blob: 96086fb8f23aaafa9d1db3ee5a3058741a328ee6 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2019 Amlogic, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of_device.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include <linux/of_platform.h>
#include <crypto/skcipher.h>
#include "aml-crypto-dma.h"
/* AES flags */
#define AES_FLAGS_MODE_MASK 0x07
#define AES_FLAGS_ENCRYPT BIT(0)
#define AES_FLAGS_CBC BIT(1)
#define AES_FLAGS_CTR BIT(2)
#define AES_FLAGS_INIT BIT(8)
#define AES_FLAGS_DMA BIT(9)
#define AES_FLAGS_FAST BIT(10)
#define AES_FLAGS_BUSY BIT(11)
#define AES_FLAGS_ERROR BIT(12)
#define AML_AES_QUEUE_LENGTH 50
#define AML_AES_DMA_THRESHOLD 16
#define SUPPORT_FAST_DMA 0
#define DEFAULT_AUTOSUSPEND_DELAY 1000
struct aml_aes_dev;
struct aml_aes_ctx {
struct aml_aes_dev *dd;
int keylen;
u32 key[AES_KEYSIZE_256 / sizeof(u32)];
u16 block_size;
struct crypto_skcipher *fallback;
int kte;
};
struct aml_aes_reqctx {
unsigned long mode;
};
struct aml_aes_dev {
struct list_head list;
struct aml_aes_ctx *ctx;
struct device *dev;
int irq;
unsigned long flags;
int err;
struct aml_dma_dev *dma;
u32 thread;
u32 status;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
struct ablkcipher_request *req;
size_t total;
size_t fast_total;
struct scatterlist *in_sg;
size_t in_offset;
struct scatterlist *out_sg;
size_t out_offset;
size_t buflen;
size_t dma_size;
void *buf_in;
dma_addr_t dma_addr_in;
void *buf_out;
dma_addr_t dma_addr_out;
void *descriptor;
dma_addr_t dma_descript_tab;
u32 fast_nents;
u8 iv_swap;
};
struct aml_aes_drv {
struct list_head dev_list;
spinlock_t lock; /* spinlock for device list */
};
struct aml_aes_info {
struct crypto_alg *algs;
u32 num_algs;
};
static struct aml_aes_drv aml_aes = {
.dev_list = LIST_HEAD_INIT(aml_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(aml_aes.lock),
};
static int aml_aes_crypt_dma_stop(struct aml_aes_dev *dd);
static int set_aes_kl_key_iv(struct aml_aes_dev *dd, u32 *key,
u32 keylen, u32 *iv, u8 swap)
{
struct device *dev = dd->dev;
struct dma_dsc *dsc = dd->descriptor;
u32 *key_iv = kzalloc(DMA_KEY_IV_BUF_SIZE, GFP_ATOMIC);
s32 len = keylen;
dma_addr_t dma_addr_key = 0;
if (!key_iv) {
dev_err(dev, "error allocating key_iv buffer\n");
return -EINVAL;
}
if (iv) {
u32 *piv = key_iv; // + 8;
if (swap) {
*(piv + 3) = swap_ulong32(*iv);
*(piv + 2) = swap_ulong32(*(iv + 1));
*(piv + 1) = swap_ulong32(*(iv + 2));
*(piv + 0) = swap_ulong32(*(iv + 3));
} else {
memcpy(piv, iv, 16);
}
}
len = DMA_KEY_IV_BUF_SIZE; /* full key storage */
dma_addr_key = dma_map_single(dd->dev, key_iv,
DMA_KEY_IV_BUF_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dma_addr_key)) {
dev_err(dev, "error mapping dma_addr_key\n");
kfree(key_iv);
return -EINVAL;
}
dsc[0].src_addr = (u32)(0xffffff00 | dd->ctx->kte);
dsc[0].tgt_addr = 0;
dsc[0].dsc_cfg.d32 = 0;
dsc[0].dsc_cfg.b.length = keylen;
dsc[0].dsc_cfg.b.mode = MODE_KEY;
dsc[0].dsc_cfg.b.eoc = 0;
dsc[0].dsc_cfg.b.owner = 1;
if (iv) {
dsc[1].src_addr = (u32)dma_addr_key;
dsc[1].tgt_addr = 32;
dsc[1].dsc_cfg.d32 = 0;
dsc[1].dsc_cfg.b.length = 16;
dsc[1].dsc_cfg.b.mode = MODE_KEY;
dsc[1].dsc_cfg.b.eoc = 1;
dsc[1].dsc_cfg.b.owner = 1;
} else {
dsc[0].dsc_cfg.b.eoc = 1;
}
aml_write_crypto_reg(dd->thread,
(uintptr_t)dd->dma_descript_tab | 2);
aml_dma_debug(dsc, 1, __func__, dd->thread, dd->status);
while (aml_read_crypto_reg(dd->status) == 0)
;
aml_write_crypto_reg(dd->status, 0xf);
dma_unmap_single(dd->dev, dma_addr_key,
DMA_KEY_IV_BUF_SIZE, DMA_TO_DEVICE);
kfree(key_iv);
return 0;
}
static int set_aes_key_iv(struct aml_aes_dev *dd, u32 *key,
u32 keylen, u32 *iv, u8 swap)
{
struct device *dev = dd->dev;
struct dma_dsc *dsc = dd->descriptor;
u32 *key_iv = kzalloc(DMA_KEY_IV_BUF_SIZE, GFP_ATOMIC);
s32 len = keylen;
dma_addr_t dma_addr_key = 0;
u8 status = 0;
int err = 0;
if (!key_iv) {
dev_err(dev, "error allocating key_iv buffer\n");
return -EINVAL;
}
if (key)
memcpy(key_iv, key, keylen);
if (iv) {
u32 *piv = key_iv + 8;
if (swap) {
*(piv + 3) = swap_ulong32(*iv);
*(piv + 2) = swap_ulong32(*(iv + 1));
*(piv + 1) = swap_ulong32(*(iv + 2));
*(piv + 0) = swap_ulong32(*(iv + 3));
} else {
memcpy(piv, iv, 16);
}
}
len = DMA_KEY_IV_BUF_SIZE; /* full key storage */
dma_addr_key = dma_map_single(dd->dev, key_iv,
DMA_KEY_IV_BUF_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dma_addr_key)) {
dev_err(dev, "error mapping dma_addr_key\n");
kfree(key_iv);
return -EINVAL;
}
dsc[0].src_addr = (u32)dma_addr_key;
dsc[0].tgt_addr = 0;
dsc[0].dsc_cfg.d32 = 0;
dsc[0].dsc_cfg.b.length = len;
dsc[0].dsc_cfg.b.mode = MODE_KEY;
dsc[0].dsc_cfg.b.eoc = 1;
dsc[0].dsc_cfg.b.owner = 1;
aml_dma_debug(dsc, 1, __func__, dd->thread, dd->status);
#if DMA_IRQ_MODE
aml_write_crypto_reg(dd->thread,
(uintptr_t)dd->dma_descript_tab | 2);
while (aml_read_crypto_reg(dd->status) == 0)
;
status = aml_read_crypto_reg(dd->status);
if (status & DMA_STATUS_KEY_ERROR) {
dev_err(dev, "hw crypto failed.\n");
err = -EINVAL;
}
aml_write_crypto_reg(dd->status, 0xf);
#else
status = aml_dma_do_hw_crypto(dd->dma, dsc, 1, dd->dma_descript_tab,
1, DMA_FLAG_AES_IN_USE);
if (status & DMA_STATUS_KEY_ERROR) {
dev_err(dev, "hw crypto failed.\n");
err = -EINVAL;
}
#endif
dma_unmap_single(dd->dev, dma_addr_key,
DMA_KEY_IV_BUF_SIZE, DMA_TO_DEVICE);
kfree(key_iv);
return err;
}
static size_t aml_aes_sg_copy(struct scatterlist **sg, size_t *offset,
void *buf, size_t buflen, size_t total, int out)
{
size_t count, off = 0;
while (buflen && total) {
count = min((*sg)->length - *offset, total);
count = min(count, buflen);
if (!count)
return off;
scatterwalk_map_and_copy(buf + off, *sg, *offset, count, out);
off += count;
buflen -= count;
*offset += count;
total -= count;
if (*offset == (*sg)->length) {
*sg = sg_next(*sg);
if (*sg)
*offset = 0;
else
total = 0;
}
}
return off;
}
#if SUPPORT_FAST_DMA
static size_t aml_aes_sg_dma(struct aml_aes_dev *dd, struct dma_dsc *dsc,
u32 *nents, size_t total)
{
struct device *dev = dd->dev;
size_t count = 0;
size_t process = 0;
size_t count_total = 0;
size_t count_sg = 0;
u32 i = 0;
int err = 0;
struct scatterlist *in_sg = dd->in_sg;
struct scatterlist *out_sg = dd->out_sg;
dma_addr_t addr_in, addr_out;
while (total && in_sg && out_sg &&
(in_sg->length == out_sg->length) &&
IS_ALIGNED(in_sg->length, AES_BLOCK_SIZE) &&
*nents < MAX_NUM_TABLES) {
process = min_t(unsigned int, total, in_sg->length);
count += process;
*nents += 1;
if (process != in_sg->length) {
dd->out_offset = in_sg->length;
dd->in_offset = in_sg->length;
}
total -= process;
in_sg = sg_next(in_sg);
out_sg = sg_next(out_sg);
}
if (dd->in_sg != dd->out_sg) {
err = dma_map_sg(dd->dev, dd->in_sg, *nents, DMA_TO_DEVICE);
if (!err) {
dev_err(dev, "dma_map_sg() error\n");
return 0;
}
err = dma_map_sg(dd->dev, dd->out_sg, *nents,
DMA_FROM_DEVICE);
if (!err) {
dev_err(dev, "dma_map_sg() error\n");
dma_unmap_sg(dd->dev, dd->in_sg, *nents,
DMA_TO_DEVICE);
return 0;
}
} else {
err = dma_map_sg(dd->dev, dd->in_sg, *nents,
DMA_BIDIRECTIONAL);
if (!err) {
dev_err(dev, "dma_map_sg() error\n");
return 0;
}
dma_sync_sg_for_device(dd->dev, dd->in_sg,
*nents, DMA_TO_DEVICE);
}
in_sg = dd->in_sg;
out_sg = dd->out_sg;
count_total = count;
for (i = 0; i < *nents; i++) {
count_sg = count_total > sg_dma_len(in_sg) ?
sg_dma_len(in_sg) : count_total;
addr_in = sg_dma_address(in_sg);
addr_out = sg_dma_address(out_sg);
dsc[i].src_addr = (uintptr_t)addr_in;
dsc[i].tgt_addr = (uintptr_t)addr_out;
dsc[i].dsc_cfg.d32 = 0;
dsc[i].dsc_cfg.b.length = count_sg;
in_sg = sg_next(in_sg);
out_sg = sg_next(out_sg);
count_total -= count_sg;
}
return count;
}
#endif
static struct aml_aes_dev *aml_aes_find_dev(struct aml_aes_ctx *ctx)
{
struct aml_aes_dev *aes_dd = NULL;
struct aml_aes_dev *tmp;
spin_lock_bh(&aml_aes.lock);
if (!ctx->dd) {
list_for_each_entry(tmp, &aml_aes.dev_list, list) {
aes_dd = tmp;
break;
}
ctx->dd = aes_dd;
} else {
aes_dd = ctx->dd;
}
spin_unlock_bh(&aml_aes.lock);
return aes_dd;
}
static int aml_aes_hw_init(struct aml_aes_dev *dd)
{
if (!(dd->flags & AES_FLAGS_INIT)) {
dd->flags |= AES_FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static void aml_aes_finish_req(struct aml_aes_dev *dd, s32 err)
{
#if DMA_IRQ_MODE
struct ablkcipher_request *req = dd->req;
#endif
unsigned long flags;
dd->flags &= ~AES_FLAGS_BUSY;
spin_lock_irqsave(&dd->dma->dma_lock, flags);
dd->dma->dma_busy &= ~DMA_FLAG_MAY_OCCUPY;
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
#if DMA_IRQ_MODE
req->base.complete(&req->base, err);
#endif
}
static int aml_aes_crypt_dma(struct aml_aes_dev *dd, struct dma_dsc *dsc,
u32 nents)
{
u32 op_mode = OP_MODE_ECB;
u32 i = 0;
#if DMA_IRQ_MODE
unsigned long flags;
#else
int err = 0;
u8 status = 0;
#endif
if (dd->flags & AES_FLAGS_CBC)
op_mode = OP_MODE_CBC;
else if (dd->flags & AES_FLAGS_CTR)
op_mode = OP_MODE_CTR;
for (i = 0; i < nents; i++) {
dsc[i].dsc_cfg.b.enc_sha_only = dd->flags & AES_FLAGS_ENCRYPT;
dsc[i].dsc_cfg.b.mode =
((dd->ctx->keylen == AES_KEYSIZE_128) ? MODE_AES128 :
((dd->ctx->keylen == AES_KEYSIZE_192) ?
MODE_AES192 : MODE_AES256));
dsc[i].dsc_cfg.b.op_mode = op_mode;
dsc[i].dsc_cfg.b.eoc = (i == (nents - 1));
dsc[i].dsc_cfg.b.owner = 1;
}
aml_dma_debug(dsc, nents, __func__, dd->thread, dd->status);
/* Start DMA transfer */
#if DMA_IRQ_MODE
spin_lock_irqsave(&dd->dma->dma_lock, flags);
dd->dma->dma_busy |= DMA_FLAG_AES_IN_USE;
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
dd->flags |= AES_FLAGS_DMA;
aml_write_crypto_reg(dd->thread, dd->dma_descript_tab | 2);
return -EINPROGRESS;
#else
dd->flags |= AES_FLAGS_DMA;
status = aml_dma_do_hw_crypto(dd->dma, dsc, nents, dd->dma_descript_tab,
1, DMA_FLAG_AES_IN_USE);
if (status & DMA_STATUS_KEY_ERROR)
dd->flags |= AES_FLAGS_ERROR;
err = aml_aes_crypt_dma_stop(dd);
if (!err) {
err = dd->flags & AES_FLAGS_ERROR;
dd->flags = (dd->flags & ~AES_FLAGS_ERROR);
}
return err;
#endif
}
static int aml_aes_crypt_dma_start(struct aml_aes_dev *dd)
{
int err = 0, fast = 0;
int in, out;
size_t count = 0;
dma_addr_t addr_in, addr_out;
struct dma_dsc *dsc = dd->descriptor;
u32 nents;
/* fast dma */
if (!dd->in_offset && !dd->out_offset) {
/* check for alignment */
in = IS_ALIGNED(dd->in_sg->length, dd->ctx->block_size);
out = IS_ALIGNED(dd->out_sg->length, dd->ctx->block_size);
fast = in && out;
if (dd->in_sg->length != dd->out_sg->length ||
dd->total < dd->ctx->block_size)
fast = 0;
dd->fast_nents = 0;
}
#if SUPPORT_FAST_DMA
// fast = 0;
if (fast) {
count = aml_aes_sg_dma(dd, dsc, &dd->fast_nents, dd->total);
dd->flags |= AES_FLAGS_FAST;
nents = dd->fast_nents;
dd->fast_total = count;
dbgp(1, "use fast dma: n:%u, t:%zd\n",
dd->fast_nents, dd->fast_total);
dd->total -= count;
err = aml_aes_crypt_dma(dd, dsc, nents);
return err;
}
#endif
/* slow dma */
/* use cache buffers */
count = aml_aes_sg_copy(&dd->in_sg, &dd->in_offset,
dd->buf_in, dd->buflen, dd->total, 0);
addr_in = dd->dma_addr_in;
addr_out = dd->dma_addr_out;
dd->dma_size = count;
dma_sync_single_for_device(dd->dev, addr_in,
((dd->dma_size + AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE) * AES_BLOCK_SIZE,
DMA_TO_DEVICE);
dsc->src_addr = (u32)addr_in;
dsc->tgt_addr = (u32)addr_out;
dsc->dsc_cfg.d32 = 0;
/* We align data to AES_BLOCK_SIZE for old aml-dma devices */
dsc->dsc_cfg.b.length = ((count + AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
nents = 1;
dd->flags &= ~AES_FLAGS_FAST;
dbgp(1, "use slow dma: cnt:%zd, len:%d\n",
count, dsc->dsc_cfg.b.length);
dd->total -= count;
err = aml_aes_crypt_dma(dd, dsc, nents);
return err;
}
static int aml_aes_write_ctrl(struct aml_aes_dev *dd)
{
int err = 0;
u32 *iv = NULL;
u8 iv_swap = 0;
err = aml_aes_hw_init(dd);
if (err)
return err;
if (dd->flags & AES_FLAGS_CBC)
iv = dd->req->info;
else if (dd->flags & AES_FLAGS_CTR) {
iv = dd->req->info;
iv_swap = dd->iv_swap;
}
if (dd->ctx->kte >= 0)
err = set_aes_kl_key_iv(dd, dd->ctx->key, dd->ctx->keylen,
iv, iv_swap);
else
err = set_aes_key_iv(dd, dd->ctx->key, dd->ctx->keylen,
iv, iv_swap);
return err;
}
static int aml_aes_handle_queue(struct aml_aes_dev *dd,
struct ablkcipher_request *req)
{
struct device *dev = dd->dev;
#if DMA_IRQ_MODE
struct crypto_async_request *async_req, *backlog;
#endif
struct aml_aes_ctx *ctx;
struct aml_aes_reqctx *rctx;
s32 err, ret = 0;
#if DMA_IRQ_MODE
unsigned long flags;
spin_lock_irqsave(&dd->dma->dma_lock, flags);
if (req)
ret = ablkcipher_enqueue_request(&dd->queue, req);
if ((dd->flags & AES_FLAGS_BUSY) || dd->dma->dma_busy) {
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req) {
dd->flags |= AES_FLAGS_BUSY;
dd->dma->dma_busy |= DMA_FLAG_MAY_OCCUPY;
}
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
if (!async_req) {
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
return ret;
}
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ablkcipher_request_cast(async_req);
#endif
/* assign new request to device */
dd->req = req;
dd->total = req->nbytes;
dd->in_offset = 0;
dd->in_sg = req->src;
dd->out_offset = 0;
dd->out_sg = req->dst;
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
rctx->mode &= AES_FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~AES_FLAGS_MODE_MASK) | rctx->mode;
dd->flags = (dd->flags & ~AES_FLAGS_ERROR);
dd->ctx = ctx;
ctx->dd = dd;
err = aml_aes_write_ctrl(dd);
if (!err) {
if (dd->total % AML_AES_DMA_THRESHOLD == 0 ||
(dd->flags & AES_FLAGS_CTR)) {
do {
err = aml_aes_crypt_dma_start(dd);
} while (!err && dd->total);
} else {
dev_err(dev, "size %zd is not multiple of %d",
dd->total, AML_AES_DMA_THRESHOLD);
err = -EINVAL;
}
}
if (err != -EINPROGRESS) {
/* aes_task will not finish it, so do it here */
aml_aes_finish_req(dd, err);
#if DMA_IRQ_MODE
tasklet_schedule(&dd->queue_task);
#endif
}
return ret;
}
int aml_aes_process(struct ablkcipher_request *req)
{
struct aml_aes_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct aml_aes_dev *dd = tctx->dd;
return aml_aes_handle_queue(dd, req);
}
/* Increment 128-bit counter */
static void aml_aes_ctr_update_iv(unsigned char *val, unsigned int value)
{
int i;
while (value > 0) {
for (i = 15; i >= 0; i--) {
val[i] = (val[i] + 1) & 0xff;
if (val[i])
break;
}
value--;
}
}
static int aml_aes_crypt_dma_stop(struct aml_aes_dev *dd)
{
struct device *dev = dd->dev;
int err = -EINVAL;
size_t count;
if (dd->flags & AES_FLAGS_DMA) {
err = 0;
if (dd->flags & AES_FLAGS_FAST) {
if (dd->in_sg != dd->out_sg) {
dma_unmap_sg(dd->dev, dd->out_sg,
dd->fast_nents, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg,
dd->fast_nents, DMA_TO_DEVICE);
} else {
dma_sync_sg_for_cpu(dd->dev, dd->in_sg,
dd->fast_nents,
DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg,
dd->fast_nents, DMA_BIDIRECTIONAL);
}
if (dd->flags & AES_FLAGS_CBC)
scatterwalk_map_and_copy(dd->req->info,
dd->out_sg,
dd->fast_total - 16,
16, 0);
} else {
dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
((dd->dma_size +
AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE) *
AES_BLOCK_SIZE,
DMA_FROM_DEVICE);
/* copy data */
count = aml_aes_sg_copy(&dd->out_sg, &dd->out_offset,
dd->buf_out, dd->buflen,
dd->dma_size, 1);
if (count != dd->dma_size) {
err = -EINVAL;
dev_err(dev, "not all data converted: %zu\n",
count);
}
/* install IV for CBC */
if (dd->flags & AES_FLAGS_CBC) {
if (dd->flags & AES_FLAGS_ENCRYPT) {
memcpy(dd->req->info, dd->buf_out +
dd->dma_size - 16, 16);
} else {
memcpy(dd->req->info, dd->buf_in +
dd->dma_size - 16, 16);
}
} else if (dd->flags & AES_FLAGS_CTR) {
u32 dma_nblock =
(dd->dma_size + AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE;
aml_aes_ctr_update_iv(dd->req->info,
dma_nblock);
}
}
dd->flags &= ~AES_FLAGS_DMA;
}
return err;
}
static int aml_aes_buff_init(struct aml_aes_dev *dd)
{
struct device *dev = dd->dev;
int err = -ENOMEM;
dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buflen = PAGE_SIZE;
dd->buflen &= ~(AES_BLOCK_SIZE - 1);
if (!dd->buf_in || !dd->buf_out) {
dev_err(dev, "unable to alloc pages.\n");
goto err_alloc;
}
dd->descriptor =
dmam_alloc_coherent(dd->dev,
MAX_NUM_TABLES * sizeof(struct dma_dsc),
&dd->dma_descript_tab, GFP_KERNEL | GFP_DMA);
if (!dd->descriptor) {
dev_err(dev, "dma descriptor error\n");
err = -EINVAL;
goto err_map_in;
}
/* MAP here */
dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in,
dd->buflen, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
dev_err(dev, "dma %zd bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_in;
}
dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out,
dd->buflen, DMA_FROM_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
dev_err(dev, "dma %zd bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_out;
}
return 0;
err_map_out:
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
err_map_in:
free_page((uintptr_t)dd->buf_out);
free_page((uintptr_t)dd->buf_in);
err_alloc:
if (err)
dev_err(dev, "error: %d\n", err);
return err;
}
static void aml_aes_buff_cleanup(struct aml_aes_dev *dd)
{
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
dmam_free_coherent(dd->dev, MAX_NUM_TABLES * sizeof(struct dma_dsc),
dd->descriptor, dd->dma_descript_tab);
free_page((uintptr_t)dd->buf_out);
free_page((uintptr_t)dd->buf_in);
}
static int aml_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct aml_aes_ctx *ctx =
crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
struct aml_aes_reqctx *rctx = ablkcipher_request_ctx(req);
struct aml_aes_dev *dd;
int ret;
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) &&
!(mode & AES_FLAGS_CTR)) {
pr_err("request size is not exact amount of AES blocks\n");
return -EINVAL;
}
ctx->block_size = AES_BLOCK_SIZE;
if (ctx->fallback && ctx->keylen == AES_KEYSIZE_192) {
struct skcipher_request *subreq = NULL;
subreq = kzalloc(sizeof(*subreq) +
crypto_skcipher_reqsize(ctx->fallback),
GFP_ATOMIC);
if (!subreq)
return -ENOMEM;
skcipher_request_set_tfm(subreq, ctx->fallback);
skcipher_request_set_callback(subreq, req->base.flags, NULL,
NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->nbytes, req->info);
if (mode & AES_FLAGS_ENCRYPT)
ret = crypto_skcipher_encrypt(subreq);
else
ret = crypto_skcipher_decrypt(subreq);
skcipher_request_free(subreq);
return ret;
}
dd = aml_aes_find_dev(ctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
if (pm_runtime_suspended(dd->dev)) {
ret = pm_runtime_get_sync(dd->dev);
if (ret < 0) {
dev_err(dd->dev, "%s: pm_runtime_get_sync fails: %d\n",
__func__, ret);
return ret;
}
}
#if DMA_IRQ_MODE
return aml_aes_handle_queue(dd, req);
#else
return aml_dma_crypto_enqueue_req(dd->dma, &req->base);
#endif
}
static int aml_aes_kl_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aml_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
int ret = 0;
/* key[0:3] = kte */
ctx->kte = *(uint32_t *)&key[0];
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
pr_err("aml-aes-lite:invalid keysize: %d\n", keylen);
return -EINVAL;
}
ctx->keylen = keylen;
if (keylen == AES_KEYSIZE_192) {
crypto_skcipher_clear_flags(ctx->fallback, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_skcipher_setkey(ctx->fallback, key, keylen);
}
return ret;
}
static int aml_aes_lite_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aml_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
int ret = 0;
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
pr_err("aml-aes-lite:invalid keysize: %d\n", keylen);
return -EINVAL;
}
ctx->kte = -1;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
if (keylen == AES_KEYSIZE_192) {
crypto_skcipher_clear_flags(ctx->fallback, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_skcipher_setkey(ctx->fallback, key, keylen);
}
return ret;
}
static int aml_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT);
}
static int aml_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
0);
}
static int aml_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
}
static int aml_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_CBC);
}
static int aml_aes_ctr_encrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
}
static int aml_aes_ctr_decrypt(struct ablkcipher_request *req)
{
/* XXX: use encrypt to replace for decrypt */
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
}
#ifndef CONFIG_AMLOGIC_REMOVE_OLD
static int aml_aes_cra_init(struct crypto_tfm *tfm)
{
struct aml_aes_ctx *ctx = crypto_tfm_ctx(tfm);
tfm->crt_ablkcipher.reqsize = sizeof(struct aml_aes_reqctx);
ctx->fallback = NULL;
return 0;
}
static void aml_aes_cra_exit(struct crypto_tfm *tfm)
{
}
static int aml_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aml_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
pr_err("aml-aes:invalid keysize: %d\n", keylen);
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->kte = -1;
return 0;
}
static struct crypto_alg aes_algs[] = {
{
.cra_name = "ecb(aes-aml)",
.cra_driver_name = "ecb-aes-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_cra_init,
.cra_exit = aml_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_setkey,
.encrypt = aml_aes_ecb_encrypt,
.decrypt = aml_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes-aml)",
.cra_driver_name = "cbc-aes-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_cra_init,
.cra_exit = aml_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_setkey,
.encrypt = aml_aes_cbc_encrypt,
.decrypt = aml_aes_cbc_decrypt,
}
},
{
.cra_name = "ctr(aes-aml)",
.cra_driver_name = "ctr-aes-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_cra_init,
.cra_exit = aml_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_setkey,
.encrypt = aml_aes_ctr_encrypt,
.decrypt = aml_aes_ctr_decrypt,
}
}
};
#endif
static int aml_aes_lite_cra_init(struct crypto_tfm *tfm)
{
struct aml_aes_ctx *ctx = crypto_tfm_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(tfm);
const char *driver_name = crypto_tfm_alg_driver_name(tfm);
const u32 flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
char alg_to_use[16] = {0};
tfm->crt_ablkcipher.reqsize = sizeof(struct aml_aes_reqctx);
/* Driver name with '-kl' is only for installing key by kte.
* No need to allocate fallback for it
*/
if (!strstr(driver_name, "-kl")) {
/* Allocate a fallback and abort if it failed. */
strncpy(alg_to_use, "xxx(aes)", sizeof(alg_to_use));
memcpy(alg_to_use, alg_name, 3);
ctx->fallback = crypto_alloc_skcipher(alg_to_use, 0,
flags);
if (IS_ERR(ctx->fallback)) {
pr_err("aml-aes: fallback '%s' could not be loaded.\n",
alg_name);
return PTR_ERR(ctx->fallback);
}
}
return 0;
}
static void aml_aes_lite_cra_exit(struct crypto_tfm *tfm)
{
struct aml_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->fallback)
crypto_free_skcipher(ctx->fallback);
ctx->fallback = NULL;
}
static struct crypto_alg aes_lite_algs[] = {
{
.cra_name = "ecb(aes-aml)",
.cra_driver_name = "ecb-aes-lite-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aml_aes_lite_setkey,
.encrypt = aml_aes_ecb_encrypt,
.decrypt = aml_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes-aml)",
.cra_driver_name = "cbc-aes-lite-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_lite_setkey,
.encrypt = aml_aes_cbc_encrypt,
.decrypt = aml_aes_cbc_decrypt,
}
},
{
.cra_name = "ctr(aes-aml)",
.cra_driver_name = "ctr-aes-lite-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_lite_setkey,
.encrypt = aml_aes_ctr_encrypt,
.decrypt = aml_aes_ctr_decrypt,
}
},
{
.cra_name = "ecb(aes-kl-aml)",
.cra_driver_name = "ecb-aes-kl-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aml_aes_kl_setkey,
.encrypt = aml_aes_ecb_encrypt,
.decrypt = aml_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes-kl-aml)",
.cra_driver_name = "cbc-aes-kl-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_kl_setkey,
.encrypt = aml_aes_cbc_encrypt,
.decrypt = aml_aes_cbc_decrypt,
}
},
{
.cra_name = "ctr(aes-kl-aml)",
.cra_driver_name = "ctr-aes-kl-aml",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_kl_setkey,
.encrypt = aml_aes_ctr_encrypt,
.decrypt = aml_aes_ctr_decrypt,
}
}
};
#ifndef CONFIG_AMLOGIC_REMOVE_OLD
struct aml_aes_info aml_gxl_aes = {
.algs = aes_algs,
.num_algs = ARRAY_SIZE(aes_algs),
};
#endif
struct aml_aes_info aml_aes_lite = {
.algs = aes_lite_algs,
.num_algs = ARRAY_SIZE(aes_lite_algs),
};
#ifdef CONFIG_OF
static const struct of_device_id aml_aes_dt_match[] = {
#ifndef CONFIG_AMLOGIC_REMOVE_OLD
{ .compatible = "amlogic,aes_dma",
.data = &aml_gxl_aes,
},
#endif
{ .compatible = "amlogic,aes_g12a_dma",
.data = &aml_aes_lite,
},
{},
};
#else
#define aml_aes_dt_match NULL
#endif
#if DMA_IRQ_MODE
static void aml_aes_queue_task(unsigned long data)
{
struct aml_aes_dev *dd = (struct aml_aes_dev *)data;
aml_aes_handle_queue(dd, NULL);
}
static void aml_aes_done_task(unsigned long data)
{
struct aml_aes_dev *dd = (struct aml_aes_dev *)data;
struct device *dev = dd->dev;
int err;
err = aml_aes_crypt_dma_stop(dd);
if (!err) {
err = dd->flags & AES_FLAGS_ERROR;
dd->flags = (dd->flags & ~AES_FLAGS_ERROR);
}
aml_dma_debug(dd->descriptor, dd->fast_nents ?
dd->fast_nents : 1, __func__, dd->thread, dd->status);
err = dd->err ? dd->err : err;
if (dd->total && !err) {
if (dd->flags & AES_FLAGS_FAST) {
u32 i = 0;
for (i = 0; i < dd->fast_nents; i++) {
dd->in_sg = sg_next(dd->in_sg);
dd->out_sg = sg_next(dd->out_sg);
if (!dd->in_sg || !dd->out_sg) {
dev_err(dev, "aml-aes: sg invalid\n");
err = -EINVAL;
break;
}
}
}
if (!err)
err = aml_aes_crypt_dma_start(dd);
if (err == -EINPROGRESS)
return; /* DMA started. Not fininishing. */
}
if (dd->ctx->kte < 0)
err = set_aes_key_iv(dd, NULL, 0, NULL, 0);
aml_aes_finish_req(dd, err);
aml_aes_handle_queue(dd, NULL);
}
static irqreturn_t aml_aes_irq(int irq, void *dev_id)
{
struct aml_aes_dev *aes_dd = dev_id;
struct device *dev = aes_dd->dev;
u8 status = aml_read_crypto_reg(aes_dd->status);
if (status) {
if (status == 0x1)
dev_err(dev, "irq overwrite\n");
if (aes_dd->dma->dma_busy == DMA_FLAG_MAY_OCCUPY)
return IRQ_HANDLED;
if ((aes_dd->flags & AES_FLAGS_DMA) &&
(aes_dd->dma->dma_busy & DMA_FLAG_AES_IN_USE)) {
if (status & DMA_STATUS_KEY_ERROR)
aes_dd->flags |= AES_FLAGS_ERROR;
aml_write_crypto_reg(aes_dd->status, 0xf);
aes_dd->dma->dma_busy &= ~DMA_FLAG_AES_IN_USE;
tasklet_schedule(&aes_dd->done_task);
return IRQ_HANDLED;
} else {
return IRQ_NONE;
}
}
return IRQ_NONE;
}
#endif
static void aml_aes_unregister_algs(struct aml_aes_dev *dd,
const struct aml_aes_info *aes_info)
{
int i;
for (i = 0; i < aes_info->num_algs; i++)
crypto_unregister_alg(&aes_info->algs[i]);
}
static int aml_aes_register_algs(struct aml_aes_dev *dd,
const struct aml_aes_info *aes_info)
{
int err, i, j;
for (i = 0; i < aes_info->num_algs; i++) {
err = crypto_register_alg(&aes_info->algs[i]);
if (err)
goto err_aes_algs;
}
return 0;
err_aes_algs:
for (j = 0; j < i; j++)
crypto_unregister_alg(&aes_info->algs[j]);
return err;
}
static int aml_aes_probe(struct platform_device *pdev)
{
struct aml_aes_dev *aes_dd;
struct device *dev = &pdev->dev;
const struct of_device_id *match;
int err = -EPERM;
const struct aml_aes_info *aes_info = NULL;
/* Set default iv_swap to 1 for backward compatible.
* It can be modified by sepcifying iv_swap in dts.
*/
u8 iv_swap = 1;
aes_dd = devm_kzalloc(dev, sizeof(struct aml_aes_dev), GFP_KERNEL);
if (!aes_dd) {
err = -ENOMEM;
goto aes_dd_err;
}
match = of_match_device(aml_aes_dt_match, &pdev->dev);
if (!match) {
dev_err(dev, "%s: cannot find match dt\n", __func__);
err = -EINVAL;
goto aes_dd_err;
}
of_property_read_u8(pdev->dev.of_node, "iv_swap", &iv_swap);
aes_info = match->data;
aes_dd->dev = dev;
aes_dd->dma = dev_get_drvdata(dev->parent);
aes_dd->thread = aes_dd->dma->thread;
aes_dd->status = aes_dd->dma->status;
aes_dd->irq = aes_dd->dma->irq;
aes_dd->iv_swap = iv_swap;
platform_set_drvdata(pdev, aes_dd);
INIT_LIST_HEAD(&aes_dd->list);
#if DMA_IRQ_MODE
tasklet_init(&aes_dd->done_task, aml_aes_done_task,
(unsigned long)aes_dd);
tasklet_init(&aes_dd->queue_task, aml_aes_queue_task,
(unsigned long)aes_dd);
crypto_init_queue(&aes_dd->queue, AML_AES_QUEUE_LENGTH);
err = devm_request_irq(dev, aes_dd->irq, aml_aes_irq, IRQF_SHARED,
"aml-aes", aes_dd);
if (err) {
dev_err(dev, "unable to request aes irq.\n");
goto aes_irq_err;
}
#endif
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
pm_runtime_enable(dev);
err = pm_runtime_get_sync(dev);
if (err < 0) {
dev_err(dev, "%s: pm_runtime_get_sync fails: %d\n",
__func__, err);
goto err_aes_pm;
}
err = aml_aes_hw_init(aes_dd);
if (err)
goto err_aes_buff;
err = aml_aes_buff_init(aes_dd);
if (err)
goto err_aes_buff;
spin_lock(&aml_aes.lock);
list_add_tail(&aes_dd->list, &aml_aes.dev_list);
spin_unlock(&aml_aes.lock);
err = aml_aes_register_algs(aes_dd, aes_info);
if (err)
goto err_algs;
dev_info(dev, "Aml AES_dma\n");
pm_runtime_put_sync_autosuspend(dev);
return 0;
err_algs:
spin_lock(&aml_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&aml_aes.lock);
aml_aes_buff_cleanup(aes_dd);
err_aes_buff:
err_aes_pm:
pm_runtime_disable(dev);
#if DMA_IRQ_MODE
aes_irq_err:
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
#endif
aes_dd_err:
dev_err(dev, "initialization failed.\n");
return err;
}
static int aml_aes_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
static struct aml_aes_dev *aes_dd;
const struct of_device_id *match;
const struct aml_aes_info *aes_info = NULL;
aes_dd = platform_get_drvdata(pdev);
if (!aes_dd)
return -ENODEV;
match = of_match_device(aml_aes_dt_match, &pdev->dev);
if (!match) {
dev_err(dev, "%s: cannot find match dt\n", __func__);
return -EINVAL;
}
aes_info = match->data;
spin_lock(&aml_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&aml_aes.lock);
aml_aes_buff_cleanup(aes_dd);
aml_aes_unregister_algs(aes_dd, aes_info);
#if DMA_IRQ_MODE
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
#endif
pm_runtime_disable(aes_dd->dev);
return 0;
}
static struct platform_driver aml_aes_driver = {
.probe = aml_aes_probe,
.remove = aml_aes_remove,
.driver = {
.name = "aml_aes_dma",
.owner = THIS_MODULE,
.of_match_table = aml_aes_dt_match,
},
};
int __init aml_aes_driver_init(void)
{
return platform_driver_register(&aml_aes_driver);
}
void __exit aml_aes_driver_exit(void)
{
platform_driver_unregister(&aml_aes_driver);
}