blob: 65ea07ef6cb59e7d1abf4e0194a9ea160d815a59 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Common Applications Kept Enhanced -- CAKE
*
* Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
* Copyright (C) 2017-2018 Toke Høiland-Jørgensen <toke@toke.dk>
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <syslog.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <inttypes.h>
#include "utils.h"
#include "tc_util.h"
struct cake_preset {
char *name;
unsigned int target;
unsigned int interval;
};
static struct cake_preset presets[] = {
{"datacentre", 5, 100},
{"lan", 50, 1000},
{"metro", 500, 10000},
{"regional", 1500, 30000},
{"internet", 5000, 100000},
{"oceanic", 15000, 300000},
{"satellite", 50000, 1000000},
{"interplanetary", 50000000, 1000000000},
};
static const char * diffserv_names[CAKE_DIFFSERV_MAX] = {
[CAKE_DIFFSERV_DIFFSERV3] = "diffserv3",
[CAKE_DIFFSERV_DIFFSERV4] = "diffserv4",
[CAKE_DIFFSERV_DIFFSERV8] = "diffserv8",
[CAKE_DIFFSERV_BESTEFFORT] = "besteffort",
[CAKE_DIFFSERV_PRECEDENCE] = "precedence",
};
static const char * flowmode_names[CAKE_FLOW_MAX] = {
[CAKE_FLOW_NONE] = "flowblind",
[CAKE_FLOW_SRC_IP] = "srchost",
[CAKE_FLOW_DST_IP] = "dsthost",
[CAKE_FLOW_HOSTS] = "hosts",
[CAKE_FLOW_FLOWS] = "flows",
[CAKE_FLOW_DUAL_SRC] = "dual-srchost",
[CAKE_FLOW_DUAL_DST] = "dual-dsthost",
[CAKE_FLOW_TRIPLE] = "triple-isolate",
};
static struct cake_preset *find_preset(char *argv)
{
int i;
for (i = 0; i < ARRAY_SIZE(presets); i++)
if (!strcmp(argv, presets[i].name))
return &presets[i];
return NULL;
}
static void explain(void)
{
fprintf(stderr,
"Usage: ... cake [ bandwidth RATE | unlimited* | autorate-ingress ]\n"
" [ rtt TIME | datacentre | lan | metro | regional |\n"
" internet* | oceanic | satellite | interplanetary ]\n"
" [ besteffort | diffserv8 | diffserv4 | diffserv3* ]\n"
" [ flowblind | srchost | dsthost | hosts | flows |\n"
" dual-srchost | dual-dsthost | triple-isolate* ]\n"
" [ nat | nonat* ]\n"
" [ wash | nowash* ]\n"
" [ split-gso* | no-split-gso ]\n"
" [ ack-filter | ack-filter-aggressive | no-ack-filter* ]\n"
" [ memlimit LIMIT ]\n"
" [ fwmark MASK ]\n"
" [ ptm | atm | noatm* ] [ overhead N | conservative | raw* ]\n"
" [ mpu N ] [ ingress | egress* ]\n"
" (* marks defaults)\n");
}
static int cake_parse_opt(struct qdisc_util *qu, int argc, char **argv,
struct nlmsghdr *n, const char *dev)
{
struct cake_preset *preset, *preset_set = NULL;
bool overhead_override = false;
bool overhead_set = false;
unsigned int interval = 0;
unsigned int diffserv = 0;
unsigned int memlimit = 0;
unsigned int target = 0;
__u64 bandwidth = 0;
int ack_filter = -1;
struct rtattr *tail;
int split_gso = -1;
int unlimited = 0;
int flowmode = -1;
int autorate = -1;
int ingress = -1;
int overhead = 0;
int fwmark = -1;
int wash = -1;
int nat = -1;
int atm = -1;
int mpu = 0;
while (argc > 0) {
if (strcmp(*argv, "bandwidth") == 0) {
NEXT_ARG();
if (get_rate64(&bandwidth, *argv)) {
fprintf(stderr, "Illegal \"bandwidth\"\n");
return -1;
}
unlimited = 0;
autorate = 0;
} else if (strcmp(*argv, "unlimited") == 0) {
bandwidth = 0;
unlimited = 1;
autorate = 0;
} else if (strcmp(*argv, "autorate-ingress") == 0) {
autorate = 1;
} else if (strcmp(*argv, "rtt") == 0) {
NEXT_ARG();
if (get_time(&interval, *argv)) {
fprintf(stderr, "Illegal \"rtt\"\n");
return -1;
}
target = interval / 20;
if (!target)
target = 1;
} else if ((preset = find_preset(*argv))) {
if (preset_set)
duparg(*argv, preset_set->name);
preset_set = preset;
target = preset->target;
interval = preset->interval;
} else if (strcmp(*argv, "besteffort") == 0) {
diffserv = CAKE_DIFFSERV_BESTEFFORT;
} else if (strcmp(*argv, "precedence") == 0) {
diffserv = CAKE_DIFFSERV_PRECEDENCE;
} else if (strcmp(*argv, "diffserv8") == 0) {
diffserv = CAKE_DIFFSERV_DIFFSERV8;
} else if (strcmp(*argv, "diffserv4") == 0) {
diffserv = CAKE_DIFFSERV_DIFFSERV4;
} else if (strcmp(*argv, "diffserv") == 0) {
diffserv = CAKE_DIFFSERV_DIFFSERV4;
} else if (strcmp(*argv, "diffserv3") == 0) {
diffserv = CAKE_DIFFSERV_DIFFSERV3;
} else if (strcmp(*argv, "nowash") == 0) {
wash = 0;
} else if (strcmp(*argv, "wash") == 0) {
wash = 1;
} else if (strcmp(*argv, "split-gso") == 0) {
split_gso = 1;
} else if (strcmp(*argv, "no-split-gso") == 0) {
split_gso = 0;
} else if (strcmp(*argv, "flowblind") == 0) {
flowmode = CAKE_FLOW_NONE;
} else if (strcmp(*argv, "srchost") == 0) {
flowmode = CAKE_FLOW_SRC_IP;
} else if (strcmp(*argv, "dsthost") == 0) {
flowmode = CAKE_FLOW_DST_IP;
} else if (strcmp(*argv, "hosts") == 0) {
flowmode = CAKE_FLOW_HOSTS;
} else if (strcmp(*argv, "flows") == 0) {
flowmode = CAKE_FLOW_FLOWS;
} else if (strcmp(*argv, "dual-srchost") == 0) {
flowmode = CAKE_FLOW_DUAL_SRC;
} else if (strcmp(*argv, "dual-dsthost") == 0) {
flowmode = CAKE_FLOW_DUAL_DST;
} else if (strcmp(*argv, "triple-isolate") == 0) {
flowmode = CAKE_FLOW_TRIPLE;
} else if (strcmp(*argv, "nat") == 0) {
nat = 1;
} else if (strcmp(*argv, "nonat") == 0) {
nat = 0;
} else if (strcmp(*argv, "ptm") == 0) {
atm = CAKE_ATM_PTM;
} else if (strcmp(*argv, "atm") == 0) {
atm = CAKE_ATM_ATM;
} else if (strcmp(*argv, "noatm") == 0) {
atm = CAKE_ATM_NONE;
} else if (strcmp(*argv, "raw") == 0) {
atm = CAKE_ATM_NONE;
overhead = 0;
overhead_set = true;
overhead_override = true;
} else if (strcmp(*argv, "conservative") == 0) {
/*
* Deliberately over-estimate overhead:
* one whole ATM cell plus ATM framing.
* A safe choice if the actual overhead is unknown.
*/
atm = CAKE_ATM_ATM;
overhead = 48;
overhead_set = true;
/* Various ADSL framing schemes, all over ATM cells */
} else if (strcmp(*argv, "ipoa-vcmux") == 0) {
atm = CAKE_ATM_ATM;
overhead += 8;
overhead_set = true;
} else if (strcmp(*argv, "ipoa-llcsnap") == 0) {
atm = CAKE_ATM_ATM;
overhead += 16;
overhead_set = true;
} else if (strcmp(*argv, "bridged-vcmux") == 0) {
atm = CAKE_ATM_ATM;
overhead += 24;
overhead_set = true;
} else if (strcmp(*argv, "bridged-llcsnap") == 0) {
atm = CAKE_ATM_ATM;
overhead += 32;
overhead_set = true;
} else if (strcmp(*argv, "pppoa-vcmux") == 0) {
atm = CAKE_ATM_ATM;
overhead += 10;
overhead_set = true;
} else if (strcmp(*argv, "pppoa-llc") == 0) {
atm = CAKE_ATM_ATM;
overhead += 14;
overhead_set = true;
} else if (strcmp(*argv, "pppoe-vcmux") == 0) {
atm = CAKE_ATM_ATM;
overhead += 32;
overhead_set = true;
} else if (strcmp(*argv, "pppoe-llcsnap") == 0) {
atm = CAKE_ATM_ATM;
overhead += 40;
overhead_set = true;
/* Typical VDSL2 framing schemes, both over PTM */
/* PTM has 64b/65b coding which absorbs some bandwidth */
} else if (strcmp(*argv, "pppoe-ptm") == 0) {
/* 2B PPP + 6B PPPoE + 6B dest MAC + 6B src MAC
* + 2B ethertype + 4B Frame Check Sequence
* + 1B Start of Frame (S) + 1B End of Frame (Ck)
* + 2B TC-CRC (PTM-FCS) = 30B
*/
atm = CAKE_ATM_PTM;
overhead += 30;
overhead_set = true;
} else if (strcmp(*argv, "bridged-ptm") == 0) {
/* 6B dest MAC + 6B src MAC + 2B ethertype
* + 4B Frame Check Sequence
* + 1B Start of Frame (S) + 1B End of Frame (Ck)
* + 2B TC-CRC (PTM-FCS) = 22B
*/
atm = CAKE_ATM_PTM;
overhead += 22;
overhead_set = true;
} else if (strcmp(*argv, "via-ethernet") == 0) {
/*
* We used to use this flag to manually compensate for
* Linux including the Ethernet header on Ethernet-type
* interfaces, but not on IP-type interfaces.
*
* It is no longer needed, because Cake now adjusts for
* that automatically, and is thus ignored.
*
* It would be deleted entirely, but it appears in the
* stats output when the automatic compensation is
* active.
*/
} else if (strcmp(*argv, "ethernet") == 0) {
/* ethernet pre-amble & interframe gap & FCS
* you may need to add vlan tag
*/
overhead += 38;
overhead_set = true;
mpu = 84;
/* Additional Ethernet-related overhead used by some ISPs */
} else if (strcmp(*argv, "ether-vlan") == 0) {
/* 802.1q VLAN tag - may be repeated */
overhead += 4;
overhead_set = true;
/*
* DOCSIS cable shapers account for Ethernet frame with FCS,
* but not interframe gap or preamble.
*/
} else if (strcmp(*argv, "docsis") == 0) {
atm = CAKE_ATM_NONE;
overhead += 18;
overhead_set = true;
mpu = 64;
} else if (strcmp(*argv, "overhead") == 0) {
char *p = NULL;
NEXT_ARG();
overhead = strtol(*argv, &p, 10);
if (!p || *p || !*argv ||
overhead < -64 || overhead > 256) {
fprintf(stderr,
"Illegal \"overhead\", valid range is -64 to 256\\n");
return -1;
}
overhead_set = true;
} else if (strcmp(*argv, "mpu") == 0) {
char *p = NULL;
NEXT_ARG();
mpu = strtol(*argv, &p, 10);
if (!p || *p || !*argv || mpu < 0 || mpu > 256) {
fprintf(stderr,
"Illegal \"mpu\", valid range is 0 to 256\\n");
return -1;
}
} else if (strcmp(*argv, "ingress") == 0) {
ingress = 1;
} else if (strcmp(*argv, "egress") == 0) {
ingress = 0;
} else if (strcmp(*argv, "no-ack-filter") == 0) {
ack_filter = CAKE_ACK_NONE;
} else if (strcmp(*argv, "ack-filter") == 0) {
ack_filter = CAKE_ACK_FILTER;
} else if (strcmp(*argv, "ack-filter-aggressive") == 0) {
ack_filter = CAKE_ACK_AGGRESSIVE;
} else if (strcmp(*argv, "memlimit") == 0) {
NEXT_ARG();
if (get_size(&memlimit, *argv)) {
fprintf(stderr,
"Illegal value for \"memlimit\": \"%s\"\n", *argv);
return -1;
}
} else if (strcmp(*argv, "fwmark") == 0) {
unsigned int fwm;
NEXT_ARG();
if (get_u32(&fwm, *argv, 0)) {
fprintf(stderr,
"Illegal value for \"fwmark\": \"%s\"\n", *argv);
return -1;
}
fwmark = fwm;
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
argc--; argv++;
}
tail = NLMSG_TAIL(n);
addattr_l(n, 1024, TCA_OPTIONS, NULL, 0);
if (bandwidth || unlimited)
addattr_l(n, 1024, TCA_CAKE_BASE_RATE64, &bandwidth,
sizeof(bandwidth));
if (diffserv)
addattr_l(n, 1024, TCA_CAKE_DIFFSERV_MODE, &diffserv,
sizeof(diffserv));
if (atm != -1)
addattr_l(n, 1024, TCA_CAKE_ATM, &atm, sizeof(atm));
if (flowmode != -1)
addattr_l(n, 1024, TCA_CAKE_FLOW_MODE, &flowmode,
sizeof(flowmode));
if (overhead_set)
addattr_l(n, 1024, TCA_CAKE_OVERHEAD, &overhead,
sizeof(overhead));
if (overhead_override) {
unsigned int zero = 0;
addattr_l(n, 1024, TCA_CAKE_RAW, &zero, sizeof(zero));
}
if (mpu > 0)
addattr_l(n, 1024, TCA_CAKE_MPU, &mpu, sizeof(mpu));
if (interval)
addattr_l(n, 1024, TCA_CAKE_RTT, &interval, sizeof(interval));
if (target)
addattr_l(n, 1024, TCA_CAKE_TARGET, &target, sizeof(target));
if (autorate != -1)
addattr_l(n, 1024, TCA_CAKE_AUTORATE, &autorate,
sizeof(autorate));
if (memlimit)
addattr_l(n, 1024, TCA_CAKE_MEMORY, &memlimit,
sizeof(memlimit));
if (fwmark != -1)
addattr_l(n, 1024, TCA_CAKE_FWMARK, &fwmark,
sizeof(fwmark));
if (nat != -1)
addattr_l(n, 1024, TCA_CAKE_NAT, &nat, sizeof(nat));
if (wash != -1)
addattr_l(n, 1024, TCA_CAKE_WASH, &wash, sizeof(wash));
if (split_gso != -1)
addattr_l(n, 1024, TCA_CAKE_SPLIT_GSO, &split_gso,
sizeof(split_gso));
if (ingress != -1)
addattr_l(n, 1024, TCA_CAKE_INGRESS, &ingress, sizeof(ingress));
if (ack_filter != -1)
addattr_l(n, 1024, TCA_CAKE_ACK_FILTER, &ack_filter,
sizeof(ack_filter));
tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail;
return 0;
}
static void cake_print_mode(unsigned int value, unsigned int max,
const char *key, const char **table)
{
if (value < max && table[value]) {
print_string(PRINT_ANY, key, "%s ", table[value]);
} else {
print_string(PRINT_JSON, key, NULL, "unknown");
print_string(PRINT_FP, NULL, "(?%s?)", key);
}
}
static int cake_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct rtattr *tb[TCA_CAKE_MAX + 1];
unsigned int interval = 0;
unsigned int memlimit = 0;
unsigned int fwmark = 0;
__u64 bandwidth = 0;
int ack_filter = 0;
int split_gso = 0;
int overhead = 0;
int autorate = 0;
int ingress = 0;
int wash = 0;
int raw = 0;
int mpu = 0;
int atm = 0;
int nat = 0;
SPRINT_BUF(b1);
SPRINT_BUF(b2);
if (opt == NULL)
return 0;
parse_rtattr_nested(tb, TCA_CAKE_MAX, opt);
if (tb[TCA_CAKE_BASE_RATE64] &&
RTA_PAYLOAD(tb[TCA_CAKE_BASE_RATE64]) >= sizeof(bandwidth)) {
bandwidth = rta_getattr_u64(tb[TCA_CAKE_BASE_RATE64]);
if (bandwidth) {
print_uint(PRINT_JSON, "bandwidth", NULL, bandwidth);
print_string(PRINT_FP, NULL, "bandwidth %s ",
sprint_rate(bandwidth, b1));
} else
print_string(PRINT_ANY, "bandwidth", "bandwidth %s ",
"unlimited");
}
if (tb[TCA_CAKE_AUTORATE] &&
RTA_PAYLOAD(tb[TCA_CAKE_AUTORATE]) >= sizeof(__u32)) {
autorate = rta_getattr_u32(tb[TCA_CAKE_AUTORATE]);
if (autorate == 1)
print_string(PRINT_ANY, "autorate", "%s ",
"autorate-ingress");
else if (autorate)
print_string(PRINT_ANY, "autorate", "(?autorate?) ",
"unknown");
}
if (tb[TCA_CAKE_DIFFSERV_MODE] &&
RTA_PAYLOAD(tb[TCA_CAKE_DIFFSERV_MODE]) >= sizeof(__u32)) {
cake_print_mode(rta_getattr_u32(tb[TCA_CAKE_DIFFSERV_MODE]),
CAKE_DIFFSERV_MAX, "diffserv", diffserv_names);
}
if (tb[TCA_CAKE_FLOW_MODE] &&
RTA_PAYLOAD(tb[TCA_CAKE_FLOW_MODE]) >= sizeof(__u32)) {
cake_print_mode(rta_getattr_u32(tb[TCA_CAKE_FLOW_MODE]),
CAKE_FLOW_MAX, "flowmode", flowmode_names);
}
if (tb[TCA_CAKE_NAT] &&
RTA_PAYLOAD(tb[TCA_CAKE_NAT]) >= sizeof(__u32)) {
nat = rta_getattr_u32(tb[TCA_CAKE_NAT]);
}
if (nat)
print_string(PRINT_FP, NULL, "nat ", NULL);
else
print_string(PRINT_FP, NULL, "nonat ", NULL);
print_bool(PRINT_JSON, "nat", NULL, nat);
if (tb[TCA_CAKE_WASH] &&
RTA_PAYLOAD(tb[TCA_CAKE_WASH]) >= sizeof(__u32)) {
wash = rta_getattr_u32(tb[TCA_CAKE_WASH]);
}
if (tb[TCA_CAKE_ATM] &&
RTA_PAYLOAD(tb[TCA_CAKE_ATM]) >= sizeof(__u32)) {
atm = rta_getattr_u32(tb[TCA_CAKE_ATM]);
}
if (tb[TCA_CAKE_OVERHEAD] &&
RTA_PAYLOAD(tb[TCA_CAKE_OVERHEAD]) >= sizeof(__s32)) {
overhead = *(__s32 *) RTA_DATA(tb[TCA_CAKE_OVERHEAD]);
}
if (tb[TCA_CAKE_MPU] &&
RTA_PAYLOAD(tb[TCA_CAKE_MPU]) >= sizeof(__u32)) {
mpu = rta_getattr_u32(tb[TCA_CAKE_MPU]);
}
if (tb[TCA_CAKE_INGRESS] &&
RTA_PAYLOAD(tb[TCA_CAKE_INGRESS]) >= sizeof(__u32)) {
ingress = rta_getattr_u32(tb[TCA_CAKE_INGRESS]);
}
if (tb[TCA_CAKE_ACK_FILTER] &&
RTA_PAYLOAD(tb[TCA_CAKE_ACK_FILTER]) >= sizeof(__u32)) {
ack_filter = rta_getattr_u32(tb[TCA_CAKE_ACK_FILTER]);
}
if (tb[TCA_CAKE_SPLIT_GSO] &&
RTA_PAYLOAD(tb[TCA_CAKE_SPLIT_GSO]) >= sizeof(__u32)) {
split_gso = rta_getattr_u32(tb[TCA_CAKE_SPLIT_GSO]);
}
if (tb[TCA_CAKE_RAW]) {
raw = 1;
}
if (tb[TCA_CAKE_RTT] &&
RTA_PAYLOAD(tb[TCA_CAKE_RTT]) >= sizeof(__u32)) {
interval = rta_getattr_u32(tb[TCA_CAKE_RTT]);
}
if (tb[TCA_CAKE_FWMARK] &&
RTA_PAYLOAD(tb[TCA_CAKE_FWMARK]) >= sizeof(__u32)) {
fwmark = rta_getattr_u32(tb[TCA_CAKE_FWMARK]);
}
if (wash)
print_string(PRINT_FP, NULL, "wash ", NULL);
else
print_string(PRINT_FP, NULL, "nowash ", NULL);
print_bool(PRINT_JSON, "wash", NULL, wash);
if (ingress)
print_string(PRINT_FP, NULL, "ingress ", NULL);
print_bool(PRINT_JSON, "ingress", NULL, ingress);
if (ack_filter == CAKE_ACK_AGGRESSIVE)
print_string(PRINT_ANY, "ack-filter", "ack-filter-%s ",
"aggressive");
else if (ack_filter == CAKE_ACK_FILTER)
print_string(PRINT_ANY, "ack-filter", "ack-filter ", "enabled");
else
print_string(PRINT_ANY, "ack-filter", "no-ack-filter ", "disabled");
if (split_gso)
print_string(PRINT_FP, NULL, "split-gso ", NULL);
else
print_string(PRINT_FP, NULL, "no-split-gso ", NULL);
print_bool(PRINT_JSON, "split_gso", NULL, split_gso);
if (interval)
print_string(PRINT_FP, NULL, "rtt %s ",
sprint_time(interval, b2));
print_uint(PRINT_JSON, "rtt", NULL, interval);
if (raw)
print_string(PRINT_FP, NULL, "raw ", NULL);
print_bool(PRINT_JSON, "raw", NULL, raw);
if (atm == CAKE_ATM_ATM)
print_string(PRINT_ANY, "atm", "%s ", "atm");
else if (atm == CAKE_ATM_PTM)
print_string(PRINT_ANY, "atm", "%s ", "ptm");
else if (!raw)
print_string(PRINT_ANY, "atm", "%s ", "noatm");
print_int(PRINT_ANY, "overhead", "overhead %d ", overhead);
if (mpu)
print_uint(PRINT_ANY, "mpu", "mpu %u ", mpu);
if (memlimit) {
print_uint(PRINT_JSON, "memlimit", NULL, memlimit);
print_string(PRINT_FP, NULL, "memlimit %s",
sprint_size(memlimit, b1));
}
if (fwmark)
print_uint(PRINT_FP, NULL, "fwmark 0x%x ", fwmark);
print_0xhex(PRINT_JSON, "fwmark", NULL, fwmark);
return 0;
}
static void cake_print_json_tin(struct rtattr **tstat)
{
#define PRINT_TSTAT_JSON(type, name, attr) if (tstat[TCA_CAKE_TIN_STATS_ ## attr]) \
print_u64(PRINT_JSON, name, NULL, \
rta_getattr_ ## type((struct rtattr *) \
tstat[TCA_CAKE_TIN_STATS_ ## attr]))
open_json_object(NULL);
PRINT_TSTAT_JSON(u64, "threshold_rate", THRESHOLD_RATE64);
PRINT_TSTAT_JSON(u64, "sent_bytes", SENT_BYTES64);
PRINT_TSTAT_JSON(u32, "backlog_bytes", BACKLOG_BYTES);
PRINT_TSTAT_JSON(u32, "target_us", TARGET_US);
PRINT_TSTAT_JSON(u32, "interval_us", INTERVAL_US);
PRINT_TSTAT_JSON(u32, "peak_delay_us", PEAK_DELAY_US);
PRINT_TSTAT_JSON(u32, "avg_delay_us", AVG_DELAY_US);
PRINT_TSTAT_JSON(u32, "base_delay_us", BASE_DELAY_US);
PRINT_TSTAT_JSON(u32, "sent_packets", SENT_PACKETS);
PRINT_TSTAT_JSON(u32, "way_indirect_hits", WAY_INDIRECT_HITS);
PRINT_TSTAT_JSON(u32, "way_misses", WAY_MISSES);
PRINT_TSTAT_JSON(u32, "way_collisions", WAY_COLLISIONS);
PRINT_TSTAT_JSON(u32, "drops", DROPPED_PACKETS);
PRINT_TSTAT_JSON(u32, "ecn_mark", ECN_MARKED_PACKETS);
PRINT_TSTAT_JSON(u32, "ack_drops", ACKS_DROPPED_PACKETS);
PRINT_TSTAT_JSON(u32, "sparse_flows", SPARSE_FLOWS);
PRINT_TSTAT_JSON(u32, "bulk_flows", BULK_FLOWS);
PRINT_TSTAT_JSON(u32, "unresponsive_flows", UNRESPONSIVE_FLOWS);
PRINT_TSTAT_JSON(u32, "max_pkt_len", MAX_SKBLEN);
PRINT_TSTAT_JSON(u32, "flow_quantum", FLOW_QUANTUM);
close_json_object();
#undef PRINT_TSTAT_JSON
}
static int cake_print_xstats(struct qdisc_util *qu, FILE *f,
struct rtattr *xstats)
{
struct rtattr *st[TCA_CAKE_STATS_MAX + 1];
SPRINT_BUF(b1);
int i;
if (xstats == NULL)
return 0;
#define GET_STAT_U32(attr) rta_getattr_u32(st[TCA_CAKE_STATS_ ## attr])
#define GET_STAT_S32(attr) (*(__s32 *)RTA_DATA(st[TCA_CAKE_STATS_ ## attr]))
#define GET_STAT_U64(attr) rta_getattr_u64(st[TCA_CAKE_STATS_ ## attr])
parse_rtattr_nested(st, TCA_CAKE_STATS_MAX, xstats);
if (st[TCA_CAKE_STATS_MEMORY_USED] &&
st[TCA_CAKE_STATS_MEMORY_LIMIT]) {
print_string(PRINT_FP, NULL, " memory used: %s",
sprint_size(GET_STAT_U32(MEMORY_USED), b1));
print_string(PRINT_FP, NULL, " of %s\n",
sprint_size(GET_STAT_U32(MEMORY_LIMIT), b1));
print_uint(PRINT_JSON, "memory_used", NULL,
GET_STAT_U32(MEMORY_USED));
print_uint(PRINT_JSON, "memory_limit", NULL,
GET_STAT_U32(MEMORY_LIMIT));
}
if (st[TCA_CAKE_STATS_CAPACITY_ESTIMATE64]) {
print_string(PRINT_FP, NULL, " capacity estimate: %s\n",
sprint_rate(GET_STAT_U64(CAPACITY_ESTIMATE64), b1));
print_uint(PRINT_JSON, "capacity_estimate", NULL,
GET_STAT_U64(CAPACITY_ESTIMATE64));
}
if (st[TCA_CAKE_STATS_MIN_NETLEN] &&
st[TCA_CAKE_STATS_MAX_NETLEN]) {
print_uint(PRINT_ANY, "min_network_size",
" min/max network layer size: %12u",
GET_STAT_U32(MIN_NETLEN));
print_uint(PRINT_ANY, "max_network_size",
" /%8u\n", GET_STAT_U32(MAX_NETLEN));
}
if (st[TCA_CAKE_STATS_MIN_ADJLEN] &&
st[TCA_CAKE_STATS_MAX_ADJLEN]) {
print_uint(PRINT_ANY, "min_adj_size",
" min/max overhead-adjusted size: %8u",
GET_STAT_U32(MIN_ADJLEN));
print_uint(PRINT_ANY, "max_adj_size",
" /%8u\n", GET_STAT_U32(MAX_ADJLEN));
}
if (st[TCA_CAKE_STATS_AVG_NETOFF])
print_uint(PRINT_ANY, "avg_hdr_offset",
" average network hdr offset: %12u\n\n",
GET_STAT_U32(AVG_NETOFF));
/* class stats */
if (st[TCA_CAKE_STATS_DEFICIT])
print_int(PRINT_ANY, "deficit", " deficit %u",
GET_STAT_S32(DEFICIT));
if (st[TCA_CAKE_STATS_COBALT_COUNT])
print_uint(PRINT_ANY, "count", " count %u",
GET_STAT_U32(COBALT_COUNT));
if (st[TCA_CAKE_STATS_DROPPING] && GET_STAT_U32(DROPPING)) {
print_bool(PRINT_ANY, "dropping", " dropping", true);
if (st[TCA_CAKE_STATS_DROP_NEXT_US]) {
int drop_next = GET_STAT_S32(DROP_NEXT_US);
if (drop_next < 0) {
print_string(PRINT_FP, NULL, " drop_next -%s",
sprint_time(drop_next, b1));
} else {
print_uint(PRINT_JSON, "drop_next", NULL,
drop_next);
print_string(PRINT_FP, NULL, " drop_next %s",
sprint_time(drop_next, b1));
}
}
}
if (st[TCA_CAKE_STATS_P_DROP]) {
print_uint(PRINT_ANY, "blue_prob", " blue_prob %u",
GET_STAT_U32(P_DROP));
if (st[TCA_CAKE_STATS_BLUE_TIMER_US]) {
int blue_timer = GET_STAT_S32(BLUE_TIMER_US);
if (blue_timer < 0) {
print_string(PRINT_FP, NULL, " blue_timer -%s",
sprint_time(blue_timer, b1));
} else {
print_uint(PRINT_JSON, "blue_timer", NULL,
blue_timer);
print_string(PRINT_FP, NULL, " blue_timer %s",
sprint_time(blue_timer, b1));
}
}
}
#undef GET_STAT_U32
#undef GET_STAT_S32
#undef GET_STAT_U64
if (st[TCA_CAKE_STATS_TIN_STATS]) {
struct rtattr *tstat[TC_CAKE_MAX_TINS][TCA_CAKE_TIN_STATS_MAX + 1];
struct rtattr *tins[TC_CAKE_MAX_TINS + 1];
int num_tins = 0;
parse_rtattr_nested(tins, TC_CAKE_MAX_TINS,
st[TCA_CAKE_STATS_TIN_STATS]);
for (i = 1; i <= TC_CAKE_MAX_TINS && tins[i]; i++) {
parse_rtattr_nested(tstat[i-1], TCA_CAKE_TIN_STATS_MAX,
tins[i]);
num_tins++;
}
if (!num_tins)
return 0;
if (is_json_context()) {
open_json_array(PRINT_JSON, "tins");
for (i = 0; i < num_tins; i++)
cake_print_json_tin(tstat[i]);
close_json_array(PRINT_JSON, NULL);
return 0;
}
switch (num_tins) {
case 3:
fprintf(f, " Bulk Best Effort Voice\n");
break;
case 4:
fprintf(f, " Bulk Best Effort Video Voice\n");
break;
default:
fprintf(f, " ");
for (i = 0; i < num_tins; i++)
fprintf(f, " Tin %u", i);
fprintf(f, "\n");
};
#define GET_TSTAT(i, attr) (tstat[i][TCA_CAKE_TIN_STATS_ ## attr])
#define PRINT_TSTAT(name, attr, fmts, val) do { \
if (GET_TSTAT(0, attr)) { \
fprintf(f, name); \
for (i = 0; i < num_tins; i++) \
fprintf(f, " %12" fmts, val); \
fprintf(f, "\n"); \
} \
} while (0)
#define SPRINT_TSTAT(pfunc, type, name, attr) PRINT_TSTAT( \
name, attr, "s", sprint_ ## pfunc( \
rta_getattr_ ## type(GET_TSTAT(i, attr)), b1))
#define PRINT_TSTAT_U32(name, attr) PRINT_TSTAT( \
name, attr, "u", rta_getattr_u32(GET_TSTAT(i, attr)))
#define PRINT_TSTAT_U64(name, attr) PRINT_TSTAT( \
name, attr, "llu", rta_getattr_u64(GET_TSTAT(i, attr)))
SPRINT_TSTAT(rate, u64, " thresh ", THRESHOLD_RATE64);
SPRINT_TSTAT(time, u32, " target ", TARGET_US);
SPRINT_TSTAT(time, u32, " interval", INTERVAL_US);
SPRINT_TSTAT(time, u32, " pk_delay", PEAK_DELAY_US);
SPRINT_TSTAT(time, u32, " av_delay", AVG_DELAY_US);
SPRINT_TSTAT(time, u32, " sp_delay", BASE_DELAY_US);
SPRINT_TSTAT(size, u32, " backlog ", BACKLOG_BYTES);
PRINT_TSTAT_U32(" pkts ", SENT_PACKETS);
PRINT_TSTAT_U64(" bytes ", SENT_BYTES64);
PRINT_TSTAT_U32(" way_inds", WAY_INDIRECT_HITS);
PRINT_TSTAT_U32(" way_miss", WAY_MISSES);
PRINT_TSTAT_U32(" way_cols", WAY_COLLISIONS);
PRINT_TSTAT_U32(" drops ", DROPPED_PACKETS);
PRINT_TSTAT_U32(" marks ", ECN_MARKED_PACKETS);
PRINT_TSTAT_U32(" ack_drop", ACKS_DROPPED_PACKETS);
PRINT_TSTAT_U32(" sp_flows", SPARSE_FLOWS);
PRINT_TSTAT_U32(" bk_flows", BULK_FLOWS);
PRINT_TSTAT_U32(" un_flows", UNRESPONSIVE_FLOWS);
PRINT_TSTAT_U32(" max_len ", MAX_SKBLEN);
PRINT_TSTAT_U32(" quantum ", FLOW_QUANTUM);
#undef GET_STAT
#undef PRINT_TSTAT
#undef SPRINT_TSTAT
#undef PRINT_TSTAT_U32
#undef PRINT_TSTAT_U64
}
return 0;
}
struct qdisc_util cake_qdisc_util = {
.id = "cake",
.parse_qopt = cake_parse_opt,
.print_qopt = cake_print_opt,
.print_xstats = cake_print_xstats,
};