blob: 10793cc0acddf7b04a0ebf3376d2e39022e49198 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2019 Amlogic, Inc. All rights reserved.
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/mtd.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/sched/task_stack.h>
#include <linux/amlogic/aml_rsv.h>
#include <linux/amlogic/aml_mtd_nand.h>
#include <linux/mtd/partitions.h>
#include <linux/pinctrl/consumer.h>
#include <linux/amlogic/gki_module.h>
struct mtd_info *aml_mtd_info[NAND_MAX_DEVICE];
u8 aml_mtd_devnum;
enum {
NFC_ECC_NONE = 0,
NFC_ECC_BCH8_512,
NFC_ECC_BCH8_1K,
NFC_ECC_BCH24_1K,
NFC_ECC_BCH30_1K,
NFC_ECC_BCH40_1K,
NFC_ECC_BCH50_1K,
NFC_ECC_BCH60_1K,
NFC_ECC_BCH_SHORT,
};
#define MESON_ECC_DATA(b, s, st) {.bch = (b), .strength = (s),\
.step_size = (st)}
static int nand_get_device(struct nand_chip *chip)
{
mutex_lock(&chip->lock);
if (chip->suspended) {
mutex_unlock(&chip->lock);
return -EBUSY;
}
return 0;
}
static void nand_release_device(struct nand_chip *chip)
{
/* Release the controller and the chip */
mutex_unlock(&chip->lock);
}
static struct meson_nand_ecc meson_ecc[] = {
MESON_ECC_DATA(NFC_ECC_BCH8_512, 8, SZ_512),
MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8, SZ_1K),
MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24, SZ_1K),
MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30, SZ_1K),
MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40, SZ_1K),
MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50, SZ_1K),
MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60, SZ_1K),
};
static int meson_nand_calc_ecc_bytes(int step_size, int strength)
{
int ecc_bytes;
if (step_size == 512 && strength == 8)
return ECC_PARITY_BCH8_512B;
ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
ecc_bytes = ALIGN(ecc_bytes, 2);
return ecc_bytes;
}
NAND_ECC_CAPS_SINGLE(meson_1K_ecc_caps,
meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60);
NAND_ECC_CAPS_SINGLE(meson_512_ecc_caps,
meson_nand_calc_ecc_bytes, 512, 8);
static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
{
return container_of(nand, struct meson_nfc_nand_chip, nand);
}
static void meson_nfc_select_chip(struct nand_chip *nand, int chip)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
int ret, value;
if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels))
return;
nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
nfc->param.rb_select = nfc->param.chip_select;
nfc->timing.twb = meson_chip->twb;
nfc->timing.tadl = meson_chip->tadl;
nfc->timing.tbers_max = meson_chip->tbers_max;
if (nfc->clk_rate != meson_chip->clk_rate) {
ret = clk_set_rate(nfc->nand_div_clk, meson_chip->clk_rate);
if (ret) {
dev_err(nfc->dev, "failed to set clock rate\n");
return;
}
nfc->clk_rate = meson_chip->clk_rate;
}
if (nfc->bus_timing != meson_chip->bus_timing) {
value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5);
writel(value, nfc->reg_base + NFC_REG_CFG);
writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
nfc->bus_timing = meson_chip->bus_timing;
}
}
static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
{
writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff),
nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed)
{
writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)),
nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir,
int scrambler)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u32 bch = meson_chip->bch_mode, cmd;
int len = mtd->writesize, pages;
int dma_unit_size = nand->ecc.size;
if (raw) {
len = mtd->writesize + mtd->oobsize;
cmd = (len & GENMASK(5, 0)) | (scrambler << 19) | DMA_DIR(dir);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
return;
}
if (meson_chip->bch_mode == NFC_ECC_NONE) {
pages = 1;
} else if (meson_chip->bch_mode == NFC_ECC_BCH_SHORT) {
dma_unit_size = (nand->ecc.size >> 3);
pages = len / nand->ecc.size;
} else {
pages = len / nand->ecc.size;
}
if (meson_chip->bch_mode == NFC_ECC_BCH_SHORT)
bch = meson_chip->bch_info;
/*add infopage0 operation(shortmode)*/
cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
((meson_chip->bch_mode == NFC_ECC_BCH_SHORT) ?
NFC_CMD_SHORTMODE_ENABLE : NFC_CMD_SHORTMODE_DISABLE),
dma_unit_size, pages);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
{
/*
* Insert two commands to make sure all valid commands are finished.
*
* The Nand flash controller is designed as two stages pipleline -
* a) fetch and b) excute.
* There might be cases when the driver see command queue is empty,
* but the Nand flash controller still has two commands buffered,
* one is fetched into NFC request queue (ready to run), and another
* is actively executing. So pushing 2 "IDLE" commands guarantees that
* the pipeline is emptied.
*/
meson_nfc_cmd_idle(nfc, 0);
meson_nfc_cmd_idle(nfc, 0);
}
static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc,
unsigned int timeout_ms)
{
u32 cmd_size = 0;
int ret;
/* wait cmd fifo is empty */
ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
!NFC_CMD_GET_SIZE(cmd_size),
10, timeout_ms * 1000);
if (ret)
dev_err(nfc->dev, "wait for empty CMD FIFO time out\n");
return ret;
}
static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
{
meson_nfc_drain_cmd(nfc);
return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
}
static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int len;
len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
return meson_chip->data_buf + len;
}
static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int len, temp;
temp = nand->ecc.size + nand->ecc.bytes;
len = (temp + 2) * i;
return meson_chip->data_buf + len;
}
static void meson_nfc_get_data_oob(struct nand_chip *nand,
u8 *buf, u8 *oobbuf)
{
int i, oob_len = 0;
u8 *dsrc, *osrc;
oob_len = nand->ecc.bytes + 2;
for (i = 0; i < nand->ecc.steps; i++) {
if (buf) {
dsrc = meson_nfc_data_ptr(nand, i);
memcpy(buf, dsrc, nand->ecc.size);
buf += nand->ecc.size;
}
osrc = meson_nfc_oob_ptr(nand, i);
memcpy(oobbuf, osrc, oob_len);
oobbuf += oob_len;
}
}
static void meson_nfc_set_data_oob(struct nand_chip *nand,
const u8 *buf, u8 *oobbuf)
{
int i, oob_len = 0;
u8 *dsrc, *osrc;
oob_len = nand->ecc.bytes + 2;
for (i = 0; i < nand->ecc.steps; i++) {
if (buf) {
dsrc = meson_nfc_data_ptr(nand, i);
memcpy(dsrc, buf, nand->ecc.size);
buf += nand->ecc.size;
}
osrc = meson_nfc_oob_ptr(nand, i);
memcpy(osrc, oobbuf, oob_len);
oobbuf += oob_len;
}
}
static inline u8 meson_nfc_read_byte(struct meson_nfc *nfc)
{
u32 cmd;
cmd = nfc->param.chip_select | NFC_CMD_DRD | 0;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_wait_dma_finish(nfc);
return readb(nfc->reg_base + NFC_REG_BUF);
}
static int meson_nfc_queue_rb(struct nand_chip *nand, int timeout_ms)
{
u32 cmd, cfg;
int ret = 0;
u8 status = 0;
struct meson_nfc *nfc = nand_get_controller_data(nand);
unsigned int time_out_cnt = 0;
if (!nfc->param_from_dts.disa_irq_hand) {
meson_nfc_cmd_idle(nfc, nfc->timing.twb);
meson_nfc_wait_dma_finish(nfc);
cfg = readl(nfc->reg_base + NFC_REG_CFG);
cfg |= NFC_RB_IRQ_EN;
writel(cfg, nfc->reg_base + NFC_REG_CFG);
reinit_completion(&nfc->completion);
/* use the max erase time as the maximum clock for waiting R/B */
cmd = NFC_CMD_RB | NFC_CMD_RB_INT
| nfc->param.chip_select | nfc->timing.tbers_max;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
ret = wait_for_completion_timeout(&nfc->completion,
msecs_to_jiffies(2000));
if (ret == 0) {
pr_info("ERROR: waiting nand ready timeout\n");
ret = -1;
}
} else {
meson_nfc_wait_dma_finish(nfc);
writel(nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_STATUS,
nfc->reg_base + NFC_REG_CMD);
writel(nfc->param.chip_select | NFC_CMD_IDLE | 2,
nfc->reg_base + NFC_REG_CMD);
meson_nfc_wait_dma_finish(nfc);
do {
status = meson_nfc_read_byte(nfc);
if (status & NAND_STATUS_READY)
break;
usleep_range(20, 25);
} while (time_out_cnt++ <= 0x2000);
if (time_out_cnt > 0x2000) {
pr_info("nand status error\n");
return -1;
}
}
return ret;
}
static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
int i, count;
for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
info = &meson_chip->info_buf[i];
*info |= oob_buf[count];
*info |= oob_buf[count + 1] << 8;
}
}
static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
int i, count;
for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
info = &meson_chip->info_buf[i];
oob_buf[count] = *info;
oob_buf[count + 1] = *info >> 8;
}
}
static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
u64 *correct_bitmap)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
int ret = 0, i;
for (i = 0; i < nand->ecc.steps; i++) {
info = &meson_chip->info_buf[i];
if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
*bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
*correct_bitmap |= 1 >> i;
continue;
}
if ((nand->options & NAND_NEED_SCRAMBLING) &&
ECC_ZERO_CNT(*info) < nand->ecc.strength) {
mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
*bitflips = max_t(u32, *bitflips,
ECC_ZERO_CNT(*info));
ret = ECC_CHECK_RETURN_FF;
} else {
ret = -EBADMSG;
}
}
return ret;
}
static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
int datalen, void *infobuf, int infolen,
enum dma_data_direction dir)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
u32 cmd;
int ret = 0;
nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir);
ret = dma_mapping_error(nfc->dev, nfc->daddr);
if (ret) {
dev_err(nfc->dev, "DMA mapping error\n");
return ret;
}
cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
if (infobuf) {
nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir);
ret = dma_mapping_error(nfc->dev, nfc->iaddr);
if (ret) {
dev_err(nfc->dev, "DMA mapping error\n");
dma_unmap_single(nfc->dev,
nfc->daddr, datalen, dir);
return ret;
}
cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
return ret;
}
static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
int datalen, int infolen,
enum dma_data_direction dir)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir);
if (infolen)
dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir);
}
static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
int ret = 0;
u32 cmd;
u8 *info;
info = kzalloc(PER_INFO_BYTE, GFP_KERNEL);
if (!info)
return -ENOMEM;
ret = meson_nfc_dma_buffer_setup(nand, buf, len, info,
PER_INFO_BYTE, DMA_FROM_DEVICE);
if (ret)
goto out;
cmd = NFC_CMD_N2M | (len & GENMASK(5, 0));
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_wait_dma_finish(nfc);
meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE);
out:
kfree(info);
return ret;
}
static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
int ret = 0;
u32 cmd;
ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL,
0, DMA_TO_DEVICE);
if (ret)
return ret;
cmd = NFC_CMD_M2N | (len & GENMASK(5, 0));
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_wait_dma_finish(nfc);
meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE);
return ret;
}
static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand,
int page, bool in)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&nand->data_interface);
u32 *addrs = nfc->cmdfifo.rw.addrs;
u32 cs = nfc->param.chip_select;
u32 cmd0, cmd_num, row_start;
int ret = 0, i;
cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int);
cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN;
nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0;
addrs[0] = cs | NFC_CMD_ALE | 0;
if (mtd->writesize <= 512) {
cmd_num--;
row_start = 1;
} else {
addrs[1] = cs | NFC_CMD_ALE | 0;
row_start = 2;
}
addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0);
addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1);
if (nand->options & NAND_ROW_ADDR_3)
addrs[row_start + 2] =
cs | NFC_CMD_ALE | ROW_ADDER(page, 2);
else
cmd_num--;
/* subtract cmd1 */
cmd_num--;
for (i = 0; i < cmd_num; i++)
writel_relaxed(nfc->cmdfifo.cmd[i],
nfc->reg_base + NFC_REG_CMD);
if (in) {
nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART;
writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tR_max));
nfc->cmdfifo.rw.cmd1 = nfc->param.chip_select | NFC_CMD_CLE |
NAND_CMD_READ0;
writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
} else {
meson_nfc_cmd_idle(nfc, nfc->timing.tadl);
}
return ret;
}
static int meson_nfc_write_page_sub(struct nand_chip *nand,
int page, int raw)
{
struct mtd_info *mtd = nand_to_mtd(nand);
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&nand->data_interface);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
int data_len, info_len;
u32 cmd;
int ret;
meson_nfc_select_chip(nand, nand->cur_cs);
data_len = mtd->writesize + mtd->oobsize;
info_len = nand->ecc.steps * PER_INFO_BYTE;
ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE);
if (ret)
return ret;
ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
data_len, meson_chip->info_buf,
info_len, DMA_TO_DEVICE);
if (ret)
return ret;
if (nand->options & NAND_NEED_SCRAMBLING) {
meson_nfc_cmd_seed(nfc, page);
meson_nfc_cmd_access(nand, raw, DIRWRITE,
NFC_CMD_SCRAMBLER_ENABLE);
} else {
meson_nfc_cmd_access(nand, raw, DIRWRITE,
NFC_CMD_SCRAMBLER_DISABLE);
}
cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tPROG_max));
meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
return ret;
}
static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf,
int oob_required, int page)
{
u8 *oob_buf = nand->oob_poi;
meson_nfc_set_data_oob(nand, buf, oob_buf);
return meson_nfc_write_page_sub(nand, page, 1);
}
static void meson_info_page0_prepare(struct nand_chip *nand, u8 *page0_buf)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc =
nand_get_controller_data(mtd_to_nand(aml_mtd_info[1]));
u32 pages_per_blk_shift, bbt_size;
int each_boot_pages, boot_num, bbt_pages;
u32 configure_data;
struct _nand_page0 *p_nand_page0 = NULL;
struct _nand_page0_sc2 *p_nand_page0_sc2 = NULL;
struct _ext_info *p_ext_info = NULL;
struct _fip_info *p_fip_info = NULL;
struct _nand_setup_sc2 *p_nand_setup_sc2 = NULL;
struct _nand_setup *p_nand_setup = NULL;
u8 dir = 0;
pages_per_blk_shift = nand->phys_erase_shift - nand->page_shift;
bbt_size = nfc->rsv->bbt->size;
if (nfc->param_from_dts.bl_mode) {
boot_num = nfc->param_from_dts.fip_copies;
each_boot_pages = nfc->param_from_dts.fip_size / mtd->writesize;
} else {
boot_num = 1;
each_boot_pages = BOOT_TOTAL_PAGES / boot_num;
}
memset(page0_buf, 0x0, mtd->writesize);
dir = 0;
configure_data = CMDRWGEN(DMA_DIR(dir),
nand->options & NAND_NEED_SCRAMBLING,
meson_chip->bch_mode,
NFC_CMD_SHORTMODE_DISABLE,
nand->ecc.size >> 3,
nand->ecc.steps);
if (nfc->data->bl2ex_mode) {
p_nand_page0_sc2 = (struct _nand_page0_sc2 *)page0_buf;
p_nand_setup_sc2 = &p_nand_page0_sc2->nand_setup;
p_ext_info = &p_nand_page0_sc2->ext_info;
p_fip_info = &p_nand_page0_sc2->fip_info;
p_nand_setup_sc2->cfg.d32 = configure_data;
p_nand_setup_sc2->cfg.b.page_list = 0;
p_nand_setup_sc2->cfg.b.new_type = 0;
pr_info("sc2 cfg.d32 0x%x\n", p_nand_setup_sc2->cfg.d32);
} else {
p_nand_page0 = (struct _nand_page0 *)page0_buf;
p_nand_setup = &p_nand_page0->nand_setup;
p_ext_info = &p_nand_page0->ext_info;
p_fip_info = &p_nand_page0->fip_info;
p_nand_setup->cfg.d32 = configure_data | (1 << 23) |
(1 << 22);
pr_info("cfg.d32 0x%x\n", p_nand_setup->cfg.d32);
p_nand_setup->id = 0;
p_nand_setup->max = 0;
memset(p_nand_page0->page_list, 0, NAND_PAGELIST_CNT);
}
p_ext_info->read_info = meson_chip->nsels;
p_ext_info->pages_per_blk = mtd->erasesize /
mtd->writesize;
p_ext_info->ce_mask = 0x01;//only ce0 is enabled
p_ext_info->xlc = 1;
p_ext_info->boot_num = boot_num;
p_ext_info->each_boot_pages = each_boot_pages;
bbt_pages = (bbt_size + mtd->writesize - 1) /
mtd->writesize;
p_ext_info->bbt_occupy_pages = bbt_pages;
p_ext_info->bbt_start_block =
(BOOT_TOTAL_PAGES >> pages_per_blk_shift) +
NAND_GAP_BLOCK_NUM;
if (nfc->param_from_dts.bl_mode) {
p_fip_info->version = 1;
p_fip_info->mode = NAND_FIPMODE_DISCRETE;
p_fip_info->fip_start = BOOT_TOTAL_PAGES +
NAND_RSV_BLOCK_NUM * p_ext_info->pages_per_blk;
pr_info("fip ver %d, mode %d fip start 0x%x\n",
p_fip_info->version, p_fip_info->mode,
p_fip_info->fip_start);
}
pr_info("pages_per_blk: 0x%x, bbt_pages: 0x%x\n",
p_ext_info->pages_per_blk, bbt_pages);
pr_info("boot_num: %d each_boot_pages: %d\n",
boot_num, each_boot_pages);
}
static int meson_nfc_write_page_hwecc(struct nand_chip *nand,
const u8 *buf, int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u8 *oob_buf = nand->oob_poi;
memcpy(meson_chip->data_buf, buf, mtd->writesize);
memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
meson_nfc_set_user_byte(nand, oob_buf);
return meson_nfc_write_page_sub(nand, page, 0);
}
static int meson_nfc_boot_write_page_hwecc(struct nand_chip *nand,
const u8 *buf,
int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
u8 boot_num;
int each_boot_pages, ecc_size, bch_mode;
u8 *oob_buf = nand->oob_poi;
int i;
u64 ofs, tmp;
u32 remainder;
if (nfc->param_from_dts.bl_mode)
boot_num = 8;
else
boot_num = 1;
each_boot_pages = BOOT_TOTAL_PAGES / boot_num;
if (page >= BOOT_TOTAL_PAGES)
return 0;
ecc_size = nand->ecc.size;
bch_mode = meson_chip->bch_mode;
for (i = 0; i < mtd->oobavail; i += 2) {
oob_buf[i] = 0x55;
oob_buf[i + 1] = 0xaa;
}
memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
meson_nfc_set_user_byte(nand, oob_buf);
if (page % each_boot_pages == 0) {
meson_info_page0_prepare(nand, nand->data_buf);
nand->options |= NAND_NEED_SCRAMBLING; //setting randomizer
if (meson_chip->bch_mode != NFC_ECC_BCH_SHORT) {
meson_chip->bch_mode = NFC_ECC_BCH_SHORT;
nand->ecc.size = NAND_ECC_UNIT_SHORT;
}
memcpy(meson_chip->data_buf, nand->data_buf, mtd->writesize);
meson_nfc_write_page_sub(nand, page, 0);
nand->ecc.size = ecc_size;
meson_chip->bch_mode = bch_mode;
nand->options &= ~NAND_NEED_SCRAMBLING;
}
page++;
WRITE_BAD_BLOCK:
ofs = ((u64)page << nand->page_shift);
tmp = ofs;
div_u64_rem(tmp, mtd->erasesize, &remainder);
if (!remainder) {
//todo nand bb ckeck
if (mtd->_block_isbad(mtd, ofs)) {
page +=
1 << (nand->phys_erase_shift -
nand->page_shift);
goto WRITE_BAD_BLOCK;
}
}
memcpy(meson_chip->data_buf, buf, mtd->writesize);
meson_nfc_write_page_sub(nand, page, 0);//fixed it
return 0;
}
static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
struct nand_chip *nand, int raw)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
u32 neccpages;
int ret;
neccpages = raw ? 1 : nand->ecc.steps;
info = &meson_chip->info_buf[neccpages - 1];
do {
usleep_range(10, 15);
/* info is updated by nfc dma engine*/
smp_rmb();
ret = *info & ECC_COMPLETE;
} while (!ret);
}
static int meson_nfc_read_page_sub(struct nand_chip *nand,
int page, int raw)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int data_len, info_len;
int ret;
meson_nfc_select_chip(nand, nand->cur_cs);
data_len = mtd->writesize + mtd->oobsize;
info_len = nand->ecc.steps * PER_INFO_BYTE;
memset(meson_chip->info_buf, 0, info_len);
ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD);
if (ret)
return ret;
ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
data_len, meson_chip->info_buf,
info_len, DMA_FROM_DEVICE);
if (ret)
return ret;
if (nand->options & NAND_NEED_SCRAMBLING) {
meson_nfc_cmd_seed(nfc, page);
meson_nfc_cmd_access(nand, raw, DIRREAD,
NFC_CMD_SCRAMBLER_ENABLE);
} else {
meson_nfc_cmd_access(nand, raw, DIRREAD,
NFC_CMD_SCRAMBLER_DISABLE);
}
ret = meson_nfc_wait_dma_finish(nfc);
meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE);
return ret;
}
static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf,
int oob_required, int page)
{
u8 *oob_buf = nand->oob_poi;
int ret;
ret = meson_nfc_read_page_sub(nand, page, 1);
if (ret)
return ret;
meson_nfc_get_data_oob(nand, buf, oob_buf);
return 0;
}
/**
* meson_nfc_read_page_hwecc -read page data and ecc check
*
* return a negative nuumber -ENODATA or bitflips
* -ENODATA: read failed
* bitflips: read scucess
*/
static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct nand_ecc_ctrl *ecc = &nand->ecc;
u64 correct_bitmap = 0;
u32 bitflips = 0;
u8 *oob_buf = nand->oob_poi;
int ret, i;
ret = meson_nfc_read_page_sub(nand, page, 0);
if (ret)
return -ENODATA;
meson_nfc_get_user_byte(nand, oob_buf);
ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap);
if (ret == ECC_CHECK_RETURN_FF) {
if (buf)
memset(buf, 0xff, mtd->writesize);
memset(oob_buf, 0xff, mtd->oobsize);
} else if (ret < 0) {
if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) {
mtd->ecc_stats.failed++;
return bitflips;
}
/*really need this??? lxj*/
ret = meson_nfc_read_page_raw(nand, buf, 0, page);
if (ret)
return -ENODATA;
for (i = 0; i < nand->ecc.steps ; i++) {
u8 *data = buf + i * ecc->size;
u8 *oob = nand->oob_poi + i * (ecc->bytes + 2);
if (correct_bitmap & (1 << i))
continue;
ret = nand_check_erased_ecc_chunk(data, ecc->size,
oob, ecc->bytes + 2,
NULL, 0,
ecc->strength);
if (ret < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
bitflips = max_t(u32, bitflips, ret);
}
}
} else if (buf && buf != meson_chip->data_buf) {
memcpy(buf, meson_chip->data_buf, mtd->writesize);
}
return bitflips;
}
static int meson_nfc_boot_read_page_hwecc(struct nand_chip *nand, u8 *buf,
int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
struct _nand_page0 *p_nand_page0 = NULL;
struct _ext_info *p_ext_info = NULL;
struct _nand_setup *p_nand_setup = NULL;
u8 boot_num, dir;
u32 each_boot_pages, remainder;
int ret = 0, configure_data_w, pages_per_blk_w, configure_data;
//u32 nand_page_size = nand->ecc.size * nand->ecc.steps;
u64 ofs, tmp;
int ecc_size, bch_mode, pages_per_blk, real_page;
if (nfc->param_from_dts.bl_mode)
boot_num = 8;
else
boot_num = 1;
each_boot_pages = BOOT_TOTAL_PAGES / boot_num;
if (page >= BOOT_TOTAL_PAGES) {
memset(buf, 0, (1 << nand->page_shift));
pr_info("nand read out of bootloader, failed page: %d\n",
page);
return ret;
}
ecc_size = nand->ecc.size;
bch_mode = meson_chip->bch_mode;
dir = 1;
if (page % each_boot_pages == 0) {
if (meson_chip->bch_mode == NFC_ECC_BCH_SHORT)
configure_data_w =
CMDRWGEN(DMA_DIR(dir),
nand->options & NAND_NEED_SCRAMBLING,
NFC_ECC_BCH60_1K,
NFC_CMD_SHORTMODE_ENABLE,
nand->ecc.size >> 3,
nand->ecc.steps);
else
configure_data_w =
CMDRWGEN(DMA_DIR(dir),
nand->options & NAND_NEED_SCRAMBLING,
meson_chip->bch_mode,
NFC_CMD_SHORTMODE_DISABLE,
nand->ecc.size >> 3,
nand->ecc.steps);
if (meson_chip->bch_mode != NFC_ECC_BCH_SHORT) {
meson_chip->bch_mode = NFC_ECC_BCH_SHORT;
nand->ecc.size = NAND_ECC_UNIT_SHORT;
}
memset(buf, 0xff, (1 << nand->page_shift));
nand->options |= NAND_NEED_SCRAMBLING;
ret = meson_nfc_read_page_hwecc(nand, buf, 1, page);
if (ret < 0)
return ret; /*read failed*/
nand->options &= ~NAND_NEED_SCRAMBLING;
/*check page 0 info here*/
p_nand_page0 = (struct _nand_page0 *)buf;
p_ext_info = &p_nand_page0->ext_info;
p_nand_setup = &p_nand_page0->nand_setup;
configure_data = p_nand_setup->cfg.b.cmd;
pages_per_blk = p_ext_info->pages_per_blk;
pages_per_blk_w =
(1 << (nand->phys_erase_shift -
nand->page_shift));
if (pages_per_blk_w != pages_per_blk ||
configure_data_w != configure_data) {
pr_info("page%d fail ", page);
pr_info("configure: 0x%x-0x%x pages per blk 0x%x-0x%x\n",
configure_data_w, configure_data,
pages_per_blk_w, pages_per_blk);
}
meson_chip->bch_mode = bch_mode;
nand->ecc.size = ecc_size;
}
real_page = page;
real_page++;
READ_BAD_BLOCK:
ofs = ((u64)real_page << nand->page_shift);
tmp = ofs;
div_u64_rem(tmp, mtd->erasesize, &remainder);
if (!remainder) {
if (mtd->_block_isbad(mtd, ofs)) {
real_page +=
1 << (nand->phys_erase_shift -
nand->page_shift);
goto READ_BAD_BLOCK;
}
}
memset(buf, 0xff, (1 << nand->page_shift));
ret = meson_nfc_read_page_hwecc(nand, buf, 1, page);
return ret;
}
static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page)
{
return meson_nfc_read_page_raw(nand, NULL, 1, page);
}
static int meson_nfc_read_oob(struct nand_chip *nand, int page)
{
return meson_nfc_read_page_hwecc(nand, NULL, 1, page);
}
static int meson_nfc_boot_read_oob(struct nand_chip *nand, int page)
{
int ret = 0;
ret = meson_nfc_boot_read_page_hwecc(nand, nand->data_buf,
1, page);
return ret;
}
static bool meson_nfc_is_buffer_dma_safe(const void *buffer)
{
if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer)))
return true;
return false;
}
static void *
meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr)
{
if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR))
return NULL;
if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in))
return instr->ctx.data.buf.in;
return kzalloc(instr->ctx.data.len, GFP_KERNEL);
}
static void
meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr,
void *buf)
{
if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) ||
WARN_ON(!buf))
return;
if (buf == instr->ctx.data.buf.in)
return;
memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len);
kfree(buf);
}
static void *
meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr)
{
if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR))
return NULL;
if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out))
return (void *)instr->ctx.data.buf.out;
return kmemdup(instr->ctx.data.buf.out,
instr->ctx.data.len, GFP_KERNEL);
}
static void
meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr,
const void *buf)
{
if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) ||
WARN_ON(!buf))
return;
if (buf != instr->ctx.data.buf.out)
kfree(buf);
}
static int meson_nfc_exec_op(struct nand_chip *nand,
const struct nand_operation *op, bool check_only)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
const struct nand_op_instr *instr = NULL;
void *buf;
u32 op_id, delay_idle, cmd;
int i;
meson_nfc_select_chip(nand, op->cs);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns),
meson_chip->level1_divider *
NFC_CLK_CYCLE);
switch (instr->type) {
case NAND_OP_CMD_INSTR:
cmd = nfc->param.chip_select | NFC_CMD_CLE;
cmd |= instr->ctx.cmd.opcode & 0xff;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_cmd_idle(nfc, delay_idle);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
cmd = nfc->param.chip_select | NFC_CMD_ALE;
cmd |= instr->ctx.addr.addrs[i] & 0xff;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
meson_nfc_cmd_idle(nfc, delay_idle);
break;
case NAND_OP_DATA_IN_INSTR:
buf = meson_nand_op_get_dma_safe_input_buf(instr);
if (!buf)
return -ENOMEM;
meson_nfc_read_buf(nand, buf, instr->ctx.data.len);
meson_nand_op_put_dma_safe_input_buf(instr, buf);
break;
case NAND_OP_DATA_OUT_INSTR:
buf = meson_nand_op_get_dma_safe_output_buf(instr);
if (!buf)
return -ENOMEM;
meson_nfc_write_buf(nand, buf, instr->ctx.data.len);
meson_nand_op_put_dma_safe_output_buf(instr, buf);
break;
case NAND_OP_WAITRDY_INSTR:
meson_nfc_queue_rb(nand, instr->ctx.waitrdy.timeout_ms);
if (instr->delay_ns)
meson_nfc_cmd_idle(nfc, delay_idle);
break;
}
}
meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
return 0;
}
static int meson_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand = mtd_to_nand(mtd);
if (section < 0 || section >= nand->ecc.steps)
return -ERANGE;
oobregion->offset = 2 + (section * (2 + nand->ecc.bytes));
oobregion->length = nand->ecc.bytes;
return 0;
}
static int meson_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand = mtd_to_nand(mtd);
if (section < 0 || section >= nand->ecc.steps)
return -ERANGE;
oobregion->offset = section * 2;
oobregion->length = 2;
return 0;
}
static const struct mtd_ooblayout_ops meson_ooblayout_ops = {
.ecc = meson_ooblayout_ecc,
.free = meson_ooblayout_free,
};
#define CLK_DIV_SHIFT 0
#define CLK_DIV_WIDTH 6
static int meson_nfc_clk_init(struct meson_nfc *nfc)
{
int ret;
struct clk_init_data init = {0};
const char *fix_div2_pll_name[1];
nfc->clk_gate = devm_clk_get(nfc->dev, "gate");
if (IS_ERR(nfc->clk_gate)) {
dev_err(nfc->dev, "failed to get gate\n");
return PTR_ERR(nfc->clk_gate);
}
ret = clk_prepare_enable(nfc->clk_gate);
if (ret) {
dev_err(nfc->dev, "failed to enable gate\n");
return ret;
}
nfc->fix_div2_pll = devm_clk_get(nfc->dev, "fdiv2pll");
if (IS_ERR(nfc->fix_div2_pll)) {
dev_err(nfc->dev, "failed to get fix pll\n");
return PTR_ERR(nfc->fix_div2_pll);
}
ret = clk_prepare_enable(nfc->fix_div2_pll);
if (ret) {
dev_err(nfc->dev, "failed to enable fix pll");
return ret;
}
init.name = devm_kstrdup(nfc->dev, "nfc#div", GFP_KERNEL);
init.ops = &clk_divider_ops;
fix_div2_pll_name[0] = __clk_get_name(nfc->fix_div2_pll);
init.parent_names = fix_div2_pll_name;
init.num_parents = 1;
nfc->nand_divider.reg = nfc->nand_clk_reg;
nfc->nand_divider.shift = CLK_DIV_SHIFT;
nfc->nand_divider.width = CLK_DIV_WIDTH;
nfc->nand_divider.hw.init = &init;
nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ROUND_CLOSEST | CLK_DIVIDER_ALLOW_ZERO;
nfc->nand_div_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw);
if (IS_ERR(nfc->nand_div_clk))
return PTR_ERR(nfc->nand_div_clk);
ret = clk_prepare_enable(nfc->nand_div_clk);
if (ret)
dev_err(nfc->dev, "pre enable NFC divider fail\n");
return 0;
}
static void meson_nfc_disable_clk(struct meson_nfc *nfc)
{
clk_disable_unprepare(nfc->nand_div_clk);
clk_disable_unprepare(nfc->fix_div2_pll);
clk_disable_unprepare(nfc->clk_gate);
}
static void meson_nfc_free_buffer(struct nand_chip *nand)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
kfree(meson_chip->info_buf);
kfree(meson_chip->data_buf);
}
static int meson_chip_buffer_init(struct nand_chip *nand)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u32 page_bytes, info_bytes, nsectors;
nsectors = mtd->writesize / nand->ecc.size;
page_bytes = mtd->writesize + mtd->oobsize;
info_bytes = nsectors * PER_INFO_BYTE;
meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL);
if (!meson_chip->data_buf)
return -ENOMEM;
meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL);
if (!meson_chip->info_buf) {
kfree(meson_chip->data_buf);
return -ENOMEM;
}
return 0;
}
static
int meson_nfc_setup_data_interface(struct nand_chip *nand, int csline,
const struct nand_data_interface *conf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
const struct nand_sdr_timings *timings;
u32 div, bt_min, bt_max, tbers_clocks;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return -EOPNOTSUPP;
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE);
bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div;
bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min +
timings->tRC_min / 2) / div;
meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max),
div * NFC_CLK_CYCLE);
meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min),
div * NFC_CLK_CYCLE);
tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max),
div * NFC_CLK_CYCLE);
meson_chip->tbers_max = ilog2(tbers_clocks);
if (!is_power_of_2(tbers_clocks))
meson_chip->tbers_max++;
bt_min = DIV_ROUND_UP(bt_min, 1000);
bt_max = DIV_ROUND_UP(bt_max, 1000);
if (bt_max < bt_min)
return -EINVAL;
meson_chip->level1_divider = div;
meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider;
meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1;
pr_info("%s %d level1_divider: %ld, clk_rate: %ld, bus_timing: %d\n",
__func__, __LINE__, meson_chip->level1_divider, meson_chip->clk_rate,
meson_chip->bus_timing);
return 0;
}
static int meson_nand_bch_mode(struct nand_chip *nand)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int i;
if (nand->ecc.strength > 60 || nand->ecc.strength < 8)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
if (meson_ecc[i].strength == nand->ecc.strength &&
meson_ecc[i].step_size == nand->ecc.size) {
meson_chip->bch_mode = meson_ecc[i].bch;
pr_info("select %d bch mode\n", meson_chip->bch_mode);
return 0;
}
}
return -EINVAL;
}
static void meson_nand_detach_chip(struct nand_chip *nand)
{
meson_nfc_free_buffer(nand);
}
static int meson_nand_attach_chip(struct nand_chip *nand)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct mtd_info *mtd = nand_to_mtd(nand);
int nsectors = 0;
int ret;
if (mtd->writesize <= 2048 ||
nfc->data->ecc_caps->stepinfos->stepsize == 512) {
nsectors = mtd->writesize / 512;
} else {
nsectors = mtd->writesize / 1024;
}
if (!mtd->name) {
mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
"%s:nand%d",
dev_name(nfc->dev),
meson_chip->sels[0]);
if (!mtd->name)
return -ENOMEM;
}
if (nand->bbt_options & NAND_BBT_USE_FLASH)
nand->bbt_options |= NAND_BBT_NO_OOB;
nand->options |= NAND_SKIP_BBTSCAN;
nand->options |= NAND_NO_SUBPAGE_WRITE;
meson_chip->bch_info = NFC_ECC_BCH60_1K;
ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps,
mtd->oobsize - 2 * nsectors);
if (mtd->writesize <= 2048 ||
nfc->data->ecc_caps->stepinfos->stepsize == 512) {
nand->ecc.size = SZ_512;
nand->ecc.strength = 8;
nand->ecc.bytes = ECC_PARITY_BCH8_512B;
meson_chip->bch_info = NFC_ECC_BCH8_1K;
}
pr_info("ecc_step size: 0x%x, ecc strength:0x%x\n",
nand->ecc.size, nand->ecc.strength);
nand->ecc.steps = mtd->writesize / nand->ecc.size;
pr_info("ecc bytes:0x%x, ecc steps: 0x%x\n",
nand->ecc.bytes, nand->ecc.steps);
if (ret) {
dev_err(nfc->dev, "failed to ECC init\n");
return -EINVAL;
}
mtd_set_ooblayout(mtd, &meson_ooblayout_ops);
ret = meson_nand_bch_mode(nand);
if (ret)
return -EINVAL;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.write_page_raw = meson_nfc_write_page_raw;
nand->ecc.write_page = meson_nfc_write_page_hwecc;
nand->ecc.write_oob_raw = nand_write_oob_std;
nand->ecc.write_oob = nand_write_oob_std;
nand->ecc.read_page_raw = meson_nfc_read_page_raw;
nand->ecc.read_page = meson_nfc_read_page_hwecc;
nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
nand->ecc.read_oob = meson_nfc_read_oob;
if (nand->options & NAND_BUSWIDTH_16) {
dev_err(nfc->dev, "16bits bus width not supported");
return -EINVAL;
}
ret = meson_chip_buffer_init(nand);
if (ret)
return -ENOMEM;
return ret;
}
static const struct nand_controller_ops meson_nand_controller_ops = {
.attach_chip = meson_nand_attach_chip,
.detach_chip = meson_nand_detach_chip,
.setup_data_interface = meson_nfc_setup_data_interface,
.exec_op = meson_nfc_exec_op,
};
int meson_nand_scan_shipped_bbt(struct nand_chip *nand)
{
/**todo later**/
return 0;
}
int meson_nand_bbt_check(struct nand_chip *nand)
{
int phys_erase_shift;
int ret = 0;
s8 *buf = NULL;
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
phys_erase_shift = mtd->erasesize_shift;
ret = meson_rsv_scan(nfc->rsv->bbt);
if (ret != 0 && (ret != (-1))) {
pr_info("scan bbt table failed\n");
return ret;
}
ret = 0;
buf = nfc->block_status;
if (nfc->rsv->bbt->valid == 1) {
pr_info("%s %d bbt is valid,reading\n",
__func__, __LINE__);
meson_rsv_read(nfc->rsv->bbt, (u_char *)buf);
} else {
pr_info("%s %d bbt is invalid, scanning\n",
__func__, __LINE__);
memset(nfc->block_status, 0,
mtd->size >> phys_erase_shift);
meson_nand_scan_shipped_bbt(nand);
meson_rsv_bbt_write((u_char *)buf, nfc->rsv->bbt->size);
}
if (nand->options & NAND_SKIP_BBTSCAN) {
/* sync with nand chip bbt */
nand->bbt = nfc->block_status;
mtd_to_nand(aml_mtd_info[0])->bbt = nfc->block_status;
}
return 0;
}
int meson_nand_block_markbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_pos pos;
s8 block_status;
struct nand_chip *chip = mtd_to_nand(mtd);
struct meson_nfc *nfc = nand_get_controller_data(chip);
s8 *buf;
int ret = 0;
nand_get_device(chip);
nanddev_offs_to_pos(nand, offs, &pos);
if (nfc->block_status) {
block_status = nfc->block_status[pos.eraseblock];
if (block_status == NAND_BLOCK_BAD ||
block_status == NAND_FACTORY_BAD) {
pr_info("offs : 0x%llx already is bad blk\n",
offs);
ret = 0;
} else if (block_status == NAND_BLOCK_GOOD) {
nfc->block_status[pos.eraseblock] = NAND_BLOCK_BAD;
buf = nfc->block_status;
meson_rsv_bbt_write((u_char *)buf, nfc->rsv->bbt->size);
ret = 0;
}
}
nand_release_device(chip);
return ret;
}
static const char * const meson_types[] = {
"meson-partitions",
NULL
};
static int
meson_nfc_nand_chip_init(struct device *dev,
struct meson_nfc *nfc, struct device_node *np)
{
struct meson_nfc_nand_chip *meson_chip;
struct nand_chip *nand;
struct mtd_info *mtd;
int ret, i;
u32 tmp, nsels;
struct nand_memory_organization *memorg;
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
if (!nsels || nsels > MAX_CE_NUM) {
dev_err(dev, "invalid register property size\n");
return -EINVAL;
}
pr_info("%s %d nsels: %d\n", __func__, __LINE__, nsels);
meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels),
GFP_KERNEL);
if (!meson_chip)
return -ENOMEM;
meson_chip->nsels = nsels;//info page0 chip_num value
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &tmp);
if (ret) {
dev_err(dev, "could not retrieve register property: %d\n",
ret);
goto exit_err;
}
}
nand = &meson_chip->nand;
nand->controller = &nfc->controller;
nand->controller->ops = &meson_nand_controller_ops;
nand_set_flash_node(nand, np);
nand_set_controller_data(nand, nfc);
nand->options |= NAND_USE_BOUNCE_BUFFER;
mtd = nand_to_mtd(nand);
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
if (aml_mtd_devnum == 0)
mtd->name = NAND_BOOT_NAME;
else
mtd->name = NAND_NORMAL_NAME;
ret = nand_scan_with_ids(nand, nsels, aml_nand_flash_ids);
if (ret)
goto exit_err;
pr_info("nand id 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
nand->id.data[0], nand->id.data[1], nand->id.data[2],
nand->id.data[3], nand->id.data[4], nand->id.data[5],
nand->id.data[6], nand->id.data[7]);
memorg = nanddev_get_memorg(&nand->base);
pr_info("memory: bits_per_cell: 0x%x\n", memorg->bits_per_cell);
if (!nfc->rsv) {
nfc->rsv = kzalloc(sizeof(*nfc->rsv), GFP_KERNEL);
if (!nfc->rsv) {
ret = -ENOMEM;
goto exit_err1;
}
}
if (is_power_of_2(mtd->erasesize))
mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
else
mtd->erasesize_shift = 0;
if (is_power_of_2(mtd->writesize))
mtd->writesize_shift = ffs(mtd->writesize) - 1;
else
mtd->writesize_shift = 0;
mtd->_block_markbad = meson_nand_block_markbad;
if (aml_mtd_devnum != 0) {
meson_rsv_init(mtd, nfc->rsv);
nfc->block_status = kzalloc((mtd->size >> mtd->erasesize_shift),
GFP_KERNEL);
if (!nfc->block_status) {
ret = -ENOMEM;
pr_info("Allocated memory for block status failed\n");
goto exit_err2;
}
ret = meson_nand_bbt_check(nand);
if (ret) {
pr_info("invalid nand bbt\n");
goto exit_err2;
}
meson_rsv_check(nfc->rsv->env);
meson_rsv_check(nfc->rsv->key);
meson_rsv_check(nfc->rsv->dtb);
}
ret = mtd_device_parse_register(mtd, meson_types, NULL, NULL, 0);
if (ret) {
dev_err(dev, "failed to register MTD device: %d\n", ret);
nand_cleanup(nand);
return ret;
}
if (aml_mtd_devnum == 0) {
mtd->size = BOOT_TOTAL_PAGES * mtd->writesize;
nand->ecc.write_page = meson_nfc_boot_write_page_hwecc;
nand->ecc.read_page = meson_nfc_boot_read_page_hwecc;
nand->ecc.read_oob = meson_nfc_boot_read_oob;
}
pr_info("%s %d meson_nfc_devnum: %d, name: %s",
__func__, __LINE__, aml_mtd_devnum, mtd->name);
aml_mtd_info[aml_mtd_devnum] = mtd;
aml_mtd_devnum++;
list_add_tail(&meson_chip->node, &nfc->chips);
return 0;
exit_err2:
kfree(nfc->block_status);
exit_err1:
kfree(nfc->rsv);
exit_err:
devm_kfree(dev, meson_chip);
return ret;
}
static int meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc)
{
struct meson_nfc_nand_chip *meson_chip;
struct mtd_info *mtd;
int ret;
while (!list_empty(&nfc->chips)) {
meson_chip = list_first_entry(&nfc->chips,
struct meson_nfc_nand_chip, node);
mtd = nand_to_mtd(&meson_chip->nand);
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
meson_nfc_free_buffer(&meson_chip->nand);
nand_cleanup(&meson_chip->nand);
list_del(&meson_chip->node);
}
return 0;
}
static int meson_nfc_nand_chips_init(struct device *dev,
struct meson_nfc *nfc)
{
struct device_node *np = dev->of_node;
struct device_node *nand_np;
int ret;
for_each_child_of_node(np, nand_np) {
ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
if (ret) {
meson_nfc_nand_chip_cleanup(nfc);
of_node_put(nand_np);
return ret;
}
}
return 0;
}
static irqreturn_t meson_nfc_irq(int irq, void *id)
{
struct meson_nfc *nfc = id;
u32 cfg;
cfg = readl(nfc->reg_base + NFC_REG_CFG);
if (!(cfg & NFC_RB_IRQ_EN))
return IRQ_NONE;
cfg &= ~(NFC_RB_IRQ_EN);
writel(cfg, nfc->reg_base + NFC_REG_CFG);
complete(&nfc->completion);
writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
return IRQ_HANDLED;
}
const char *para_name[] = {
"nand_clk_ctrl",
"bl_mode",
"fip_copies",
"fip_size",
"ship_bad_block",
"disa_irq_flag"
};
static int prase_nand_parameter_from_dtb(struct meson_nfc *nfc,
struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int ret = 0, i = 0;
u32 dts_param[16];
if (!pdev->dev.of_node)
return 1;
of_node_get(np);
for (i = 0; i < ARRAY_SIZE(para_name); i++) {
ret = of_property_read_u32(np, para_name[i], &dts_param[i]);
if (ret) {
pr_info("%s %d,please config para item %d in dts\n",
__func__, __LINE__, i);
return ret;
}
}
memcpy(&nfc->param_from_dts, dts_param, i * sizeof(u32));
pr_info("bl_mode %s\n", nfc->param_from_dts.bl_mode ? "discrete" : "compact");
pr_info("fip copies %d\n", nfc->param_from_dts.fip_copies);
pr_info("fip size 0x%x\n", nfc->param_from_dts.fip_size);
pr_info("nand clk ctrl: 0x%x\n", nfc->param_from_dts.clk_ctrl_base);
pr_info("%s bad_block\n", nfc->param_from_dts.skip_bad_block ?
"skip" : "not skip");
pr_info("disa_irq_hand vale: %d\n", nfc->param_from_dts.disa_irq_hand);
return ret;
}
static const struct meson_nfc_data meson_full_ecc_data = {
.ecc_caps = &meson_1K_ecc_caps,
};
static const struct meson_nfc_data meson_single_ecc_data = {
.ecc_caps = &meson_512_ecc_caps,
};
static const struct meson_nfc_data meson_full_ecc_bl2ex_data = {
.ecc_caps = &meson_1K_ecc_caps,
.bl2ex_mode = 1,
};
static const struct meson_nfc_data meson_single_ecc_bl2ex_data = {
.ecc_caps = &meson_512_ecc_caps,
.bl2ex_mode = 1,
};
static const struct of_device_id meson_nfc_id_table[] = {
{
.compatible = "amlogic,meson-nfc-full-ecc",
.data = (void *)&meson_full_ecc_data,
}, {
.compatible = "amlogic,meson-nfc-single-ecc",
.data = (void *)&meson_single_ecc_data,
}, {
.compatible = "amlogic,meson-nfc-full-ecc-bl2ex",
.data = (void *)&meson_full_ecc_bl2ex_data,
}, {
.compatible = "amlogic,meson-nfc-single-ecc-bl2ex",
.data = (void *)&meson_single_ecc_bl2ex_data,
},
{}
};
MODULE_DEVICE_TABLE(of, meson_nfc_id_table);
static int meson_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct meson_nfc *nfc;
struct resource *res;
int ret, irq;
u32 nfc_base;
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->data = of_device_get_match_data(&pdev->dev);
if (!nfc->data) {
ret = -ENODEV;
goto err_mem;
}
nand_controller_init(&nfc->controller);
INIT_LIST_HEAD(&nfc->chips);
init_completion(&nfc->completion);
nfc->dev = dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->reg_base = devm_ioremap_resource(dev, res);
if (IS_ERR(nfc->reg_base)) {
ret = PTR_ERR(nfc->reg_base);
pr_info("get nand reg base failed\n");
goto err_mem;
}
nfc->nand_pinctrl = devm_pinctrl_get(dev);
if (IS_ERR(nfc->nand_pinctrl)) {
ret = PTR_ERR(nfc->nand_pinctrl);
pr_info("get pinctrl failed\n");
goto err_mem;
}
nfc->nand_norbstate = pinctrl_lookup_state(nfc->nand_pinctrl,
"nand_norb_mod");
if (IS_ERR(nfc->nand_norbstate)) {
devm_pinctrl_put(nfc->nand_pinctrl);
ret = PTR_ERR(nfc->nand_norbstate);
pr_info("get pinctrl nand_norbstate failed\n");
goto err_mem;
}
nfc->nand_idlestate = pinctrl_lookup_state(nfc->nand_pinctrl,
"nand_cs_only");
if (IS_ERR(nfc->nand_idlestate)) {
devm_pinctrl_put(nfc->nand_pinctrl);
ret = PTR_ERR(nfc->nand_idlestate);
pr_info("get pinctrl nand_idlestate failed\n");
goto err_mem;
}
ret =
pinctrl_select_state(nfc->nand_pinctrl,
nfc->nand_norbstate);
if (ret < 0)
pr_info("%s:%d %s can't get pinctrl",
__func__,
__LINE__,
dev_name(dev));
ret = prase_nand_parameter_from_dtb(nfc, pdev);
if (ret) {
pr_info("!!!dtb prase error,need check dtb\n");
ret = -EINVAL;
goto err_mem;
}
nfc_base = nfc->param_from_dts.clk_ctrl_base;
nfc->nand_clk_reg = devm_ioremap_nocache(&pdev->dev,
nfc_base,
sizeof(int));
ret = meson_nfc_clk_init(nfc);
if (ret) {
dev_err(dev, "failed to initialize NAND clock\n");
goto err_mem;
}
writel(0, nfc->reg_base + NFC_REG_CFG);
if (!nfc->param_from_dts.disa_irq_hand) {
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "no NFC IRQ resource\n");
ret = -EINVAL;
goto err_clk;
}
ret = devm_request_irq(dev, irq, meson_nfc_irq, 0,
dev_name(dev), nfc);
if (ret) {
dev_err(dev, "failed to request NFC IRQ\n");
ret = -EINVAL;
goto err_clk;
}
}
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "failed to set DMA mask\n");
goto err_clk;
}
platform_set_drvdata(pdev, nfc);
register_mtd_parser(&ofpart_meson_parser);
ret = meson_nfc_nand_chips_init(dev, nfc);
if (ret) {
dev_err(dev, "failed to init NAND chips\n");
goto err_clk;
}
ret = readl(nfc->nand_clk_reg);
ret = clk_get_rate(nfc->nand_div_clk);
ret = readl(nfc->reg_base + NFC_REG_CFG);
return 0;
err_clk:
meson_nfc_disable_clk(nfc);
err_mem:
devm_kfree(dev, nfc);
return ret;
}
static int meson_nfc_remove(struct platform_device *pdev)
{
struct meson_nfc *nfc = platform_get_drvdata(pdev);
int ret;
ret = meson_nfc_nand_chip_cleanup(nfc);
if (ret)
return ret;
meson_nfc_disable_clk(nfc);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver meson_nfc_driver = {
.probe = meson_nfc_probe,
.remove = meson_nfc_remove,
.driver = {
.name = "meson-nand",
.of_match_table = meson_nfc_id_table,
},
};
#ifndef MODULE
module_platform_driver(meson_nfc_driver);
#else
int __init meson_nfc_init_module(void)
{
return platform_driver_register(&meson_nfc_driver);
}
__exit void meson_nfc_exit_module(void)
{
platform_driver_unregister(&meson_nfc_driver);
}
module_init(meson_nfc_init_module);
module_exit(meson_nfc_exit_module);
#endif
MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>");
MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");