blob: 6182b619f891b96beb51737a9cb6868ad36a55fd [file] [log] [blame]
/*
* drivers/amlogic/crypto/aml-aes-dma.c
*
* Copyright (C) 2017 Amlogic, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include <linux/of_platform.h>
#include <crypto/skcipher.h>
#include "aml-crypto-dma.h"
/* AES flags */
#define AES_FLAGS_MODE_MASK 0x07
#define AES_FLAGS_ENCRYPT BIT(0)
#define AES_FLAGS_CBC BIT(1)
#define AES_FLAGS_CTR BIT(2)
#define AES_FLAGS_INIT BIT(8)
#define AES_FLAGS_DMA BIT(9)
#define AES_FLAGS_FAST BIT(10)
#define AES_FLAGS_BUSY BIT(11)
#define AML_AES_QUEUE_LENGTH 50
#define AML_AES_DMA_THRESHOLD 16
#define SUPPORT_FAST_DMA 0
struct aml_aes_dev;
struct aml_aes_ctx {
struct aml_aes_dev *dd;
int keylen;
u32 key[AES_KEYSIZE_256 / sizeof(u32)];
u16 block_size;
struct crypto_skcipher *fallback;
};
struct aml_aes_reqctx {
unsigned long mode;
};
struct aml_aes_dev {
struct list_head list;
struct aml_aes_ctx *ctx;
struct device *dev;
int irq;
unsigned long flags;
int err;
struct aml_dma_dev *dma;
uint32_t thread;
uint32_t status;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
struct ablkcipher_request *req;
size_t total;
size_t fast_total;
struct scatterlist *in_sg;
size_t in_offset;
struct scatterlist *out_sg;
size_t out_offset;
size_t buflen;
size_t dma_size;
void *buf_in;
dma_addr_t dma_addr_in;
void *buf_out;
dma_addr_t dma_addr_out;
void *descriptor;
dma_addr_t dma_descript_tab;
uint32_t fast_nents;
};
struct aml_aes_drv {
struct list_head dev_list;
spinlock_t lock;
};
struct aml_aes_info {
struct crypto_alg *algs;
uint32_t num_algs;
};
static struct aml_aes_drv aml_aes = {
.dev_list = LIST_HEAD_INIT(aml_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(aml_aes.lock),
};
static int set_aes_key_iv(struct aml_aes_dev *dd, u32 *key,
uint32_t keylen, u32 *iv, uint8_t swap)
{
struct device *dev = dd->dev;
struct dma_dsc *dsc = dd->descriptor;
uint32_t *key_iv = kzalloc(DMA_KEY_IV_BUF_SIZE, GFP_ATOMIC);
uint32_t *piv = key_iv + 8;
int32_t len = keylen;
dma_addr_t dma_addr_key = 0;
uint32_t i = 0;
if (!key_iv) {
dev_err(dev, "error allocating key_iv buffer\n");
return -EINVAL;
}
memcpy(key_iv, key, keylen);
if (iv) {
if (swap) {
*(piv + 3) = swap_ulong32(*iv);
*(piv + 2) = swap_ulong32(*(iv + 1));
*(piv + 1) = swap_ulong32(*(iv + 2));
*(piv + 0) = swap_ulong32(*(iv + 3));
} else {
memcpy(piv, iv, 16);
}
}
len = DMA_KEY_IV_BUF_SIZE; /* full key storage */
dma_addr_key = dma_map_single(dd->dev, key_iv,
DMA_KEY_IV_BUF_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dma_addr_key)) {
dev_err(dev, "error mapping dma_addr_key\n");
kfree(key_iv);
return -EINVAL;
}
while (len > 0) {
dsc[i].src_addr = (uint32_t)dma_addr_key + i * 16;
dsc[i].tgt_addr = i * 16;
dsc[i].dsc_cfg.d32 = 0;
dsc[i].dsc_cfg.b.length = len > 16 ? 16 : len;
dsc[i].dsc_cfg.b.mode = MODE_KEY;
dsc[i].dsc_cfg.b.eoc = 0;
dsc[i].dsc_cfg.b.owner = 1;
i++;
len -= 16;
}
dsc[i - 1].dsc_cfg.b.eoc = 1;
dma_sync_single_for_device(dd->dev, dd->dma_descript_tab,
PAGE_SIZE, DMA_TO_DEVICE);
aml_write_crypto_reg(dd->thread,
(uintptr_t) dd->dma_descript_tab | 2);
aml_dma_debug(dsc, i, __func__, dd->thread, dd->status);
while (aml_read_crypto_reg(dd->status) == 0)
;
aml_write_crypto_reg(dd->status, 0xf);
dma_unmap_single(dd->dev, dma_addr_key,
DMA_KEY_IV_BUF_SIZE, DMA_TO_DEVICE);
kfree(key_iv);
return 0;
}
static size_t aml_aes_sg_copy(struct scatterlist **sg, size_t *offset,
void *buf, size_t buflen, size_t total, int out)
{
size_t count, off = 0;
while (buflen && total) {
count = min((*sg)->length - *offset, total);
count = min(count, buflen);
if (!count)
return off;
scatterwalk_map_and_copy(buf + off, *sg, *offset, count, out);
off += count;
buflen -= count;
*offset += count;
total -= count;
if (*offset == (*sg)->length) {
*sg = sg_next(*sg);
if (*sg)
*offset = 0;
else
total = 0;
}
}
return off;
}
#if SUPPORT_FAST_DMA
static size_t aml_aes_sg_dma(struct aml_aes_dev *dd, struct dma_dsc *dsc,
uint32_t *nents, size_t total)
{
struct device *dev = dd->dev;
size_t count = 0;
size_t process = 0;
size_t count_total = 0;
size_t count_sg = 0;
uint32_t i = 0;
int err = 0;
struct scatterlist *in_sg = dd->in_sg;
struct scatterlist *out_sg = dd->out_sg;
dma_addr_t addr_in, addr_out;
while (total && in_sg && out_sg && (in_sg->length == out_sg->length)
&& IS_ALIGNED(in_sg->length, AES_BLOCK_SIZE)
&& *nents < MAX_NUM_TABLES) {
process = min_t(unsigned int, total, in_sg->length);
count += process;
*nents += 1;
if (process != in_sg->length)
dd->out_offset = dd->in_offset = in_sg->length;
total -= process;
in_sg = sg_next(in_sg);
out_sg = sg_next(out_sg);
}
if (dd->in_sg != dd->out_sg) {
err = dma_map_sg(dd->dev, dd->in_sg, *nents, DMA_TO_DEVICE);
if (!err) {
dev_err(dev, "dma_map_sg() error\n");
return 0;
}
err = dma_map_sg(dd->dev, dd->out_sg, *nents,
DMA_FROM_DEVICE);
if (!err) {
dev_err(dev, "dma_map_sg() error\n");
dma_unmap_sg(dd->dev, dd->in_sg, *nents,
DMA_TO_DEVICE);
return 0;
}
} else {
err = dma_map_sg(dd->dev, dd->in_sg, *nents,
DMA_BIDIRECTIONAL);
if (!err) {
dev_err(dev, "dma_map_sg() error\n");
return 0;
}
dma_sync_sg_for_device(dd->dev, dd->in_sg,
*nents, DMA_TO_DEVICE);
}
in_sg = dd->in_sg;
out_sg = dd->out_sg;
count_total = count;
for (i = 0; i < *nents; i++) {
count_sg = count_total > sg_dma_len(in_sg) ?
sg_dma_len(in_sg) : count_total;
addr_in = sg_dma_address(in_sg);
addr_out = sg_dma_address(out_sg);
dsc[i].src_addr = (uintptr_t)addr_in;
dsc[i].tgt_addr = (uintptr_t)addr_out;
dsc[i].dsc_cfg.d32 = 0;
dsc[i].dsc_cfg.b.length = count_sg;
in_sg = sg_next(in_sg);
out_sg = sg_next(out_sg);
count_total -= count_sg;
}
return count;
}
#endif
static struct aml_aes_dev *aml_aes_find_dev(struct aml_aes_ctx *ctx)
{
struct aml_aes_dev *aes_dd = NULL;
struct aml_aes_dev *tmp;
spin_lock_bh(&aml_aes.lock);
if (!ctx->dd) {
list_for_each_entry(tmp, &aml_aes.dev_list, list) {
aes_dd = tmp;
break;
}
ctx->dd = aes_dd;
} else {
aes_dd = ctx->dd;
}
spin_unlock_bh(&aml_aes.lock);
return aes_dd;
}
static int aml_aes_hw_init(struct aml_aes_dev *dd)
{
if (!(dd->flags & AES_FLAGS_INIT)) {
dd->flags |= AES_FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static void aml_aes_finish_req(struct aml_aes_dev *dd, int32_t err)
{
struct ablkcipher_request *req = dd->req;
unsigned long flags;
dd->flags &= ~AES_FLAGS_BUSY;
spin_lock_irqsave(&dd->dma->dma_lock, flags);
dd->dma->dma_busy &= ~DMA_FLAG_MAY_OCCUPY;
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
req->base.complete(&req->base, err);
}
static int aml_aes_crypt_dma(struct aml_aes_dev *dd, struct dma_dsc *dsc,
uint32_t nents)
{
uint32_t op_mode = OP_MODE_ECB;
uint32_t i = 0;
unsigned long flags;
if (dd->flags & AES_FLAGS_CBC)
op_mode = OP_MODE_CBC;
else if (dd->flags & AES_FLAGS_CTR)
op_mode = OP_MODE_CTR;
for (i = 0; i < nents; i++) {
dsc[i].dsc_cfg.b.enc_sha_only = dd->flags & AES_FLAGS_ENCRYPT;
dsc[i].dsc_cfg.b.mode =
((dd->ctx->keylen == AES_KEYSIZE_128) ? MODE_AES128 :
((dd->ctx->keylen == AES_KEYSIZE_192) ?
MODE_AES192 : MODE_AES256));
dsc[i].dsc_cfg.b.op_mode = op_mode;
dsc[i].dsc_cfg.b.eoc = (i == (nents - 1));
dsc[i].dsc_cfg.b.owner = 1;
}
dma_sync_single_for_device(dd->dev, dd->dma_descript_tab,
PAGE_SIZE, DMA_TO_DEVICE);
aml_dma_debug(dsc, nents, __func__, dd->thread, dd->status);
/* Start DMA transfer */
spin_lock_irqsave(&dd->dma->dma_lock, flags);
dd->dma->dma_busy |= DMA_FLAG_AES_IN_USE;
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
dd->flags |= AES_FLAGS_DMA;
aml_write_crypto_reg(dd->thread, dd->dma_descript_tab | 2);
return -EINPROGRESS;
}
static int aml_aes_crypt_dma_start(struct aml_aes_dev *dd)
{
int err = 0, fast = 0;
int in, out;
size_t count;
dma_addr_t addr_in, addr_out;
struct dma_dsc *dsc = dd->descriptor;
uint32_t nents;
/* fast dma */
if ((!dd->in_offset) && (!dd->out_offset)) {
/* check for alignment */
in = IS_ALIGNED(dd->in_sg->length, dd->ctx->block_size);
out = IS_ALIGNED(dd->out_sg->length, dd->ctx->block_size);
fast = in && out;
if (dd->in_sg->length != dd->out_sg->length
|| dd->total < dd->ctx->block_size)
fast = 0;
dd->fast_nents = 0;
}
#if SUPPORT_FAST_DMA
// fast = 0;
if (fast) {
count = aml_aes_sg_dma(dd, dsc, &dd->fast_nents, dd->total);
dd->flags |= AES_FLAGS_FAST;
nents = dd->fast_nents;
dd->fast_total = count;
dbgp(1, "use fast dma: n:%u, t:%zd\n",
dd->fast_nents, dd->fast_total);
} else
#endif
{
/* slow dma */
/* use cache buffers */
count = aml_aes_sg_copy(&dd->in_sg, &dd->in_offset,
dd->buf_in, dd->buflen, dd->total, 0);
addr_in = dd->dma_addr_in;
addr_out = dd->dma_addr_out;
dd->dma_size = count;
dma_sync_single_for_device(dd->dev, addr_in,
((dd->dma_size + AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE) * AES_BLOCK_SIZE,
DMA_TO_DEVICE);
dsc->src_addr = (uint32_t)addr_in;
dsc->tgt_addr = (uint32_t)addr_out;
dsc->dsc_cfg.d32 = 0;
/* We align data to AES_BLOCK_SIZE for old aml-dma devices */
dsc->dsc_cfg.b.length = ((count + AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
nents = 1;
dd->flags &= ~AES_FLAGS_FAST;
dbgp(1, "use slow dma: cnt:%zd, len:%d\n",
count, dsc->dsc_cfg.b.length);
}
dd->total -= count;
err = aml_aes_crypt_dma(dd, dsc, nents);
return err;
}
static int aml_aes_write_ctrl(struct aml_aes_dev *dd)
{
int err = 0;
err = aml_aes_hw_init(dd);
if (err)
return err;
if (dd->flags & AES_FLAGS_CBC)
err = set_aes_key_iv(dd, dd->ctx->key, dd->ctx->keylen,
dd->req->info, 0);
else if (dd->flags & AES_FLAGS_CTR)
err = set_aes_key_iv(dd, dd->ctx->key, dd->ctx->keylen,
dd->req->info, 1);
else
err = set_aes_key_iv(dd, dd->ctx->key, dd->ctx->keylen,
NULL, 0);
return err;
}
static int aml_aes_handle_queue(struct aml_aes_dev *dd,
struct ablkcipher_request *req)
{
struct device *dev = dd->dev;
struct crypto_async_request *async_req, *backlog;
struct aml_aes_ctx *ctx;
struct aml_aes_reqctx *rctx;
unsigned long flags;
int32_t err, ret = 0;
spin_lock_irqsave(&dd->dma->dma_lock, flags);
if (req)
ret = ablkcipher_enqueue_request(&dd->queue, req);
if ((dd->flags & AES_FLAGS_BUSY) || dd->dma->dma_busy) {
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req) {
dd->flags |= AES_FLAGS_BUSY;
dd->dma->dma_busy |= DMA_FLAG_MAY_OCCUPY;
}
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ablkcipher_request_cast(async_req);
/* assign new request to device */
dd->req = req;
dd->total = req->nbytes;
dd->in_offset = 0;
dd->in_sg = req->src;
dd->out_offset = 0;
dd->out_sg = req->dst;
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
rctx->mode &= AES_FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~AES_FLAGS_MODE_MASK) | rctx->mode;
dd->ctx = ctx;
ctx->dd = dd;
err = aml_aes_write_ctrl(dd);
if (!err) {
if (dd->total % AML_AES_DMA_THRESHOLD == 0 ||
(dd->flags & AES_FLAGS_CTR))
err = aml_aes_crypt_dma_start(dd);
else {
dev_err(dev, "size %zd is not multiple of %d",
dd->total, AML_AES_DMA_THRESHOLD);
err = -EINVAL;
}
}
if (err != -EINPROGRESS) {
/* aes_task will not finish it, so do it here */
aml_aes_finish_req(dd, err);
tasklet_schedule(&dd->queue_task);
}
return ret;
}
static int aml_aes_crypt_dma_stop(struct aml_aes_dev *dd)
{
struct device *dev = dd->dev;
int err = -EINVAL;
size_t count;
if (dd->flags & AES_FLAGS_DMA) {
err = 0;
dma_sync_single_for_cpu(dd->dev, dd->dma_descript_tab,
PAGE_SIZE, DMA_FROM_DEVICE);
if (dd->flags & AES_FLAGS_FAST) {
if (dd->in_sg != dd->out_sg) {
dma_unmap_sg(dd->dev, dd->out_sg,
dd->fast_nents, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg,
dd->fast_nents, DMA_TO_DEVICE);
} else {
dma_sync_sg_for_cpu(dd->dev, dd->in_sg,
dd->fast_nents, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg,
dd->fast_nents, DMA_BIDIRECTIONAL);
}
if (dd->flags & AES_FLAGS_CBC)
scatterwalk_map_and_copy(dd->req->info,
dd->out_sg, dd->fast_total - 16,
16, 0);
} else {
dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
((dd->dma_size + AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE) * AES_BLOCK_SIZE,
DMA_FROM_DEVICE);
/* copy data */
count = aml_aes_sg_copy(&dd->out_sg, &dd->out_offset,
dd->buf_out, dd->buflen,
dd->dma_size, 1);
if (count != dd->dma_size) {
err = -EINVAL;
dev_err(dev, "not all data converted: %zu\n",
count);
}
/* install IV for CBC */
if (dd->flags & AES_FLAGS_CBC) {
memcpy(dd->req->info, dd->buf_out +
dd->dma_size - 16, 16);
}
}
dd->flags &= ~AES_FLAGS_DMA;
}
return err;
}
static int aml_aes_buff_init(struct aml_aes_dev *dd)
{
struct device *dev = dd->dev;
int err = -ENOMEM;
dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->descriptor = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buflen = PAGE_SIZE;
dd->buflen &= ~(AES_BLOCK_SIZE - 1);
if (!dd->buf_in || !dd->buf_out || !dd->descriptor) {
dev_err(dev, "unable to alloc pages.\n");
goto err_alloc;
}
/* MAP here */
dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in,
dd->buflen, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
dev_err(dev, "dma %zd bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_in;
}
dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out,
dd->buflen, DMA_FROM_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
dev_err(dev, "dma %zd bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_out;
}
dd->dma_descript_tab = dma_map_single(dd->dev, dd->descriptor,
PAGE_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_descript_tab)) {
dev_err(dev, "dma descriptor error\n");
err = -EINVAL;
goto err_map_descriptor;
}
return 0;
err_map_descriptor:
dma_unmap_single(dd->dev, dd->dma_descript_tab, PAGE_SIZE,
DMA_TO_DEVICE);
err_map_out:
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
err_map_in:
free_page((uintptr_t)dd->buf_out);
free_page((uintptr_t)dd->buf_in);
free_page((uintptr_t)dd->descriptor);
err_alloc:
if (err)
dev_err(dev, "error: %d\n", err);
return err;
}
static void aml_aes_buff_cleanup(struct aml_aes_dev *dd)
{
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
dma_unmap_single(dd->dev, dd->dma_descript_tab, PAGE_SIZE,
DMA_TO_DEVICE);
free_page((uintptr_t)dd->buf_out);
free_page((uintptr_t)dd->buf_in);
free_page((uintptr_t)dd->descriptor);
}
static int aml_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct aml_aes_ctx *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
struct aml_aes_reqctx *rctx = ablkcipher_request_ctx(req);
struct aml_aes_dev *dd;
int ret;
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) &&
!(mode & AES_FLAGS_CTR)) {
pr_err("request size is not exact amount of AES blocks\n");
return -EINVAL;
}
ctx->block_size = AES_BLOCK_SIZE;
if (ctx->fallback && ctx->keylen == AES_KEYSIZE_192) {
char *__subreq_desc = kzalloc(sizeof(struct skcipher_request) +
crypto_skcipher_reqsize(ctx->fallback),
GFP_ATOMIC);
struct skcipher_request *subreq = (void *)__subreq_desc;
if (!subreq)
return -ENOMEM;
skcipher_request_set_tfm(subreq, ctx->fallback);
skcipher_request_set_callback(subreq, req->base.flags, NULL,
NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->nbytes, req->info);
if (mode & AES_FLAGS_ENCRYPT)
ret = crypto_skcipher_encrypt(subreq);
else
ret = crypto_skcipher_decrypt(subreq);
skcipher_request_free(subreq);
return ret;
}
dd = aml_aes_find_dev(ctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
return aml_aes_handle_queue(dd, req);
}
static int aml_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aml_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
pr_err("aml-aes:invalid keysize: %d\n", keylen);
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int aml_aes_lite_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aml_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
int ret = 0;
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
pr_err("aml-aes-lite:invalid keysize: %d\n", keylen);
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
if (keylen == AES_KEYSIZE_192) {
crypto_skcipher_clear_flags(ctx->fallback, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_skcipher_setkey(ctx->fallback, key, keylen);
}
return ret;
}
static int aml_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT);
}
static int aml_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
0);
}
static int aml_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
}
static int aml_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_CBC);
}
static int aml_aes_ctr_encrypt(struct ablkcipher_request *req)
{
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
}
static int aml_aes_ctr_decrypt(struct ablkcipher_request *req)
{
/* XXX: use encrypt to replace for decrypt */
return aml_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
}
static int aml_aes_cra_init(struct crypto_tfm *tfm)
{
struct aml_aes_ctx *ctx = crypto_tfm_ctx(tfm);
tfm->crt_ablkcipher.reqsize = sizeof(struct aml_aes_reqctx);
ctx->fallback = NULL;
return 0;
}
static void aml_aes_cra_exit(struct crypto_tfm *tfm)
{
}
static struct crypto_alg aes_algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-aml",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_cra_init,
.cra_exit = aml_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_setkey,
.encrypt = aml_aes_ecb_encrypt,
.decrypt = aml_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-aml",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_cra_init,
.cra_exit = aml_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_setkey,
.encrypt = aml_aes_cbc_encrypt,
.decrypt = aml_aes_cbc_decrypt,
}
},
{
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-aml",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_cra_init,
.cra_exit = aml_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_setkey,
.encrypt = aml_aes_ctr_encrypt,
.decrypt = aml_aes_ctr_decrypt,
}
}
};
static int aml_aes_lite_cra_init(struct crypto_tfm *tfm)
{
struct aml_aes_ctx *ctx = crypto_tfm_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(tfm);
const u32 flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
tfm->crt_ablkcipher.reqsize = sizeof(struct aml_aes_reqctx);
/* Allocate a fallback and abort if it failed. */
ctx->fallback = crypto_alloc_skcipher(alg_name, 0,
flags);
if (IS_ERR(ctx->fallback)) {
pr_err("aml-aes: fallback '%s' could not be loaded.\n",
alg_name);
return PTR_ERR(ctx->fallback);
}
return 0;
}
static void aml_aes_lite_cra_exit(struct crypto_tfm *tfm)
{
struct aml_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->fallback)
crypto_free_skcipher(ctx->fallback);
ctx->fallback = NULL;
}
static struct crypto_alg aes_lite_algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-lite-aml",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aml_aes_lite_setkey,
.encrypt = aml_aes_ecb_encrypt,
.decrypt = aml_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-lite-aml",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_lite_setkey,
.encrypt = aml_aes_cbc_encrypt,
.decrypt = aml_aes_cbc_decrypt,
}
},
{
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-lite-aml",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aml_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = aml_aes_lite_cra_init,
.cra_exit = aml_aes_lite_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aml_aes_lite_setkey,
.encrypt = aml_aes_ctr_encrypt,
.decrypt = aml_aes_ctr_decrypt,
}
},
};
struct aml_aes_info aml_gxl_aes = {
.algs = aes_algs,
.num_algs = ARRAY_SIZE(aes_algs),
};
struct aml_aes_info aml_aes_lite = {
.algs = aes_lite_algs,
.num_algs = ARRAY_SIZE(aes_lite_algs),
};
#ifdef CONFIG_OF
static const struct of_device_id aml_aes_dt_match[] = {
{ .compatible = "amlogic,aes_dma",
.data = &aml_gxl_aes,
},
{ .compatible = "amlogic,aes_g12a_dma",
.data = &aml_aes_lite,
},
{},
};
#else
#define aml_aes_dt_match NULL
#endif
static void aml_aes_queue_task(unsigned long data)
{
struct aml_aes_dev *dd = (struct aml_aes_dev *)data;
aml_aes_handle_queue(dd, NULL);
}
static void aml_aes_done_task(unsigned long data)
{
struct aml_aes_dev *dd = (struct aml_aes_dev *) data;
struct device *dev = dd->dev;
int err;
err = aml_aes_crypt_dma_stop(dd);
aml_dma_debug(dd->descriptor, dd->fast_nents ?
dd->fast_nents : 1, __func__, dd->thread, dd->status);
err = dd->err ? dd->err : err;
if (dd->total && !err) {
if (dd->flags & AES_FLAGS_FAST) {
uint32_t i = 0;
for (i = 0; i < dd->fast_nents; i++) {
dd->in_sg = sg_next(dd->in_sg);
dd->out_sg = sg_next(dd->out_sg);
if (!dd->in_sg || !dd->out_sg) {
dev_err(dev, "aml-aes: sg invalid\n");
err = -EINVAL;
break;
}
}
}
if (!err)
err = aml_aes_crypt_dma_start(dd);
if (err == -EINPROGRESS)
return; /* DMA started. Not fininishing. */
}
aml_aes_finish_req(dd, err);
aml_aes_handle_queue(dd, NULL);
}
static irqreturn_t aml_aes_irq(int irq, void *dev_id)
{
struct aml_aes_dev *aes_dd = dev_id;
struct device *dev = aes_dd->dev;
uint8_t status = aml_read_crypto_reg(aes_dd->status);
if (status) {
if (status == 0x1)
dev_err(dev, "irq overwrite\n");
if (aes_dd->dma->dma_busy == DMA_FLAG_MAY_OCCUPY)
return IRQ_HANDLED;
if ((aes_dd->flags & AES_FLAGS_DMA) &&
(aes_dd->dma->dma_busy & DMA_FLAG_AES_IN_USE)) {
aml_write_crypto_reg(aes_dd->status, 0xf);
aes_dd->dma->dma_busy &= ~DMA_FLAG_AES_IN_USE;
tasklet_schedule(&aes_dd->done_task);
return IRQ_HANDLED;
} else {
return IRQ_NONE;
}
}
return IRQ_NONE;
}
static void aml_aes_unregister_algs(struct aml_aes_dev *dd,
const struct aml_aes_info *aes_info)
{
int i;
for (i = 0; i < aes_info->num_algs; i++)
crypto_unregister_alg(&(aes_info->algs[i]));
}
static int aml_aes_register_algs(struct aml_aes_dev *dd,
const struct aml_aes_info *aes_info)
{
int err, i, j;
for (i = 0; i < aes_info->num_algs; i++) {
err = crypto_register_alg(&(aes_info->algs[i]));
if (err)
goto err_aes_algs;
}
return 0;
err_aes_algs:
for (j = 0; j < i; j++)
crypto_unregister_alg(&(aes_info->algs[j]));
return err;
}
static int aml_aes_probe(struct platform_device *pdev)
{
struct aml_aes_dev *aes_dd;
struct device *dev = &pdev->dev;
const struct of_device_id *match;
int err = -EPERM;
const struct aml_aes_info *aes_info = NULL;
aes_dd = devm_kzalloc(dev, sizeof(struct aml_aes_dev), GFP_KERNEL);
if (aes_dd == NULL) {
err = -ENOMEM;
goto aes_dd_err;
}
match = of_match_device(aml_aes_dt_match, &pdev->dev);
if (!match) {
dev_err(dev, "%s: cannot find match dt\n", __func__);
err = -EINVAL;
goto aes_dd_err;
}
aes_info = match->data;
aes_dd->dev = dev;
aes_dd->dma = dev_get_drvdata(dev->parent);
aes_dd->thread = aes_dd->dma->thread;
aes_dd->status = aes_dd->dma->status;
aes_dd->irq = aes_dd->dma->irq;
platform_set_drvdata(pdev, aes_dd);
INIT_LIST_HEAD(&aes_dd->list);
tasklet_init(&aes_dd->done_task, aml_aes_done_task,
(unsigned long)aes_dd);
tasklet_init(&aes_dd->queue_task, aml_aes_queue_task,
(unsigned long)aes_dd);
crypto_init_queue(&aes_dd->queue, AML_AES_QUEUE_LENGTH);
err = devm_request_irq(dev, aes_dd->irq, aml_aes_irq, IRQF_SHARED,
"aml-aes", aes_dd);
if (err) {
dev_err(dev, "unable to request aes irq.\n");
goto aes_irq_err;
}
err = aml_aes_hw_init(aes_dd);
if (err)
goto err_aes_buff;
err = aml_aes_buff_init(aes_dd);
if (err)
goto err_aes_buff;
spin_lock(&aml_aes.lock);
list_add_tail(&aes_dd->list, &aml_aes.dev_list);
spin_unlock(&aml_aes.lock);
err = aml_aes_register_algs(aes_dd, aes_info);
if (err)
goto err_algs;
dev_info(dev, "Aml AES_dma\n");
return 0;
err_algs:
spin_lock(&aml_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&aml_aes.lock);
aml_aes_buff_cleanup(aes_dd);
err_aes_buff:
aes_irq_err:
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
aes_dd_err:
dev_err(dev, "initialization failed.\n");
return err;
}
static int aml_aes_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
static struct aml_aes_dev *aes_dd;
const struct of_device_id *match;
const struct aml_aes_info *aes_info = NULL;
aes_dd = platform_get_drvdata(pdev);
if (!aes_dd)
return -ENODEV;
match = of_match_device(aml_aes_dt_match, &pdev->dev);
if (!match) {
dev_err(dev, "%s: cannot find match dt\n", __func__);
return -EINVAL;
}
aes_info = match->data;
spin_lock(&aml_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&aml_aes.lock);
aml_aes_unregister_algs(aes_dd, aes_info);
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
return 0;
}
static struct platform_driver aml_aes_driver = {
.probe = aml_aes_probe,
.remove = aml_aes_remove,
.driver = {
.name = "aml_aes_dma",
.owner = THIS_MODULE,
.of_match_table = aml_aes_dt_match,
},
};
module_platform_driver(aml_aes_driver);
MODULE_DESCRIPTION("Aml AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("matthew.shyu <matthew.shyu@amlogic.com>");