
| VagueDenoiserContext *s = inlink->dst->priv; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| int p, i, nsteps_width, nsteps_height, nsteps_max; |
| |
| s->depth = desc->comp[0].depth; |
| s->bpc = (s->depth + 7) / 8; |
| s->nb_planes = desc->nb_components; |
| |
| s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); |
| s->planeheight[0] = s->planeheight[3] = inlink->h; |
| s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); |
| s->planewidth[0] = s->planewidth[3] = inlink->w; |
| |
| s->block = av_malloc_array(inlink->w * inlink->h, sizeof(*s->block)); |
| s->in = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->in)); |
| s->out = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->out)); |
| s->tmp = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->tmp)); |
| |
| if (!s->block || !s->in || !s->out || !s->tmp) |
| return AVERROR(ENOMEM); |
| |
| s->threshold *= 1 << (s->depth - 8); |
| s->peak = (1 << s->depth) - 1; |
| |
| nsteps_width = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planewidth[1] : s->planewidth[0]; |
| nsteps_height = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planeheight[1] : s->planeheight[0]; |
| |
| for (nsteps_max = 1; nsteps_max < 15; nsteps_max++) { |
| if (pow(2, nsteps_max) >= nsteps_width || pow(2, nsteps_max) >= nsteps_height) |
| break; |
| } |
| |
| s->nsteps = FFMIN(s->nsteps, nsteps_max - 2); |
| |
| for (p = 0; p < 4; p++) { |
| s->hlowsize[p][0] = (s->planewidth[p] + 1) >> 1; |
| s->hhighsize[p][0] = s->planewidth[p] >> 1; |
| s->vlowsize[p][0] = (s->planeheight[p] + 1) >> 1; |
| s->vhighsize[p][0] = s->planeheight[p] >> 1; |
| |
| for (i = 1; i < s->nsteps; i++) { |
| s->hlowsize[p][i] = (s->hlowsize[p][i - 1] + 1) >> 1; |
| s->hhighsize[p][i] = s->hlowsize[p][i - 1] >> 1; |
| s->vlowsize[p][i] = (s->vlowsize[p][i - 1] + 1) >> 1; |
| s->vhighsize[p][i] = s->vlowsize[p][i - 1] >> 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline void copy(const float *p1, float *p2, const int length) |
| { |
| memcpy(p2, p1, length * sizeof(float)); |
| } |
| |
| static inline void copyv(const float *p1, const int stride1, float *p2, const int length) |
| { |
| int i; |
| |
| for (i = 0; i < length; i++) { |
| p2[i] = *p1; |
| p1 += stride1; |
| } |
| } |
| |
| static inline void copyh(const float *p1, float *p2, const int stride2, const int length) |
| { |
| int i; |
| |
| for (i = 0; i < length; i++) { |
| *p2 = p1[i]; |
| p2 += stride2; |
| } |
| } |
| |
| // Do symmetric extension of data using prescribed symmetries |
| // Original values are in output[npad] through output[npad+size-1] |
| // New values will be placed in output[0] through output[npad] and in output[npad+size] through output[2*npad+size-1] (note: end values may not be filled in) |
| // extension at left bdry is ... 3 2 1 0 | 0 1 2 3 ... |
| // same for right boundary |
| // if right_ext=1 then ... 3 2 1 0 | 1 2 3 |
| static void symmetric_extension(float *output, const int size, const int left_ext, const int right_ext) |
| { |
| int first = NPAD; |
| int last = NPAD - 1 + size; |
| const int originalLast = last; |
| int i, nextend, idx; |
| |
| if (left_ext == 2) |
| output[--first] = output[NPAD]; |
| if (right_ext == 2) |
| output[++last] = output[originalLast]; |
| |
| // extend left end |
| nextend = first; |
| for (i = 0; i < nextend; i++) |
| output[--first] = output[NPAD + 1 + i]; |
| |
| idx = NPAD + NPAD - 1 + size; |
| |
| // extend right end |
| nextend = idx - last; |
| for (i = 0; i < nextend; i++) |
| output[++last] = output[originalLast - 1 - i]; |
| } |
| |
| static void transform_step(float *input, float *output, const int size, const int low_size, VagueDenoiserContext *s) |
| { |
| int i; |
| |
| symmetric_extension(input, size, 1, 1); |
| |
| for (i = NPAD; i < NPAD + low_size; i++) { |
| const float a = input[2 * i - 14] * analysis_low[0]; |
| const float b = input[2 * i - 13] * analysis_low[1]; |
| const float c = input[2 * i - 12] * analysis_low[2]; |
| const float d = input[2 * i - 11] * analysis_low[3]; |
| const float e = input[2 * i - 10] * analysis_low[4]; |
| const float f = input[2 * i - 9] * analysis_low[3]; |
| const float g = input[2 * i - 8] * analysis_low[2]; |
| const float h = input[2 * i - 7] * analysis_low[1]; |
| const float k = input[2 * i - 6] * analysis_low[0]; |
| |
| output[i] = a + b + c + d + e + f + g + h + k; |
| } |
| |
| for (i = NPAD; i < NPAD + low_size; i++) { |
| const float a = input[2 * i - 12] * analysis_high[0]; |
| const float b = input[2 * i - 11] * analysis_high[1]; |
| const float c = input[2 * i - 10] * analysis_high[2]; |
| const float d = input[2 * i - 9] * analysis_high[3]; |
| const float e = input[2 * i - 8] * analysis_high[2]; |
| const float f = input[2 * i - 7] * analysis_high[1]; |
| const float g = input[2 * i - 6] * analysis_high[0]; |
| |
| output[i + low_size] = a + b + c + d + e + f + g; |
| } |
| } |
| |
| static void invert_step(const float *input, float *output, float *temp, const int size, VagueDenoiserContext *s) |
| { |
| const int low_size = (size + 1) >> 1; |
| const int high_size = size >> 1; |
| int left_ext = 1, right_ext, i; |
| int findex; |
| |
| memcpy(temp + NPAD, input + NPAD, low_size * sizeof(float)); |
| |
| right_ext = (size % 2 == 0) ? 2 : 1; |
| symmetric_extension(temp, low_size, left_ext, right_ext); |
| |
| memset(output, 0, (NPAD + NPAD + size) * sizeof(float)); |
| findex = (size + 2) >> 1; |
| |
| for (i = 9; i < findex + 11; i++) { |
| const float a = temp[i] * synthesis_low[0]; |
| const float b = temp[i] * synthesis_low[1]; |
| const float c = temp[i] * synthesis_low[2]; |
| const float d = temp[i] * synthesis_low[3]; |
| |
| output[2 * i - 13] += a; |
| output[2 * i - 12] += b; |
| output[2 * i - 11] += c; |
| output[2 * i - 10] += d; |
| output[2 * i - 9] += c; |
| output[2 * i - 8] += b; |
| output[2 * i - 7] += a; |
| } |
| |
| memcpy(temp + NPAD, input + NPAD + low_size, high_size * sizeof(float)); |
| |
| left_ext = 2; |
| right_ext = (size % 2 == 0) ? 1 : 2; |
| symmetric_extension(temp, high_size, left_ext, right_ext); |
| |
| for (i = 8; i < findex + 11; i++) { |
| const float a = temp[i] * synthesis_high[0]; |
| const float b = temp[i] * synthesis_high[1]; |
| const float c = temp[i] * synthesis_high[2]; |
| const float d = temp[i] * synthesis_high[3]; |
| const float e = temp[i] * synthesis_high[4]; |
| |
| output[2 * i - 13] += a; |
| output[2 * i - 12] += b; |
| output[2 * i - 11] += c; |
| output[2 * i - 10] += d; |
| output[2 * i - 9] += e; |
| output[2 * i - 8] += d; |
| output[2 * i - 7] += c; |
| output[2 * i - 6] += b; |
| output[2 * i - 5] += a; |
| } |
| } |
| |
| static void hard_thresholding(float *block, const int width, const int height, |
| const int stride, const float threshold, |
| const float percent) |
| { |
| const float frac = 1.f - percent * 0.01f; |
| int y, x; |
| |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) { |
| if (FFABS(block[x]) <= threshold) |
| block[x] *= frac; |
| } |
| block += stride; |
| } |
| } |
| |
| static void soft_thresholding(float *block, const int width, const int height, const int stride, |
| const float threshold, const float percent) |
| { |
| const float frac = 1.f - percent * 0.01f; |
| const float shift = threshold * 0.01f * percent; |
| int y, x; |
| |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) { |
| const float temp = FFABS(block[x]); |
| if (temp <= threshold) |
| block[x] *= frac; |
| else |
| block[x] = (block[x] < 0.f ? -1.f : (block[x] > 0.f ? 1.f : 0.f)) * (temp - shift); |
| } |
| block += stride; |
| } |
| } |
| |
| static void qian_thresholding(float *block, const int width, const int height, |
| const int stride, const float threshold, |
| const float percent) |
| { |
| const float percent01 = percent * 0.01f; |
| const float tr2 = threshold * threshold * percent01; |
| const float frac = 1.f - percent01; |
| int y, x; |
| |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) { |
| const float temp = FFABS(block[x]); |
| if (temp <= threshold) { |
| block[x] *= frac; |
| } else { |
| const float tp2 = temp * temp; |
| block[x] *= (tp2 - tr2) / tp2; |
| } |
| } |
| block += stride; |
| } |
| } |
| |
| static float bayes_threshold(float *block, const int width, const int height, |
| const int stride, const float threshold) |
| { |
| float mean = 0.f; |
| |
| for (int y = 0; y < height; y++) { |
| for (int x = 0; x < width; x++) { |
| mean += block[x] * block[x]; |
| } |
| block += stride; |
| } |
| |
| mean /= width * height; |
| |
| return threshold * threshold / (FFMAX(sqrtf(mean - threshold), FLT_EPSILON)); |
| } |
| |
| static void filter(VagueDenoiserContext *s, AVFrame *in, AVFrame *out) |
| { |
| int p, y, x, i, j; |
| |
| for (p = 0; p < s->nb_planes; p++) { |
| const int height = s->planeheight[p]; |
| const int width = s->planewidth[p]; |
| const uint8_t *srcp8 = in->data[p]; |
| const uint16_t *srcp16 = (const uint16_t *)in->data[p]; |
| uint8_t *dstp8 = out->data[p]; |
| uint16_t *dstp16 = (uint16_t *)out->data[p]; |
| float *output = s->block; |
| int h_low_size0 = width; |
| int v_low_size0 = height; |
| int nsteps_transform = s->nsteps; |
| int nsteps_invert = s->nsteps; |
| const float *input = s->block; |
| |
| if (!((1 << p) & s->planes)) { |
| av_image_copy_plane(out->data[p], out->linesize[p], in->data[p], in->linesize[p], |
| s->planewidth[p] * s->bpc, s->planeheight[p]); |
| continue; |
| } |
| |
| if (s->depth <= 8) { |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) |
| output[x] = srcp8[x]; |
| srcp8 += in->linesize[p]; |
| output += width; |
| } |
| } else { |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) |
| output[x] = srcp16[x]; |
| srcp16 += in->linesize[p] / 2; |
| output += width; |
| } |
| } |
| |
| while (nsteps_transform--) { |
| int low_size = (h_low_size0 + 1) >> 1; |
| float *input = s->block; |
| for (j = 0; j < v_low_size0; j++) { |
| copy(input, s->in + NPAD, h_low_size0); |
| transform_step(s->in, s->out, h_low_size0, low_size, s); |
| copy(s->out + NPAD, input, h_low_size0); |
| input += width; |
| } |
| |
| low_size = (v_low_size0 + 1) >> 1; |
| input = s->block; |
| for (j = 0; j < h_low_size0; j++) { |
| copyv(input, width, s->in + NPAD, v_low_size0); |
| transform_step(s->in, s->out, v_low_size0, low_size, s); |
| copyh(s->out + NPAD, input, width, v_low_size0); |
| input++; |
| } |
| |
| h_low_size0 = (h_low_size0 + 1) >> 1; |
| v_low_size0 = (v_low_size0 + 1) >> 1; |
| } |
| |
| if (s->type == 0) { |
| s->thresholding(s->block, width, height, width, s->threshold, s->percent); |
| } else { |
| for (int n = 0; n < s->nsteps; n++) { |
| float threshold; |
| float *block; |
| |
| if (n == s->nsteps - 1) { |
| threshold = bayes_threshold(s->block, s->hlowsize[p][n], s->vlowsize[p][n], width, s->threshold); |
| s->thresholding(s->block, s->hlowsize[p][n], s->vlowsize[p][n], width, threshold, s->percent); |
| } |
| block = s->block + s->hlowsize[p][n]; |
| threshold = bayes_threshold(block, s->hhighsize[p][n], s->vlowsize[p][n], width, s->threshold); |
| s->thresholding(block, s->hhighsize[p][n], s->vlowsize[p][n], width, threshold, s->percent); |
| block = s->block + s->vlowsize[p][n] * width; |
| threshold = bayes_threshold(block, s->hlowsize[p][n], s->vhighsize[p][n], width, s->threshold); |
| s->thresholding(block, s->hlowsize[p][n], s->vhighsize[p][n], width, threshold, s->percent); |
| block = s->block + s->hlowsize[p][n] + s->vlowsize[p][n] * width; |
| threshold = bayes_threshold(block, s->hhighsize[p][n], s->vhighsize[p][n], width, s->threshold); |
| s->thresholding(block, s->hhighsize[p][n], s->vhighsize[p][n], width, threshold, s->percent); |
| } |
| } |
| |
| while (nsteps_invert--) { |
| const int idx = s->vlowsize[p][nsteps_invert] + s->vhighsize[p][nsteps_invert]; |
| const int idx2 = s->hlowsize[p][nsteps_invert] + s->hhighsize[p][nsteps_invert]; |
| float * idx3 = s->block; |
| for (i = 0; i < idx2; i++) { |
| copyv(idx3, width, s->in + NPAD, idx); |
| invert_step(s->in, s->out, s->tmp, idx, s); |
| copyh(s->out + NPAD, idx3, width, idx); |
| idx3++; |
| } |
| |
| idx3 = s->block; |
| for (i = 0; i < idx; i++) { |
| copy(idx3, s->in + NPAD, idx2); |
| invert_step(s->in, s->out, s->tmp, idx2, s); |
| copy(s->out + NPAD, idx3, idx2); |
| idx3 += width; |
| } |
| } |
| |
| if (s->depth <= 8) { |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) |
| dstp8[x] = av_clip_uint8(input[x] + 0.5f); |
| input += width; |
| dstp8 += out->linesize[p]; |
| } |
| } else { |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) |
| dstp16[x] = av_clip(input[x] + 0.5f, 0, s->peak); |
| input += width; |
| dstp16 += out->linesize[p] / 2; |
| } |
| } |
| } |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| VagueDenoiserContext *s = ctx->priv; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| AVFrame *out; |
| int direct = av_frame_is_writable(in); |
| |
| if (direct) { |
| out = in; |
| } else { |
| out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!out) { |
| av_frame_free(&in); |
| return AVERROR(ENOMEM); |
| } |
| |
| av_frame_copy_props(out, in); |
| } |
| |
| filter(s, in, out); |
| |
| if (!direct) |
| av_frame_free(&in); |
| |
| return ff_filter_frame(outlink, out); |
| } |
| |
| static av_cold int init(AVFilterContext *ctx) |
| { |
| VagueDenoiserContext *s = ctx->priv; |
| |
| switch (s->method) { |
| case 0: |
| s->thresholding = hard_thresholding; |
| break; |
| case 1: |
| s->thresholding = soft_thresholding; |
| break; |
| case 2: |
| s->thresholding = qian_thresholding; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| VagueDenoiserContext *s = ctx->priv; |
| |
| av_freep(&s->block); |
| av_freep(&s->in); |
| av_freep(&s->out); |
| av_freep(&s->tmp); |
| } |
| |
| static const AVFilterPad vaguedenoiser_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .config_props = config_input, |
| .filter_frame = filter_frame, |
| }, |
| { NULL } |
| }; |
| |
| |
| static const AVFilterPad vaguedenoiser_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_vaguedenoiser = { |
| .name = "vaguedenoiser", |
| .description = NULL_IF_CONFIG_SMALL("Apply a Wavelet based Denoiser."), |
| .priv_size = sizeof(VagueDenoiserContext), |
| .priv_class = &vaguedenoiser_class, |
| .init = init, |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = vaguedenoiser_inputs, |
| .outputs = vaguedenoiser_outputs, |
| .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, |
| }; |