blob: bc272fc11db99714425bcc6fbda2dfbd57c715b6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/file.h>
#include <linux/fsverity.h>
#include <linux/gfp.h>
#include <linux/kobject.h>
#include <linux/ktime.h>
#include <linux/lz4.h>
#include <linux/mm.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "data_mgmt.h"
#include "format.h"
#include "integrity.h"
#include "sysfs.h"
#include "verity.h"
static int incfs_scan_metadata_chain(struct data_file *df);
static void log_wake_up_all(struct work_struct *work)
{
struct delayed_work *dw = container_of(work, struct delayed_work, work);
struct read_log *rl = container_of(dw, struct read_log, ml_wakeup_work);
wake_up_all(&rl->ml_notif_wq);
}
static void zstd_free_workspace(struct work_struct *work)
{
struct delayed_work *dw = container_of(work, struct delayed_work, work);
struct mount_info *mi =
container_of(dw, struct mount_info, mi_zstd_cleanup_work);
mutex_lock(&mi->mi_zstd_workspace_mutex);
kvfree(mi->mi_zstd_workspace);
mi->mi_zstd_workspace = NULL;
mi->mi_zstd_stream = NULL;
mutex_unlock(&mi->mi_zstd_workspace_mutex);
}
struct mount_info *incfs_alloc_mount_info(struct super_block *sb,
struct mount_options *options,
struct path *backing_dir_path)
{
struct mount_info *mi = NULL;
int error = 0;
struct incfs_sysfs_node *node;
mi = kzalloc(sizeof(*mi), GFP_NOFS);
if (!mi)
return ERR_PTR(-ENOMEM);
mi->mi_sb = sb;
mi->mi_backing_dir_path = *backing_dir_path;
mi->mi_owner = get_current_cred();
path_get(&mi->mi_backing_dir_path);
mutex_init(&mi->mi_dir_struct_mutex);
init_waitqueue_head(&mi->mi_pending_reads_notif_wq);
init_waitqueue_head(&mi->mi_log.ml_notif_wq);
init_waitqueue_head(&mi->mi_blocks_written_notif_wq);
atomic_set(&mi->mi_blocks_written, 0);
INIT_DELAYED_WORK(&mi->mi_log.ml_wakeup_work, log_wake_up_all);
spin_lock_init(&mi->mi_log.rl_lock);
spin_lock_init(&mi->pending_read_lock);
INIT_LIST_HEAD(&mi->mi_reads_list_head);
spin_lock_init(&mi->mi_per_uid_read_timeouts_lock);
mutex_init(&mi->mi_zstd_workspace_mutex);
INIT_DELAYED_WORK(&mi->mi_zstd_cleanup_work, zstd_free_workspace);
mutex_init(&mi->mi_le_mutex);
node = incfs_add_sysfs_node(options->sysfs_name, mi);
if (IS_ERR(node)) {
error = PTR_ERR(node);
goto err;
}
mi->mi_sysfs_node = node;
error = incfs_realloc_mount_info(mi, options);
if (error)
goto err;
return mi;
err:
incfs_free_mount_info(mi);
return ERR_PTR(error);
}
int incfs_realloc_mount_info(struct mount_info *mi,
struct mount_options *options)
{
void *new_buffer = NULL;
void *old_buffer;
size_t new_buffer_size = 0;
if (options->read_log_pages != mi->mi_options.read_log_pages) {
struct read_log_state log_state;
/*
* Even though having two buffers allocated at once isn't
* usually good, allocating a multipage buffer under a spinlock
* is even worse, so let's optimize for the shorter lock
* duration. It's not end of the world if we fail to increase
* the buffer size anyway.
*/
if (options->read_log_pages > 0) {
new_buffer_size = PAGE_SIZE * options->read_log_pages;
new_buffer = kzalloc(new_buffer_size, GFP_NOFS);
if (!new_buffer)
return -ENOMEM;
}
spin_lock(&mi->mi_log.rl_lock);
old_buffer = mi->mi_log.rl_ring_buf;
mi->mi_log.rl_ring_buf = new_buffer;
mi->mi_log.rl_size = new_buffer_size;
log_state = (struct read_log_state){
.generation_id = mi->mi_log.rl_head.generation_id + 1,
};
mi->mi_log.rl_head = log_state;
mi->mi_log.rl_tail = log_state;
spin_unlock(&mi->mi_log.rl_lock);
kfree(old_buffer);
}
if (options->sysfs_name && !mi->mi_sysfs_node)
mi->mi_sysfs_node = incfs_add_sysfs_node(options->sysfs_name,
mi);
else if (!options->sysfs_name && mi->mi_sysfs_node) {
incfs_free_sysfs_node(mi->mi_sysfs_node);
mi->mi_sysfs_node = NULL;
} else if (options->sysfs_name &&
strcmp(options->sysfs_name,
kobject_name(&mi->mi_sysfs_node->isn_sysfs_node))) {
incfs_free_sysfs_node(mi->mi_sysfs_node);
mi->mi_sysfs_node = incfs_add_sysfs_node(options->sysfs_name,
mi);
}
if (IS_ERR(mi->mi_sysfs_node)) {
int err = PTR_ERR(mi->mi_sysfs_node);
mi->mi_sysfs_node = NULL;
return err;
}
mi->mi_options = *options;
return 0;
}
void incfs_free_mount_info(struct mount_info *mi)
{
int i;
if (!mi)
return;
flush_delayed_work(&mi->mi_log.ml_wakeup_work);
flush_delayed_work(&mi->mi_zstd_cleanup_work);
dput(mi->mi_index_dir);
dput(mi->mi_incomplete_dir);
path_put(&mi->mi_backing_dir_path);
mutex_destroy(&mi->mi_dir_struct_mutex);
mutex_destroy(&mi->mi_zstd_workspace_mutex);
put_cred(mi->mi_owner);
kfree(mi->mi_log.rl_ring_buf);
for (i = 0; i < ARRAY_SIZE(mi->pseudo_file_xattr); ++i)
kfree(mi->pseudo_file_xattr[i].data);
kfree(mi->mi_per_uid_read_timeouts);
incfs_free_sysfs_node(mi->mi_sysfs_node);
kfree(mi);
}
static void data_file_segment_init(struct data_file_segment *segment)
{
init_waitqueue_head(&segment->new_data_arrival_wq);
init_rwsem(&segment->rwsem);
INIT_LIST_HEAD(&segment->reads_list_head);
}
char *file_id_to_str(incfs_uuid_t id)
{
char *result = kmalloc(1 + sizeof(id.bytes) * 2, GFP_NOFS);
char *end;
if (!result)
return NULL;
end = bin2hex(result, id.bytes, sizeof(id.bytes));
*end = 0;
return result;
}
struct dentry *incfs_lookup_dentry(struct dentry *parent, const char *name)
{
struct inode *inode;
struct dentry *result = NULL;
if (!parent)
return ERR_PTR(-EFAULT);
inode = d_inode(parent);
inode_lock_nested(inode, I_MUTEX_PARENT);
result = lookup_one_len(name, parent, strlen(name));
inode_unlock(inode);
if (IS_ERR(result))
pr_warn("%s err:%ld\n", __func__, PTR_ERR(result));
return result;
}
static struct data_file *handle_mapped_file(struct mount_info *mi,
struct data_file *df)
{
char *file_id_str;
struct dentry *index_file_dentry;
struct path path;
struct file *bf;
struct data_file *result = NULL;
const struct cred *old_cred;
file_id_str = file_id_to_str(df->df_id);
if (!file_id_str)
return ERR_PTR(-ENOENT);
index_file_dentry = incfs_lookup_dentry(mi->mi_index_dir,
file_id_str);
kfree(file_id_str);
if (!index_file_dentry)
return ERR_PTR(-ENOENT);
if (IS_ERR(index_file_dentry))
return (struct data_file *)index_file_dentry;
if (!d_really_is_positive(index_file_dentry)) {
result = ERR_PTR(-ENOENT);
goto out;
}
path = (struct path) {
.mnt = mi->mi_backing_dir_path.mnt,
.dentry = index_file_dentry
};
old_cred = override_creds(mi->mi_owner);
bf = dentry_open(&path, O_RDWR | O_NOATIME | O_LARGEFILE,
current_cred());
revert_creds(old_cred);
if (IS_ERR(bf)) {
result = (struct data_file *)bf;
goto out;
}
result = incfs_open_data_file(mi, bf);
fput(bf);
if (IS_ERR(result))
goto out;
result->df_mapped_offset = df->df_metadata_off;
out:
dput(index_file_dentry);
return result;
}
struct data_file *incfs_open_data_file(struct mount_info *mi, struct file *bf)
{
struct data_file *df = NULL;
struct backing_file_context *bfc = NULL;
int md_records;
u64 size;
int error = 0;
int i;
if (!bf || !mi)
return ERR_PTR(-EFAULT);
if (!S_ISREG(bf->f_inode->i_mode))
return ERR_PTR(-EBADF);
bfc = incfs_alloc_bfc(mi, bf);
if (IS_ERR(bfc))
return ERR_CAST(bfc);
df = kzalloc(sizeof(*df), GFP_NOFS);
if (!df) {
error = -ENOMEM;
goto out;
}
mutex_init(&df->df_enable_verity);
df->df_backing_file_context = bfc;
df->df_mount_info = mi;
for (i = 0; i < ARRAY_SIZE(df->df_segments); i++)
data_file_segment_init(&df->df_segments[i]);
error = incfs_read_file_header(bfc, &df->df_metadata_off, &df->df_id,
&size, &df->df_header_flags);
if (error)
goto out;
df->df_size = size;
if (size > 0)
df->df_data_block_count = get_blocks_count_for_size(size);
if (df->df_header_flags & INCFS_FILE_MAPPED) {
struct data_file *mapped_df = handle_mapped_file(mi, df);
incfs_free_data_file(df);
return mapped_df;
}
md_records = incfs_scan_metadata_chain(df);
if (md_records < 0)
error = md_records;
out:
if (error) {
incfs_free_bfc(bfc);
if (df)
df->df_backing_file_context = NULL;
incfs_free_data_file(df);
return ERR_PTR(error);
}
return df;
}
void incfs_free_data_file(struct data_file *df)
{
u32 data_blocks_written, hash_blocks_written;
if (!df)
return;
data_blocks_written = atomic_read(&df->df_data_blocks_written);
hash_blocks_written = atomic_read(&df->df_hash_blocks_written);
if (data_blocks_written != df->df_initial_data_blocks_written ||
hash_blocks_written != df->df_initial_hash_blocks_written) {
struct backing_file_context *bfc = df->df_backing_file_context;
int error = -1;
if (bfc && !mutex_lock_interruptible(&bfc->bc_mutex)) {
error = incfs_write_status_to_backing_file(
df->df_backing_file_context,
df->df_status_offset,
data_blocks_written,
hash_blocks_written);
mutex_unlock(&bfc->bc_mutex);
}
if (error)
/* Nothing can be done, just warn */
pr_warn("incfs: failed to write status to backing file\n");
}
incfs_free_mtree(df->df_hash_tree);
incfs_free_bfc(df->df_backing_file_context);
kfree(df->df_signature);
kfree(df->df_verity_file_digest.data);
kfree(df->df_verity_signature);
mutex_destroy(&df->df_enable_verity);
kfree(df);
}
int make_inode_ready_for_data_ops(struct mount_info *mi,
struct inode *inode,
struct file *backing_file)
{
struct inode_info *node = get_incfs_node(inode);
struct data_file *df = NULL;
int err = 0;
inode_lock(inode);
if (S_ISREG(inode->i_mode)) {
if (!node->n_file) {
df = incfs_open_data_file(mi, backing_file);
if (IS_ERR(df))
err = PTR_ERR(df);
else
node->n_file = df;
}
} else
err = -EBADF;
inode_unlock(inode);
return err;
}
struct dir_file *incfs_open_dir_file(struct mount_info *mi, struct file *bf)
{
struct dir_file *dir = NULL;
if (!S_ISDIR(bf->f_inode->i_mode))
return ERR_PTR(-EBADF);
dir = kzalloc(sizeof(*dir), GFP_NOFS);
if (!dir)
return ERR_PTR(-ENOMEM);
dir->backing_dir = get_file(bf);
dir->mount_info = mi;
return dir;
}
void incfs_free_dir_file(struct dir_file *dir)
{
if (!dir)
return;
if (dir->backing_dir)
fput(dir->backing_dir);
kfree(dir);
}
static ssize_t zstd_decompress_safe(struct mount_info *mi,
struct mem_range src, struct mem_range dst)
{
ssize_t result;
ZSTD_inBuffer inbuf = {.src = src.data, .size = src.len};
ZSTD_outBuffer outbuf = {.dst = dst.data, .size = dst.len};
result = mutex_lock_interruptible(&mi->mi_zstd_workspace_mutex);
if (result)
return result;
if (!mi->mi_zstd_stream) {
unsigned int workspace_size = zstd_dstream_workspace_bound(
INCFS_DATA_FILE_BLOCK_SIZE);
void *workspace = kvmalloc(workspace_size, GFP_NOFS);
ZSTD_DStream *stream;
if (!workspace) {
result = -ENOMEM;
goto out;
}
stream = zstd_init_dstream(INCFS_DATA_FILE_BLOCK_SIZE, workspace,
workspace_size);
if (!stream) {
kvfree(workspace);
result = -EIO;
goto out;
}
mi->mi_zstd_workspace = workspace;
mi->mi_zstd_stream = stream;
}
result = ZSTD_decompressStream(mi->mi_zstd_stream, &outbuf, &inbuf) ?
-EBADMSG : outbuf.pos;
mod_delayed_work(system_wq, &mi->mi_zstd_cleanup_work,
msecs_to_jiffies(5000));
out:
mutex_unlock(&mi->mi_zstd_workspace_mutex);
return result;
}
static ssize_t decompress(struct mount_info *mi,
struct mem_range src, struct mem_range dst, int alg)
{
int result;
switch (alg) {
case INCFS_BLOCK_COMPRESSED_LZ4:
result = LZ4_decompress_safe(src.data, dst.data, src.len,
dst.len);
if (result < 0)
return -EBADMSG;
return result;
case INCFS_BLOCK_COMPRESSED_ZSTD:
return zstd_decompress_safe(mi, src, dst);
default:
WARN_ON(true);
return -EOPNOTSUPP;
}
}
static void log_read_one_record(struct read_log *rl, struct read_log_state *rs)
{
union log_record *record =
(union log_record *)((u8 *)rl->rl_ring_buf + rs->next_offset);
size_t record_size;
switch (record->full_record.type) {
case FULL:
rs->base_record = record->full_record;
record_size = sizeof(record->full_record);
break;
case SAME_FILE:
rs->base_record.block_index =
record->same_file.block_index;
rs->base_record.absolute_ts_us +=
record->same_file.relative_ts_us;
rs->base_record.uid = record->same_file.uid;
record_size = sizeof(record->same_file);
break;
case SAME_FILE_CLOSE_BLOCK:
rs->base_record.block_index +=
record->same_file_close_block.block_index_delta;
rs->base_record.absolute_ts_us +=
record->same_file_close_block.relative_ts_us;
record_size = sizeof(record->same_file_close_block);
break;
case SAME_FILE_CLOSE_BLOCK_SHORT:
rs->base_record.block_index +=
record->same_file_close_block_short.block_index_delta;
rs->base_record.absolute_ts_us +=
record->same_file_close_block_short.relative_ts_tens_us * 10;
record_size = sizeof(record->same_file_close_block_short);
break;
case SAME_FILE_NEXT_BLOCK:
++rs->base_record.block_index;
rs->base_record.absolute_ts_us +=
record->same_file_next_block.relative_ts_us;
record_size = sizeof(record->same_file_next_block);
break;
case SAME_FILE_NEXT_BLOCK_SHORT:
++rs->base_record.block_index;
rs->base_record.absolute_ts_us +=
record->same_file_next_block_short.relative_ts_tens_us * 10;
record_size = sizeof(record->same_file_next_block_short);
break;
}
rs->next_offset += record_size;
if (rs->next_offset > rl->rl_size - sizeof(*record)) {
rs->next_offset = 0;
++rs->current_pass_no;
}
++rs->current_record_no;
}
static void log_block_read(struct mount_info *mi, incfs_uuid_t *id,
int block_index)
{
struct read_log *log = &mi->mi_log;
struct read_log_state *head, *tail;
s64 now_us;
s64 relative_us;
union log_record record;
size_t record_size;
uid_t uid = current_uid().val;
int block_delta;
bool same_file, same_uid;
bool next_block, close_block, very_close_block;
bool close_time, very_close_time, very_very_close_time;
/*
* This may read the old value, but it's OK to delay the logging start
* right after the configuration update.
*/
if (READ_ONCE(log->rl_size) == 0)
return;
now_us = ktime_to_us(ktime_get());
spin_lock(&log->rl_lock);
if (log->rl_size == 0) {
spin_unlock(&log->rl_lock);
return;
}
head = &log->rl_head;
tail = &log->rl_tail;
relative_us = now_us - head->base_record.absolute_ts_us;
same_file = !memcmp(id, &head->base_record.file_id,
sizeof(incfs_uuid_t));
same_uid = uid == head->base_record.uid;
block_delta = block_index - head->base_record.block_index;
next_block = block_delta == 1;
very_close_block = block_delta >= S8_MIN && block_delta <= S8_MAX;
close_block = block_delta >= S16_MIN && block_delta <= S16_MAX;
very_very_close_time = relative_us < (1 << 5) * 10;
very_close_time = relative_us < (1 << 13);
close_time = relative_us < (1 << 16);
if (same_file && same_uid && next_block && very_very_close_time) {
record.same_file_next_block_short =
(struct same_file_next_block_short){
.type = SAME_FILE_NEXT_BLOCK_SHORT,
.relative_ts_tens_us = div_s64(relative_us, 10),
};
record_size = sizeof(struct same_file_next_block_short);
} else if (same_file && same_uid && next_block && very_close_time) {
record.same_file_next_block = (struct same_file_next_block){
.type = SAME_FILE_NEXT_BLOCK,
.relative_ts_us = relative_us,
};
record_size = sizeof(struct same_file_next_block);
} else if (same_file && same_uid && very_close_block &&
very_very_close_time) {
record.same_file_close_block_short =
(struct same_file_close_block_short){
.type = SAME_FILE_CLOSE_BLOCK_SHORT,
.relative_ts_tens_us = div_s64(relative_us, 10),
.block_index_delta = block_delta,
};
record_size = sizeof(struct same_file_close_block_short);
} else if (same_file && same_uid && close_block && very_close_time) {
record.same_file_close_block = (struct same_file_close_block){
.type = SAME_FILE_CLOSE_BLOCK,
.relative_ts_us = relative_us,
.block_index_delta = block_delta,
};
record_size = sizeof(struct same_file_close_block);
} else if (same_file && close_time) {
record.same_file = (struct same_file){
.type = SAME_FILE,
.block_index = block_index,
.relative_ts_us = relative_us,
.uid = uid,
};
record_size = sizeof(struct same_file);
} else {
record.full_record = (struct full_record){
.type = FULL,
.block_index = block_index,
.file_id = *id,
.absolute_ts_us = now_us,
.uid = uid,
};
head->base_record.file_id = *id;
record_size = sizeof(struct full_record);
}
head->base_record.block_index = block_index;
head->base_record.absolute_ts_us = now_us;
/* Advance tail beyond area we are going to overwrite */
while (tail->current_pass_no < head->current_pass_no &&
tail->next_offset < head->next_offset + record_size)
log_read_one_record(log, tail);
memcpy(((u8 *)log->rl_ring_buf) + head->next_offset, &record,
record_size);
head->next_offset += record_size;
if (head->next_offset > log->rl_size - sizeof(record)) {
head->next_offset = 0;
++head->current_pass_no;
}
++head->current_record_no;
spin_unlock(&log->rl_lock);
schedule_delayed_work(&log->ml_wakeup_work, msecs_to_jiffies(16));
}
static int validate_hash_tree(struct backing_file_context *bfc, struct file *f,
int block_index, struct mem_range data, u8 *buf)
{
struct data_file *df = get_incfs_data_file(f);
u8 stored_digest[INCFS_MAX_HASH_SIZE] = {};
u8 calculated_digest[INCFS_MAX_HASH_SIZE] = {};
struct mtree *tree = NULL;
struct incfs_df_signature *sig = NULL;
int digest_size;
int hash_block_index = block_index;
int lvl;
int res;
loff_t hash_block_offset[INCFS_MAX_MTREE_LEVELS];
size_t hash_offset_in_block[INCFS_MAX_MTREE_LEVELS];
int hash_per_block;
pgoff_t file_pages;
/*
* Memory barrier to make sure tree is fully present if added via enable
* verity
*/
tree = smp_load_acquire(&df->df_hash_tree);
sig = df->df_signature;
if (!tree || !sig)
return 0;
digest_size = tree->alg->digest_size;
hash_per_block = INCFS_DATA_FILE_BLOCK_SIZE / digest_size;
for (lvl = 0; lvl < tree->depth; lvl++) {
loff_t lvl_off = tree->hash_level_suboffset[lvl];
hash_block_offset[lvl] =
lvl_off + round_down(hash_block_index * digest_size,
INCFS_DATA_FILE_BLOCK_SIZE);
hash_offset_in_block[lvl] = hash_block_index * digest_size %
INCFS_DATA_FILE_BLOCK_SIZE;
hash_block_index /= hash_per_block;
}
memcpy(stored_digest, tree->root_hash, digest_size);
file_pages = DIV_ROUND_UP(df->df_size, INCFS_DATA_FILE_BLOCK_SIZE);
for (lvl = tree->depth - 1; lvl >= 0; lvl--) {
pgoff_t hash_page =
file_pages +
hash_block_offset[lvl] / INCFS_DATA_FILE_BLOCK_SIZE;
struct page *page = find_get_page_flags(
f->f_inode->i_mapping, hash_page, FGP_ACCESSED);
if (page && PageChecked(page)) {
u8 *addr = kmap_atomic(page);
memcpy(stored_digest, addr + hash_offset_in_block[lvl],
digest_size);
kunmap_atomic(addr);
put_page(page);
continue;
}
if (page)
put_page(page);
res = incfs_kread(bfc, buf, INCFS_DATA_FILE_BLOCK_SIZE,
hash_block_offset[lvl] + sig->hash_offset);
if (res < 0)
return res;
if (res != INCFS_DATA_FILE_BLOCK_SIZE)
return -EIO;
res = incfs_calc_digest(tree->alg,
range(buf, INCFS_DATA_FILE_BLOCK_SIZE),
range(calculated_digest, digest_size));
if (res)
return res;
if (memcmp(stored_digest, calculated_digest, digest_size)) {
int i;
bool zero = true;
pr_warn("incfs: Hash mismatch lvl:%d blk:%d\n",
lvl, block_index);
for (i = 0; i < digest_size; i++)
if (stored_digest[i]) {
zero = false;
break;
}
if (zero)
pr_debug("Note saved_digest all zero - did you forget to load the hashes?\n");
return -EBADMSG;
}
memcpy(stored_digest, buf + hash_offset_in_block[lvl],
digest_size);
page = grab_cache_page(f->f_inode->i_mapping, hash_page);
if (page) {
u8 *addr = kmap_atomic(page);
memcpy(addr, buf, INCFS_DATA_FILE_BLOCK_SIZE);
kunmap_atomic(addr);
SetPageChecked(page);
unlock_page(page);
put_page(page);
}
}
res = incfs_calc_digest(tree->alg, data,
range(calculated_digest, digest_size));
if (res)
return res;
if (memcmp(stored_digest, calculated_digest, digest_size)) {
pr_debug("Leaf hash mismatch blk:%d\n", block_index);
return -EBADMSG;
}
return 0;
}
static struct data_file_segment *get_file_segment(struct data_file *df,
int block_index)
{
int seg_idx = block_index % ARRAY_SIZE(df->df_segments);
return &df->df_segments[seg_idx];
}
static bool is_data_block_present(struct data_file_block *block)
{
return (block->db_backing_file_data_offset != 0) &&
(block->db_stored_size != 0);
}
static void convert_data_file_block(struct incfs_blockmap_entry *bme,
struct data_file_block *res_block)
{
u16 flags = le16_to_cpu(bme->me_flags);
res_block->db_backing_file_data_offset =
le16_to_cpu(bme->me_data_offset_hi);
res_block->db_backing_file_data_offset <<= 32;
res_block->db_backing_file_data_offset |=
le32_to_cpu(bme->me_data_offset_lo);
res_block->db_stored_size = le16_to_cpu(bme->me_data_size);
res_block->db_comp_alg = flags & INCFS_BLOCK_COMPRESSED_MASK;
}
static int get_data_file_block(struct data_file *df, int index,
struct data_file_block *res_block)
{
struct incfs_blockmap_entry bme = {};
struct backing_file_context *bfc = NULL;
loff_t blockmap_off = 0;
int error = 0;
if (!df || !res_block)
return -EFAULT;
blockmap_off = df->df_blockmap_off;
bfc = df->df_backing_file_context;
if (index < 0 || blockmap_off == 0)
return -EINVAL;
error = incfs_read_blockmap_entry(bfc, index, blockmap_off, &bme);
if (error)
return error;
convert_data_file_block(&bme, res_block);
return 0;
}
static int check_room_for_one_range(u32 size, u32 size_out)
{
if (size_out + sizeof(struct incfs_filled_range) > size)
return -ERANGE;
return 0;
}
static int copy_one_range(struct incfs_filled_range *range, void __user *buffer,
u32 size, u32 *size_out)
{
int error = check_room_for_one_range(size, *size_out);
if (error)
return error;
if (copy_to_user(((char __user *)buffer) + *size_out, range,
sizeof(*range)))
return -EFAULT;
*size_out += sizeof(*range);
return 0;
}
#define READ_BLOCKMAP_ENTRIES 512
int incfs_get_filled_blocks(struct data_file *df,
struct incfs_file_data *fd,
struct incfs_get_filled_blocks_args *arg)
{
int error = 0;
bool in_range = false;
struct incfs_filled_range range;
void __user *buffer = u64_to_user_ptr(arg->range_buffer);
u32 size = arg->range_buffer_size;
u32 end_index =
arg->end_index ? arg->end_index : df->df_total_block_count;
u32 *size_out = &arg->range_buffer_size_out;
int i = READ_BLOCKMAP_ENTRIES - 1;
int entries_read = 0;
struct incfs_blockmap_entry *bme;
int data_blocks_filled = 0;
int hash_blocks_filled = 0;
*size_out = 0;
if (end_index > df->df_total_block_count)
end_index = df->df_total_block_count;
arg->total_blocks_out = df->df_total_block_count;
arg->data_blocks_out = df->df_data_block_count;
if (atomic_read(&df->df_data_blocks_written) ==
df->df_data_block_count) {
pr_debug("File marked full, fast get_filled_blocks");
if (arg->start_index > end_index) {
arg->index_out = arg->start_index;
return 0;
}
arg->index_out = arg->start_index;
error = check_room_for_one_range(size, *size_out);
if (error)
return error;
range = (struct incfs_filled_range){
.begin = arg->start_index,
.end = end_index,
};
error = copy_one_range(&range, buffer, size, size_out);
if (error)
return error;
arg->index_out = end_index;
return 0;
}
bme = kzalloc(sizeof(*bme) * READ_BLOCKMAP_ENTRIES,
GFP_NOFS | __GFP_COMP);
if (!bme)
return -ENOMEM;
for (arg->index_out = arg->start_index; arg->index_out < end_index;
++arg->index_out) {
struct data_file_block dfb;
if (++i == READ_BLOCKMAP_ENTRIES) {
entries_read = incfs_read_blockmap_entries(
df->df_backing_file_context, bme,
arg->index_out, READ_BLOCKMAP_ENTRIES,
df->df_blockmap_off);
if (entries_read < 0) {
error = entries_read;
break;
}
i = 0;
}
if (i >= entries_read) {
error = -EIO;
break;
}
convert_data_file_block(bme + i, &dfb);
if (is_data_block_present(&dfb)) {
if (arg->index_out >= df->df_data_block_count)
++hash_blocks_filled;
else
++data_blocks_filled;
}
if (is_data_block_present(&dfb) == in_range)
continue;
if (!in_range) {
error = check_room_for_one_range(size, *size_out);
if (error)
break;
in_range = true;
range.begin = arg->index_out;
} else {
range.end = arg->index_out;
error = copy_one_range(&range, buffer, size, size_out);
if (error) {
/* there will be another try out of the loop,
* it will reset the index_out if it fails too
*/
break;
}
in_range = false;
}
}
if (in_range) {
range.end = arg->index_out;
error = copy_one_range(&range, buffer, size, size_out);
if (error)
arg->index_out = range.begin;
}
if (arg->start_index == 0) {
fd->fd_get_block_pos = 0;
fd->fd_filled_data_blocks = 0;
fd->fd_filled_hash_blocks = 0;
}
if (arg->start_index == fd->fd_get_block_pos) {
fd->fd_get_block_pos = arg->index_out + 1;
fd->fd_filled_data_blocks += data_blocks_filled;
fd->fd_filled_hash_blocks += hash_blocks_filled;
}
if (fd->fd_get_block_pos == df->df_total_block_count + 1) {
if (fd->fd_filled_data_blocks >
atomic_read(&df->df_data_blocks_written))
atomic_set(&df->df_data_blocks_written,
fd->fd_filled_data_blocks);
if (fd->fd_filled_hash_blocks >
atomic_read(&df->df_hash_blocks_written))
atomic_set(&df->df_hash_blocks_written,
fd->fd_filled_hash_blocks);
}
kfree(bme);
return error;
}
static bool is_read_done(struct pending_read *read)
{
return atomic_read_acquire(&read->done) != 0;
}
static void set_read_done(struct pending_read *read)
{
atomic_set_release(&read->done, 1);
}
/*
* Notifies a given data file about pending read from a given block.
* Returns a new pending read entry.
*/
static struct pending_read *add_pending_read(struct data_file *df,
int block_index)
{
struct pending_read *result = NULL;
struct data_file_segment *segment = NULL;
struct mount_info *mi = NULL;
segment = get_file_segment(df, block_index);
mi = df->df_mount_info;
result = kzalloc(sizeof(*result), GFP_NOFS);
if (!result)
return NULL;
result->file_id = df->df_id;
result->block_index = block_index;
result->timestamp_us = ktime_to_us(ktime_get());
result->uid = current_uid().val;
spin_lock(&mi->pending_read_lock);
result->serial_number = ++mi->mi_last_pending_read_number;
mi->mi_pending_reads_count++;
list_add_rcu(&result->mi_reads_list, &mi->mi_reads_list_head);
list_add_rcu(&result->segment_reads_list, &segment->reads_list_head);
spin_unlock(&mi->pending_read_lock);
wake_up_all(&mi->mi_pending_reads_notif_wq);
return result;
}
static void free_pending_read_entry(struct rcu_head *entry)
{
struct pending_read *read;
read = container_of(entry, struct pending_read, rcu);
kfree(read);
}
/* Notifies a given data file that pending read is completed. */
static void remove_pending_read(struct data_file *df, struct pending_read *read)
{
struct mount_info *mi = NULL;
if (!df || !read) {
WARN_ON(!df);
WARN_ON(!read);
return;
}
mi = df->df_mount_info;
spin_lock(&mi->pending_read_lock);
list_del_rcu(&read->mi_reads_list);
list_del_rcu(&read->segment_reads_list);
mi->mi_pending_reads_count--;
spin_unlock(&mi->pending_read_lock);
/* Don't free. Wait for readers */
call_rcu(&read->rcu, free_pending_read_entry);
}
static void notify_pending_reads(struct mount_info *mi,
struct data_file_segment *segment,
int index)
{
struct pending_read *entry = NULL;
/* Notify pending reads waiting for this block. */
rcu_read_lock();
list_for_each_entry_rcu(entry, &segment->reads_list_head,
segment_reads_list) {
if (entry->block_index == index)
set_read_done(entry);
}
rcu_read_unlock();
wake_up_all(&segment->new_data_arrival_wq);
atomic_inc(&mi->mi_blocks_written);
wake_up_all(&mi->mi_blocks_written_notif_wq);
}
static int usleep_interruptible(u32 us)
{
/* See:
* https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
* for explanation
*/
if (us < 10) {
udelay(us);
return 0;
} else if (us < 20000) {
usleep_range(us, us + us / 10);
return 0;
} else
return msleep_interruptible(us / 1000);
}
static int wait_for_data_block(struct data_file *df, int block_index,
struct data_file_block *res_block,
struct incfs_read_data_file_timeouts *timeouts)
{
struct data_file_block block = {};
struct data_file_segment *segment = NULL;
struct pending_read *read = NULL;
struct mount_info *mi = NULL;
int error;
int wait_res = 0;
unsigned int delayed_pending_us = 0, delayed_min_us = 0;
bool delayed_pending = false;
if (!df || !res_block)
return -EFAULT;
if (block_index < 0 || block_index >= df->df_data_block_count)
return -EINVAL;
if (df->df_blockmap_off <= 0 || !df->df_mount_info)
return -ENODATA;
mi = df->df_mount_info;
segment = get_file_segment(df, block_index);
error = down_read_killable(&segment->rwsem);
if (error)
return error;
/* Look up the given block */
error = get_data_file_block(df, block_index, &block);
up_read(&segment->rwsem);
if (error)
return error;
/* If the block was found, just return it. No need to wait. */
if (is_data_block_present(&block)) {
*res_block = block;
if (timeouts && timeouts->min_time_us) {
delayed_min_us = timeouts->min_time_us;
error = usleep_interruptible(delayed_min_us);
goto out;
}
return 0;
} else {
/* If it's not found, create a pending read */
if (timeouts && timeouts->max_pending_time_us) {
read = add_pending_read(df, block_index);
if (!read)
return -ENOMEM;
} else {
log_block_read(mi, &df->df_id, block_index);
return -ETIME;
}
}
/* Rest of function only applies if timeouts != NULL */
if (!timeouts) {
pr_warn("incfs: timeouts unexpectedly NULL\n");
return -EFSCORRUPTED;
}
/* Wait for notifications about block's arrival */
wait_res =
wait_event_interruptible_timeout(segment->new_data_arrival_wq,
(is_read_done(read)),
usecs_to_jiffies(timeouts->max_pending_time_us));
/* Woke up, the pending read is no longer needed. */
remove_pending_read(df, read);
if (wait_res == 0) {
/* Wait has timed out */
log_block_read(mi, &df->df_id, block_index);
return -ETIME;
}
if (wait_res < 0) {
/*
* Only ERESTARTSYS is really expected here when a signal
* comes while we wait.
*/
return wait_res;
}
delayed_pending = true;
delayed_pending_us = timeouts->max_pending_time_us -
jiffies_to_usecs(wait_res);
if (timeouts->min_pending_time_us > delayed_pending_us) {
delayed_min_us = timeouts->min_pending_time_us -
delayed_pending_us;
error = usleep_interruptible(delayed_min_us);
if (error)
return error;
}
error = down_read_killable(&segment->rwsem);
if (error)
return error;
/*
* Re-read blocks info now, it has just arrived and
* should be available.
*/
error = get_data_file_block(df, block_index, &block);
if (!error) {
if (is_data_block_present(&block))
*res_block = block;
else {
/*
* Somehow wait finished successfully but block still
* can't be found. It's not normal.
*/
pr_warn("incfs: Wait succeeded but block not found.\n");
error = -ENODATA;
}
}
up_read(&segment->rwsem);
out:
if (error)
return error;
if (delayed_pending) {
mi->mi_reads_delayed_pending++;
mi->mi_reads_delayed_pending_us +=
delayed_pending_us;
}
if (delayed_min_us) {
mi->mi_reads_delayed_min++;
mi->mi_reads_delayed_min_us += delayed_min_us;
}
return 0;
}
static int incfs_update_sysfs_error(struct file *file, int index, int result,
struct mount_info *mi, struct data_file *df)
{
int error;
if (result >= 0)
return 0;
error = mutex_lock_interruptible(&mi->mi_le_mutex);
if (error)
return error;
mi->mi_le_file_id = df->df_id;
mi->mi_le_time_us = ktime_to_us(ktime_get());
mi->mi_le_page = index;
mi->mi_le_errno = result;
mi->mi_le_uid = current_uid().val;
mutex_unlock(&mi->mi_le_mutex);
return 0;
}
ssize_t incfs_read_data_file_block(struct mem_range dst, struct file *f,
int index, struct mem_range tmp,
struct incfs_read_data_file_timeouts *timeouts)
{
loff_t pos;
ssize_t result;
size_t bytes_to_read;
struct mount_info *mi = NULL;
struct backing_file_context *bfc = NULL;
struct data_file_block block = {};
struct data_file *df = get_incfs_data_file(f);
if (!dst.data || !df || !tmp.data)
return -EFAULT;
if (tmp.len < 2 * INCFS_DATA_FILE_BLOCK_SIZE)
return -ERANGE;
mi = df->df_mount_info;
bfc = df->df_backing_file_context;
result = wait_for_data_block(df, index, &block, timeouts);
if (result < 0)
goto out;
pos = block.db_backing_file_data_offset;
if (block.db_comp_alg == COMPRESSION_NONE) {
bytes_to_read = min(dst.len, block.db_stored_size);
result = incfs_kread(bfc, dst.data, bytes_to_read, pos);
/* Some data was read, but not enough */
if (result >= 0 && result != bytes_to_read)
result = -EIO;
} else {
bytes_to_read = min(tmp.len, block.db_stored_size);
result = incfs_kread(bfc, tmp.data, bytes_to_read, pos);
if (result == bytes_to_read) {
result =
decompress(mi, range(tmp.data, bytes_to_read),
dst, block.db_comp_alg);
if (result < 0) {
const char *name =
bfc->bc_file->f_path.dentry->d_name.name;
pr_warn_once("incfs: Decompression error. %s",
name);
}
} else if (result >= 0) {
/* Some data was read, but not enough */
result = -EIO;
}
}
if (result > 0) {
int err = validate_hash_tree(bfc, f, index, dst, tmp.data);
if (err < 0)
result = err;
}
if (result >= 0)
log_block_read(mi, &df->df_id, index);
out:
if (result == -ETIME)
mi->mi_reads_failed_timed_out++;
else if (result == -EBADMSG)
mi->mi_reads_failed_hash_verification++;
else if (result < 0)
mi->mi_reads_failed_other++;
incfs_update_sysfs_error(f, index, result, mi, df);
return result;
}
ssize_t incfs_read_merkle_tree_blocks(struct mem_range dst,
struct data_file *df, size_t offset)
{
struct backing_file_context *bfc = NULL;
struct incfs_df_signature *sig = NULL;
size_t to_read = dst.len;
if (!dst.data || !df)
return -EFAULT;
sig = df->df_signature;
bfc = df->df_backing_file_context;
if (offset > sig->hash_size)
return -ERANGE;
if (offset + to_read > sig->hash_size)
to_read = sig->hash_size - offset;
return incfs_kread(bfc, dst.data, to_read, sig->hash_offset + offset);
}
int incfs_process_new_data_block(struct data_file *df,
struct incfs_fill_block *block, u8 *data)
{
struct mount_info *mi = NULL;
struct backing_file_context *bfc = NULL;
struct data_file_segment *segment = NULL;
struct data_file_block existing_block = {};
u16 flags = 0;
int error = 0;
if (!df || !block)
return -EFAULT;
bfc = df->df_backing_file_context;
mi = df->df_mount_info;
if (block->block_index >= df->df_data_block_count)
return -ERANGE;
segment = get_file_segment(df, block->block_index);
if (!segment)
return -EFAULT;
if (block->compression == COMPRESSION_LZ4)
flags |= INCFS_BLOCK_COMPRESSED_LZ4;
else if (block->compression == COMPRESSION_ZSTD)
flags |= INCFS_BLOCK_COMPRESSED_ZSTD;
else if (block->compression)
return -EINVAL;
error = down_read_killable(&segment->rwsem);
if (error)
return error;
error = get_data_file_block(df, block->block_index, &existing_block);
up_read(&segment->rwsem);
if (error)
return error;
if (is_data_block_present(&existing_block)) {
/* Block is already present, nothing to do here */
return 0;
}
error = down_write_killable(&segment->rwsem);
if (error)
return error;
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (!error) {
error = incfs_write_data_block_to_backing_file(
bfc, range(data, block->data_len), block->block_index,
df->df_blockmap_off, flags);
mutex_unlock(&bfc->bc_mutex);
}
if (!error) {
notify_pending_reads(mi, segment, block->block_index);
atomic_inc(&df->df_data_blocks_written);
}
up_write(&segment->rwsem);
if (error)
pr_debug("%d error: %d\n", block->block_index, error);
return error;
}
int incfs_read_file_signature(struct data_file *df, struct mem_range dst)
{
struct backing_file_context *bfc = df->df_backing_file_context;
struct incfs_df_signature *sig;
int read_res = 0;
if (!dst.data)
return -EFAULT;
sig = df->df_signature;
if (!sig)
return 0;
if (dst.len < sig->sig_size)
return -E2BIG;
read_res = incfs_kread(bfc, dst.data, sig->sig_size, sig->sig_offset);
if (read_res < 0)
return read_res;
if (read_res != sig->sig_size)
return -EIO;
return read_res;
}
int incfs_process_new_hash_block(struct data_file *df,
struct incfs_fill_block *block, u8 *data)
{
struct backing_file_context *bfc = NULL;
struct mount_info *mi = NULL;
struct mtree *hash_tree = NULL;
struct incfs_df_signature *sig = NULL;
loff_t hash_area_base = 0;
loff_t hash_area_size = 0;
int error = 0;
if (!df || !block)
return -EFAULT;
if (!(block->flags & INCFS_BLOCK_FLAGS_HASH))
return -EINVAL;
bfc = df->df_backing_file_context;
mi = df->df_mount_info;
if (!df)
return -ENOENT;
hash_tree = df->df_hash_tree;
sig = df->df_signature;
if (!hash_tree || !sig || sig->hash_offset == 0)
return -ENOTSUPP;
hash_area_base = sig->hash_offset;
hash_area_size = sig->hash_size;
if (hash_area_size < block->block_index * INCFS_DATA_FILE_BLOCK_SIZE
+ block->data_len) {
/* Hash block goes beyond dedicated hash area of this file. */
return -ERANGE;
}
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (!error) {
error = incfs_write_hash_block_to_backing_file(
bfc, range(data, block->data_len), block->block_index,
hash_area_base, df->df_blockmap_off, df->df_size);
mutex_unlock(&bfc->bc_mutex);
}
if (!error)
atomic_inc(&df->df_hash_blocks_written);
return error;
}
static int process_blockmap_md(struct incfs_blockmap *bm,
struct metadata_handler *handler)
{
struct data_file *df = handler->context;
int error = 0;
loff_t base_off = le64_to_cpu(bm->m_base_offset);
u32 block_count = le32_to_cpu(bm->m_block_count);
if (!df)
return -EFAULT;
if (df->df_data_block_count > block_count)
return -EBADMSG;
df->df_total_block_count = block_count;
df->df_blockmap_off = base_off;
return error;
}
static int process_file_signature_md(struct incfs_file_signature *sg,
struct metadata_handler *handler)
{
struct data_file *df = handler->context;
struct mtree *hash_tree = NULL;
int error = 0;
struct incfs_df_signature *signature =
kzalloc(sizeof(*signature), GFP_NOFS);
void *buf = NULL;
ssize_t read;
if (!signature)
return -ENOMEM;
if (!df || !df->df_backing_file_context ||
!df->df_backing_file_context->bc_file) {
error = -ENOENT;
goto out;
}
signature->hash_offset = le64_to_cpu(sg->sg_hash_tree_offset);
signature->hash_size = le32_to_cpu(sg->sg_hash_tree_size);
signature->sig_offset = le64_to_cpu(sg->sg_sig_offset);
signature->sig_size = le32_to_cpu(sg->sg_sig_size);
buf = kzalloc(signature->sig_size, GFP_NOFS);
if (!buf) {
error = -ENOMEM;
goto out;
}
read = incfs_kread(df->df_backing_file_context, buf,
signature->sig_size, signature->sig_offset);
if (read < 0) {
error = read;
goto out;
}
if (read != signature->sig_size) {
error = -EINVAL;
goto out;
}
hash_tree = incfs_alloc_mtree(range(buf, signature->sig_size),
df->df_data_block_count);
if (IS_ERR(hash_tree)) {
error = PTR_ERR(hash_tree);
hash_tree = NULL;
goto out;
}
if (hash_tree->hash_tree_area_size != signature->hash_size) {
error = -EINVAL;
goto out;
}
if (signature->hash_size > 0 &&
handler->md_record_offset <= signature->hash_offset) {
error = -EINVAL;
goto out;
}
if (handler->md_record_offset <= signature->sig_offset) {
error = -EINVAL;
goto out;
}
df->df_hash_tree = hash_tree;
hash_tree = NULL;
df->df_signature = signature;
signature = NULL;
out:
incfs_free_mtree(hash_tree);
kfree(signature);
kfree(buf);
return error;
}
static int process_status_md(struct incfs_status *is,
struct metadata_handler *handler)
{
struct data_file *df = handler->context;
df->df_initial_data_blocks_written =
le32_to_cpu(is->is_data_blocks_written);
atomic_set(&df->df_data_blocks_written,
df->df_initial_data_blocks_written);
df->df_initial_hash_blocks_written =
le32_to_cpu(is->is_hash_blocks_written);
atomic_set(&df->df_hash_blocks_written,
df->df_initial_hash_blocks_written);
df->df_status_offset = handler->md_record_offset;
return 0;
}
static int process_file_verity_signature_md(
struct incfs_file_verity_signature *vs,
struct metadata_handler *handler)
{
struct data_file *df = handler->context;
struct incfs_df_verity_signature *verity_signature;
if (!df)
return -EFAULT;
verity_signature = kzalloc(sizeof(*verity_signature), GFP_NOFS);
if (!verity_signature)
return -ENOMEM;
verity_signature->offset = le64_to_cpu(vs->vs_offset);
verity_signature->size = le32_to_cpu(vs->vs_size);
if (verity_signature->size > FS_VERITY_MAX_SIGNATURE_SIZE) {
kfree(verity_signature);
return -EFAULT;
}
df->df_verity_signature = verity_signature;
return 0;
}
static int incfs_scan_metadata_chain(struct data_file *df)
{
struct metadata_handler *handler = NULL;
int result = 0;
int records_count = 0;
int error = 0;
struct backing_file_context *bfc = NULL;
int nondata_block_count;
if (!df || !df->df_backing_file_context)
return -EFAULT;
bfc = df->df_backing_file_context;
handler = kzalloc(sizeof(*handler), GFP_NOFS);
if (!handler)
return -ENOMEM;
handler->md_record_offset = df->df_metadata_off;
handler->context = df;
handler->handle_blockmap = process_blockmap_md;
handler->handle_signature = process_file_signature_md;
handler->handle_status = process_status_md;
handler->handle_verity_signature = process_file_verity_signature_md;
while (handler->md_record_offset > 0) {
error = incfs_read_next_metadata_record(bfc, handler);
if (error) {
pr_warn("incfs: Error during reading incfs-metadata record. Offset: %lld Record #%d Error code: %d\n",
handler->md_record_offset, records_count + 1,
-error);
break;
}
records_count++;
}
if (error) {
pr_warn("incfs: Error %d after reading %d incfs-metadata records.\n",
-error, records_count);
result = error;
} else
result = records_count;
nondata_block_count = df->df_total_block_count -
df->df_data_block_count;
if (df->df_hash_tree) {
int hash_block_count = get_blocks_count_for_size(
df->df_hash_tree->hash_tree_area_size);
/*
* Files that were created with a hash tree have the hash tree
* included in the block map, i.e. nondata_block_count ==
* hash_block_count. Files whose hash tree was added by
* FS_IOC_ENABLE_VERITY will still have the original block
* count, i.e. nondata_block_count == 0.
*/
if (nondata_block_count != hash_block_count &&
nondata_block_count != 0)
result = -EINVAL;
} else if (nondata_block_count != 0) {
result = -EINVAL;
}
kfree(handler);
return result;
}
/*
* Quickly checks if there are pending reads with a serial number larger
* than a given one.
*/
bool incfs_fresh_pending_reads_exist(struct mount_info *mi, int last_number)
{
bool result = false;
spin_lock(&mi->pending_read_lock);
result = (mi->mi_last_pending_read_number > last_number) &&
(mi->mi_pending_reads_count > 0);
spin_unlock(&mi->pending_read_lock);
return result;
}
int incfs_collect_pending_reads(struct mount_info *mi, int sn_lowerbound,
struct incfs_pending_read_info *reads,
struct incfs_pending_read_info2 *reads2,
int reads_size, int *new_max_sn)
{
int reported_reads = 0;
struct pending_read *entry = NULL;
if (!mi)
return -EFAULT;
if (reads_size <= 0)
return 0;
if (!incfs_fresh_pending_reads_exist(mi, sn_lowerbound))
return 0;
rcu_read_lock();
list_for_each_entry_rcu(entry, &mi->mi_reads_list_head, mi_reads_list) {
if (entry->serial_number <= sn_lowerbound)
continue;
if (reads) {
reads[reported_reads].file_id = entry->file_id;
reads[reported_reads].block_index = entry->block_index;
reads[reported_reads].serial_number =
entry->serial_number;
reads[reported_reads].timestamp_us =
entry->timestamp_us;
}
if (reads2) {
reads2[reported_reads].file_id = entry->file_id;
reads2[reported_reads].block_index = entry->block_index;
reads2[reported_reads].serial_number =
entry->serial_number;
reads2[reported_reads].timestamp_us =
entry->timestamp_us;
reads2[reported_reads].uid = entry->uid;
}
if (entry->serial_number > *new_max_sn)
*new_max_sn = entry->serial_number;
reported_reads++;
if (reported_reads >= reads_size)
break;
}
rcu_read_unlock();
return reported_reads;
}
struct read_log_state incfs_get_log_state(struct mount_info *mi)
{
struct read_log *log = &mi->mi_log;
struct read_log_state result;
spin_lock(&log->rl_lock);
result = log->rl_head;
spin_unlock(&log->rl_lock);
return result;
}
int incfs_get_uncollected_logs_count(struct mount_info *mi,
const struct read_log_state *state)
{
struct read_log *log = &mi->mi_log;
u32 generation;
u64 head_no, tail_no;
spin_lock(&log->rl_lock);
tail_no = log->rl_tail.current_record_no;
head_no = log->rl_head.current_record_no;
generation = log->rl_head.generation_id;
spin_unlock(&log->rl_lock);
if (generation != state->generation_id)
return head_no - tail_no;
else
return head_no - max_t(u64, tail_no, state->current_record_no);
}
int incfs_collect_logged_reads(struct mount_info *mi,
struct read_log_state *state,
struct incfs_pending_read_info *reads,
struct incfs_pending_read_info2 *reads2,
int reads_size)
{
int dst_idx;
struct read_log *log = &mi->mi_log;
struct read_log_state *head, *tail;
spin_lock(&log->rl_lock);
head = &log->rl_head;
tail = &log->rl_tail;
if (state->generation_id != head->generation_id) {
pr_debug("read ptr is wrong generation: %u/%u",
state->generation_id, head->generation_id);
*state = (struct read_log_state){
.generation_id = head->generation_id,
};
}
if (state->current_record_no < tail->current_record_no) {
pr_debug("read ptr is behind, moving: %u/%u -> %u/%u\n",
(u32)state->next_offset,
(u32)state->current_pass_no,
(u32)tail->next_offset, (u32)tail->current_pass_no);
*state = *tail;
}
for (dst_idx = 0; dst_idx < reads_size; dst_idx++) {
if (state->current_record_no == head->current_record_no)
break;
log_read_one_record(log, state);
if (reads)
reads[dst_idx] = (struct incfs_pending_read_info) {
.file_id = state->base_record.file_id,
.block_index = state->base_record.block_index,
.serial_number = state->current_record_no,
.timestamp_us =
state->base_record.absolute_ts_us,
};
if (reads2)
reads2[dst_idx] = (struct incfs_pending_read_info2) {
.file_id = state->base_record.file_id,
.block_index = state->base_record.block_index,
.serial_number = state->current_record_no,
.timestamp_us =
state->base_record.absolute_ts_us,
.uid = state->base_record.uid,
};
}
spin_unlock(&log->rl_lock);
return dst_idx;
}