blob: 3a39ef2609c9ed0263e564e806a50563f8937abc [file] [log] [blame]
/*
* drivers/amlogic/crypto/aml-sha-dma.c
*
* Copyright (C) 2017 Amlogic, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/sha.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include "aml-crypto-dma.h"
/* SHA flags */
#define SHA_FLAGS_BUSY BIT(0)
#define SHA_FLAGS_DMA_ACTIVE BIT(1)
#define SHA_FLAGS_OUTPUT_READY BIT(2)
#define SHA_FLAGS_INIT BIT(3)
#define SHA_FLAGS_NEED_KEY BIT(4)
#define SHA_FLAGS_FINAL BIT(16)
#define SHA_FLAGS_SHA1 BIT(18)
#define SHA_FLAGS_SHA224 BIT(19)
#define SHA_FLAGS_SHA256 BIT(20)
#define SHA_FLAGS_ERROR BIT(21)
#define SHA_FLAGS_FAST BIT(22)
#define SHA_OP_UPDATE 1
#define SHA_OP_FINAL 2
#define SHA_BUFFER_LEN (SHA512_BLOCK_SIZE)
#define AML_DIGEST_BUFSZ (SHA256_DIGEST_SIZE + 16)
struct aml_sha_dev;
struct aml_sha_reqctx {
struct aml_sha_dev *dd;
unsigned long flags;
unsigned long op;
u64 digcnt[2];
size_t bufcnt;
size_t buflen;
dma_addr_t dma_addr;
dma_addr_t hash_addr;
/* walk state */
struct scatterlist *sg;
unsigned int offset; /* offset in current sg */
unsigned int total; /* total request */
size_t block_size;
uint32_t fast_nents;
void *descriptor;
dma_addr_t dma_descript_tab;
u8 *digest;
u8 buffer[0] __aligned(sizeof(u32));
};
struct aml_sha_ctx {
struct aml_sha_dev *dd;
u8 key[SHA512_BLOCK_SIZE];
u32 keylen;
/* 8 bytes bit length and 8 bytes garbage */
u32 is_hmac;
struct crypto_shash *shash;
};
#define AML_SHA_QUEUE_LENGTH 50
struct aml_sha_dev {
struct list_head list;
struct device *dev;
int irq;
struct aml_dma_dev *dma;
uint32_t thread;
uint32_t status;
int err;
struct tasklet_struct done_task;
unsigned long flags;
struct crypto_queue queue;
struct ahash_request *req;
};
struct aml_sha_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct aml_sha_drv aml_sha = {
.dev_list = LIST_HEAD_INIT(aml_sha.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(aml_sha.lock),
};
static size_t aml_sha_append_sg(struct aml_sha_reqctx *ctx)
{
size_t count = 0;
while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
count = min(ctx->sg->length - ctx->offset, ctx->total);
count = min(count, ctx->buflen - ctx->bufcnt);
if (count <= 0)
break;
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
ctx->offset, count, 0);
ctx->bufcnt += count;
ctx->offset += count;
ctx->total -= count;
if (ctx->offset == ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
ctx->offset = 0;
}
}
return 0;
}
static int aml_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct aml_sha_ctx *tctx = crypto_ahash_ctx(tfm);
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
struct aml_sha_dev *dd = NULL;
struct aml_sha_dev *tmp;
spin_lock_bh(&aml_sha.lock);
if (!tctx->dd) {
list_for_each_entry(tmp, &aml_sha.dev_list, list) {
dd = tmp;
break;
}
tctx->dd = dd;
} else {
dd = tctx->dd;
}
spin_unlock_bh(&aml_sha.lock);
ctx->dd = dd;
ctx->flags = 0;
dbgp(1, "init: tfm: %p, ctx: %p, digest size: %d\n",
tfm, ctx, crypto_ahash_digestsize(tfm));
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA1;
ctx->block_size = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA224;
ctx->block_size = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA256;
ctx->block_size = SHA256_BLOCK_SIZE;
break;
default:
return -EINVAL;
}
ctx->digest = kzalloc(AML_DIGEST_BUFSZ, GFP_ATOMIC|GFP_DMA);
if (!ctx->digest)
return -ENOMEM;
if (tctx->is_hmac)
ctx->flags |= SHA_FLAGS_NEED_KEY;
ctx->bufcnt = 0;
ctx->digcnt[0] = 0;
ctx->digcnt[1] = 0;
ctx->fast_nents = 0;
ctx->buflen = SHA_BUFFER_LEN;
ctx->descriptor = (void *)__get_free_pages(GFP_ATOMIC | GFP_DMA, 0);
if (!ctx->descriptor) {
kfree(ctx->digest);
return -ENOMEM;
}
return 0;
}
static int aml_sha_xmit_dma(struct aml_sha_dev *dd,
struct ahash_request *req, struct dma_dsc *dsc,
uint32_t nents, int final)
{
int i = 0;
u32 mode;
struct aml_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
size_t length = 0;
unsigned long flags;
dbgp(1, "xmit_dma:ctx:%p,digcnt:0x%llx 0x%llx,nents: %u,final:%d\n",
ctx, ctx->digcnt[1], ctx->digcnt[0], nents, final);
mode = MODE_SHA1;
if (ctx->flags & SHA_FLAGS_SHA224)
mode = MODE_SHA224;
else if (ctx->flags & SHA_FLAGS_SHA256)
mode = MODE_SHA256;
ctx->hash_addr = dma_map_single(dd->dev, ctx->digest,
AML_DIGEST_BUFSZ, DMA_FROM_DEVICE);
if (dma_mapping_error(dd->dev, ctx->hash_addr)) {
dev_err(dd->dev, "hash %d bytes error\n",
AML_DIGEST_BUFSZ);
return -EINVAL;
}
for (i = 0; i < nents; i++) {
dsc[i].tgt_addr = (uintptr_t)ctx->hash_addr;
dsc[i].dsc_cfg.b.enc_sha_only = 1;
dsc[i].dsc_cfg.b.mode = mode;
dsc[i].dsc_cfg.b.begin =
(i == 0 && !(ctx->digcnt[0] || ctx->digcnt[1]) &&
!(tctx->is_hmac));
dsc[i].dsc_cfg.b.end = final;
dsc[i].dsc_cfg.b.op_mode = OP_MODE_SHA;
dsc[i].dsc_cfg.b.eoc = (i == (nents - 1));
dsc[i].dsc_cfg.b.owner = 1;
}
ctx->dma_descript_tab = dma_map_single(dd->dev, ctx->descriptor,
PAGE_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_descript_tab)) {
dev_err(dd->dev, "mapping descriptor failed\n");
dma_unmap_single(dd->dev, ctx->hash_addr,
AML_DIGEST_BUFSZ, DMA_FROM_DEVICE);
return -EINVAL;
}
aml_dma_debug(dsc, nents, __func__, dd->thread, dd->status);
/* should be non-zero before next lines to disable clocks later */
for (i = 0; i < nents; i++) {
length = dsc->dsc_cfg.b.length;
ctx->digcnt[0] += length;
if (ctx->digcnt[0] < length)
ctx->digcnt[1]++;
}
if (final)
ctx->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
dd->req = req;
dbgp(1, "xmit before:ctx:%p,digcnt:0x%llx 0x%llx,length:%zd,final:%d\n",
ctx, ctx->digcnt[1], ctx->digcnt[0], length, final);
/* Start DMA transfer */
spin_lock_irqsave(&dd->dma->dma_lock, flags);
dd->dma->dma_busy |= DMA_FLAG_SHA_IN_USE;
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
aml_write_crypto_reg(dd->thread,
(uintptr_t) ctx->dma_descript_tab | 2);
return -EINPROGRESS;
}
static int aml_sha_xmit_start(struct aml_sha_dev *dd,
struct ahash_request *req, struct dma_dsc *dsc,
uint32_t nents, int final)
{
return aml_sha_xmit_dma(dd, req, dsc, nents, final);
}
static int aml_sha_xmit_dma_map(struct aml_sha_dev *dd,
struct ahash_request *req,
struct aml_sha_reqctx *ctx,
size_t length, int final)
{
struct dma_dsc *dsc = ctx->descriptor;
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
ctx->buflen, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %zd bytes error\n", ctx->buflen);
return -EINVAL;
}
dma_sync_single_for_device(dd->dev, ctx->dma_addr,
SHA_BUFFER_LEN, DMA_TO_DEVICE);
dsc->src_addr = (uintptr_t)ctx->dma_addr;
dsc->dsc_cfg.d32 = 0;
dsc->dsc_cfg.b.length = length;
/* next call does not fail... so no unmap in the case of error */
return aml_sha_xmit_start(dd, req, dsc, 1, final);
}
static int aml_sha_update_dma_slow(struct aml_sha_dev *dd,
struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
unsigned int final;
size_t count;
ctx->flags &= ~SHA_FLAGS_FAST;
aml_sha_append_sg(ctx);
final = (ctx->flags & SHA_FLAGS_FINAL) && !ctx->total;
dbgp(1, "slow:ctx:%p,bc:%zd,dc:0x%llx 0x%llx,final:%d,total:%u\n",
ctx, ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final, ctx->total);
if (IS_ALIGNED(ctx->bufcnt, ctx->block_size) || final) {
count = ctx->bufcnt;
ctx->bufcnt = 0;
return aml_sha_xmit_dma_map(dd, req, ctx, count, final);
}
return 0;
}
static int aml_sha_update_dma_start(struct aml_sha_dev *dd,
struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
unsigned int length = 0, final = 0, tail = 0;
struct scatterlist *sg;
struct dma_dsc *dsc = ctx->descriptor;
dbgp(1, "start: ctx: %p, total: %u, fast_nents: %u offset: %u,",
ctx, ctx->total, ctx->fast_nents, ctx->offset);
dbgp(1, " block size: %zd, flag: %lx\n",
ctx->block_size, ctx->flags);
if (!ctx->total)
return 0;
/* walk across (nents - 1) sg */
/* because the last sg maybe only partially used */
while (ctx->fast_nents > 1) {
ctx->sg = sg_next(ctx->sg);
ctx->fast_nents--;
}
if (ctx->offset == ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
else
return 0;
}
ctx->fast_nents = 0;
if (ctx->bufcnt || ctx->offset ||
ctx->total < ctx->block_size ||
ctx->sg->length < ctx->block_size)
return aml_sha_update_dma_slow(dd, req);
sg = ctx->sg;
while (ctx->total && ctx->fast_nents < MAX_NUM_TABLES && sg) {
dbgp(1, "fast:ctx:%p,dig:0x%llx 0x%llx,bc:%zd,tot:%u,sgl: %u\n",
ctx, ctx->digcnt[1], ctx->digcnt[0],
ctx->bufcnt, ctx->total, ctx->sg->length);
length = min(ctx->total, sg->length);
if (!(ctx->flags & SHA_FLAGS_FINAL && sg_next(sg) == 0)) {
/* not last sg must be ctx->block_size aligned */
tail = length & (ctx->block_size - 1);
length -= tail;
}
ctx->total -= length;
ctx->offset = length; /* offset where to start slow */
final = (ctx->flags & SHA_FLAGS_FINAL) && !ctx->total;
dma_map_sg(dd->dev, sg, 1, DMA_TO_DEVICE);
ctx->dma_addr = sg_dma_address(sg);
dsc[ctx->fast_nents].src_addr = (uintptr_t)ctx->dma_addr;
dsc[ctx->fast_nents].dsc_cfg.d32 = 0;
dsc[ctx->fast_nents].dsc_cfg.b.length = length;
sg = sg_next(sg);
ctx->fast_nents++;
dbgp(1, "fast: ctx: %p, total: %u, offset: %u, tail: %u\n",
ctx, ctx->total, ctx->offset, tail);
if (tail)
break;
}
if (ctx->fast_nents) {
ctx->flags |= SHA_FLAGS_FAST;
return aml_sha_xmit_start(dd, req, dsc, ctx->fast_nents, final);
}
return 0;
}
static int aml_sha_update_dma_stop(struct aml_sha_dev *dd)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(dd->req);
dma_unmap_single(dd->dev, ctx->dma_descript_tab, PAGE_SIZE,
DMA_FROM_DEVICE);
aml_dma_debug(ctx->descriptor, ctx->fast_nents ?
ctx->fast_nents : 1, __func__, dd->thread, dd->status);
if (ctx->flags & SHA_FLAGS_FAST)
dma_unmap_sg(dd->dev, ctx->sg, ctx->fast_nents, DMA_TO_DEVICE);
else
dma_unmap_single(dd->dev, ctx->dma_addr,
ctx->buflen, DMA_TO_DEVICE);
if (ctx->hash_addr)
dma_unmap_single(dd->dev, ctx->hash_addr,
AML_DIGEST_BUFSZ, DMA_FROM_DEVICE);
return 0;
}
static int aml_sha_update_req(struct aml_sha_dev *dd, struct ahash_request *req)
{
int err;
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
dbgp(1, "update_req: ctx: %p, total: %u, digcnt: 0x%llx 0x%llx\n",
ctx, ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
err = aml_sha_update_dma_start(dd, req);
return err;
}
static int aml_sha_final_req(struct aml_sha_dev *dd, struct ahash_request *req)
{
int err = 0;
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
err = aml_sha_update_dma_slow(dd, req);
dbgp(1, "final_req: ctx: %p, err: %d\n", ctx, err);
return err;
}
static void aml_sha_copy_ready_hash(struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->result)
return;
if (ctx->flags & SHA_FLAGS_SHA1)
memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
else if (ctx->flags & SHA_FLAGS_SHA224)
memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
else if (ctx->flags & SHA_FLAGS_SHA256)
memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
}
static int aml_sha_finish_hmac(struct ahash_request *req)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
struct aml_sha_dev *dd = ctx->dd;
struct dma_dsc *dsc = ctx->descriptor;
dma_addr_t hmac_digest = 0;
u8 *digest = 0;
u32 mode;
u32 ds = 0;
u8 *key;
dma_addr_t dma_key = 0;
digest = dmam_alloc_coherent(dd->dev, AML_DIGEST_BUFSZ,
&hmac_digest, GFP_ATOMIC | GFP_DMA);
if (!digest)
return -ENOMEM;
memcpy(digest, ctx->digest, AML_DIGEST_BUFSZ);
key = kzalloc(tctx->keylen, GFP_ATOMIC | GFP_DMA);
if (!key)
return -ENOMEM;
memcpy(key, tctx->key, tctx->keylen);
dma_key = dma_map_single(dd->dev, key,
tctx->keylen, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dma_key)) {
dev_err(dd->dev, "mapping key addr failed: %d\n", tctx->keylen);
dmam_free_coherent(dd->dev, AML_DIGEST_BUFSZ,
digest, hmac_digest);
return -EINVAL;
}
mode = MODE_SHA1;
if (ctx->flags & SHA_FLAGS_SHA224)
mode = MODE_SHA224;
else if (ctx->flags & SHA_FLAGS_SHA256)
mode = MODE_SHA256;
if (ctx->flags & SHA_FLAGS_SHA1)
ds = SHA1_DIGEST_SIZE;
else if (ctx->flags & SHA_FLAGS_SHA224)
ds = SHA224_DIGEST_SIZE;
else if (ctx->flags & SHA_FLAGS_SHA256)
ds = SHA256_DIGEST_SIZE;
/* opad */
dsc[0].src_addr = (uintptr_t)dma_key;
dsc[0].tgt_addr = 0;
dsc[0].dsc_cfg.d32 = 0;
dsc[0].dsc_cfg.b.length = tctx->keylen;
dsc[0].dsc_cfg.b.mode = mode;
dsc[0].dsc_cfg.b.enc_sha_only = 1;
dsc[0].dsc_cfg.b.op_mode = OP_MODE_HMAC_O;
dsc[0].dsc_cfg.b.begin = 1;
dsc[0].dsc_cfg.b.end = 0;
dsc[0].dsc_cfg.b.eoc = 0;
dsc[0].dsc_cfg.b.owner = 1;
/* 2nd stage hash */
dsc[1].src_addr = (uintptr_t)hmac_digest;
dsc[1].tgt_addr = (uintptr_t)hmac_digest;
dsc[1].dsc_cfg.d32 = 0;
dsc[1].dsc_cfg.b.length = ds;
dsc[1].dsc_cfg.b.mode = mode;
dsc[1].dsc_cfg.b.enc_sha_only = 1;
dsc[1].dsc_cfg.b.begin = 0;
dsc[1].dsc_cfg.b.end = 1;
dsc[1].dsc_cfg.b.eoc = 1;
dsc[1].dsc_cfg.b.owner = 1;
ctx->dma_descript_tab = dma_map_single(dd->dev, ctx->descriptor,
PAGE_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_descript_tab)) {
dev_err(dd->dev, "mapping descriptor failed\n");
dma_unmap_single(dd->dev, dma_key,
tctx->keylen, DMA_TO_DEVICE);
dmam_free_coherent(dd->dev, AML_DIGEST_BUFSZ,
digest, hmac_digest);
return -EINVAL;
}
aml_dma_debug(dsc, 2, __func__, dd->thread, dd->status);
aml_write_crypto_reg(dd->thread,
(uintptr_t) ctx->dma_descript_tab | 2);
while (aml_read_crypto_reg(dd->status) == 0)
;
aml_write_crypto_reg(dd->status, 0xf);
dma_unmap_single(dd->dev, dma_key,
tctx->keylen, DMA_TO_DEVICE);
dma_unmap_single(dd->dev, ctx->dma_descript_tab, PAGE_SIZE,
DMA_FROM_DEVICE);
memcpy(ctx->digest, digest, AML_DIGEST_BUFSZ);
dmam_free_coherent(dd->dev, AML_DIGEST_BUFSZ, digest, hmac_digest);
return 0;
}
static int aml_sha_finish(struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
struct aml_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
int err = 0;
if (tctx->is_hmac)
err = aml_sha_finish_hmac(req);
aml_sha_copy_ready_hash(req);
kfree(ctx->digest);
free_page((uintptr_t)ctx->descriptor);
dbgp(1, "finish digcnt: ctx: %p, 0x%llx 0x%llx, bufcnt: %zd, %x %x\n",
ctx, ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt,
req->result[0], req->result[1]);
return err;
}
static void aml_sha_finish_req(struct ahash_request *req, int err)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
struct aml_sha_dev *dd = ctx->dd;
unsigned long flags;
if (!err) {
if (SHA_FLAGS_FINAL & ctx->flags)
err = aml_sha_finish(req);
} else {
ctx->flags |= SHA_FLAGS_ERROR;
}
spin_lock_irqsave(&dd->dma->dma_lock, flags);
dd->dma->dma_busy &= ~DMA_FLAG_MAY_OCCUPY;
dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_OUTPUT_READY);
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
if (req->base.complete)
req->base.complete(&req->base, err);
}
static int aml_sha_hw_init(struct aml_sha_dev *dd)
{
if (!(dd->flags & SHA_FLAGS_INIT)) {
dd->flags |= SHA_FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static void aml_sha_state_restore(struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
struct aml_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct aml_sha_dev *dd = tctx->dd;
dma_addr_t dma_ctx;
struct dma_dsc *dsc = ctx->descriptor;
uint32_t i = 0;
int32_t len = AML_DIGEST_BUFSZ;
if (!ctx->digcnt[0] && !ctx->digcnt[1] && !tctx->is_hmac)
return;
dma_ctx = dma_map_single(dd->dev, ctx->digest,
AML_DIGEST_BUFSZ, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dma_ctx)) {
dev_err(dd->dev, "mapping dma_ctx failed\n");
return;
}
while (len > 0) {
dsc[i].src_addr = (uint32_t)dma_ctx + i * 16;
dsc[i].tgt_addr = i * 16;
dsc[i].dsc_cfg.d32 = 0;
dsc[i].dsc_cfg.b.length = len > 16 ? 16 : len;
dsc[i].dsc_cfg.b.mode = MODE_KEY;
dsc[i].dsc_cfg.b.eoc = 0;
dsc[i].dsc_cfg.b.owner = 1;
i++;
len -= 16;
}
dsc[i - 1].dsc_cfg.b.eoc = 1;
ctx->dma_descript_tab = dma_map_single(dd->dev, ctx->descriptor,
PAGE_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dma_ctx)) {
dev_err(dd->dev, "mapping descript tab failed\n");
dma_unmap_single(dd->dev, dma_ctx,
AML_DIGEST_BUFSZ, DMA_TO_DEVICE);
return;
}
aml_write_crypto_reg(dd->thread,
(uintptr_t) ctx->dma_descript_tab | 2);
aml_dma_debug(dsc, 1, __func__, dd->thread, dd->status);
while (aml_read_crypto_reg(dd->status) == 0)
;
aml_write_crypto_reg(dd->status, 0xf);
dma_unmap_single(dd->dev, dma_ctx,
AML_DIGEST_BUFSZ, DMA_TO_DEVICE);
dma_unmap_single(dd->dev, ctx->dma_descript_tab, PAGE_SIZE,
DMA_FROM_DEVICE);
}
static int aml_hmac_install_key(struct aml_sha_dev *dd,
struct ahash_request *req)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dma_dsc *dsc = 0;
uint32_t bs = 0;
int err = 0;
dma_addr_t dma_key = 0;
dma_addr_t dma_descript_tab = 0;
dma_addr_t partial = 0;
uint8_t *key = 0;
uint8_t *digest = 0;
uint32_t i;
uint32_t mode = MODE_SHA1;
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
bs = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
bs = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
bs = SHA256_BLOCK_SIZE;
break;
default:
return -EINVAL;
}
mode = MODE_SHA1;
if (ctx->flags & SHA_FLAGS_SHA224)
mode = MODE_SHA224;
else if (ctx->flags & SHA_FLAGS_SHA256)
mode = MODE_SHA256;
dsc = dmam_alloc_coherent(dd->dev, sizeof(struct dma_dsc),
&dma_descript_tab, GFP_ATOMIC | GFP_DMA);
if (!dsc) {
dd->flags &= ~SHA_FLAGS_BUSY;
return -ENOMEM;
}
key = dmam_alloc_coherent(dd->dev, bs,
&dma_key, GFP_ATOMIC | GFP_DMA);
if (!key) {
dmam_free_coherent(dd->dev, sizeof(struct dma_dsc),
dsc, dma_descript_tab);
return -ENOMEM;
}
memcpy(key, tctx->key, tctx->keylen);
memset(key + tctx->keylen, 0, bs - tctx->keylen);
/* Do ipad */
for (i = 0; i < bs; i++)
*(uint8_t *)(key + i) ^= 0x36;
digest = dmam_alloc_coherent(dd->dev, AML_DIGEST_BUFSZ,
&partial, GFP_ATOMIC | GFP_DMA);
if (!digest) {
dmam_free_coherent(dd->dev, bs, key, dma_key);
dmam_free_coherent(dd->dev, sizeof(struct dma_dsc),
dsc, dma_descript_tab);
return -ENOMEM;
}
/* start first round hash */
dsc[0].src_addr = (uintptr_t)dma_key;
dsc[0].tgt_addr = (uintptr_t)partial;
dsc[0].dsc_cfg.d32 = 0;
dsc[0].dsc_cfg.b.length = bs;
dsc[0].dsc_cfg.b.mode = mode;
dsc[0].dsc_cfg.b.enc_sha_only = 1;
dsc[0].dsc_cfg.b.op_mode = OP_MODE_SHA;
dsc[0].dsc_cfg.b.begin = 1;
dsc[0].dsc_cfg.b.end = 0;
dsc[0].dsc_cfg.b.eoc = 1;
dsc[0].dsc_cfg.b.owner = 1;
aml_dma_debug(dsc, 1, __func__, dd->thread, dd->status);
aml_write_crypto_reg(dd->thread,
(uintptr_t) dma_descript_tab | 2);
while (aml_read_crypto_reg(dd->status) == 0)
;
aml_write_crypto_reg(dd->status, 0xf);
memcpy(ctx->digest, digest, AML_DIGEST_BUFSZ);
dmam_free_coherent(dd->dev, bs, key, dma_key);
dmam_free_coherent(dd->dev, sizeof(struct dma_dsc),
dsc, dma_descript_tab);
dmam_free_coherent(dd->dev, AML_DIGEST_BUFSZ, digest, partial);
return err;
}
static int aml_sha_handle_queue(struct aml_sha_dev *dd,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct aml_sha_reqctx *ctx;
unsigned long flags;
int err = 0, ret = 0;
spin_lock_irqsave(&dd->dma->dma_lock, flags);
if (req)
ret = ahash_enqueue_request(&dd->queue, req);
if ((dd->flags & SHA_FLAGS_BUSY) || dd->dma->dma_busy) {
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req) {
dd->flags |= SHA_FLAGS_BUSY;
dd->dma->dma_busy |= DMA_FLAG_MAY_OCCUPY;
}
spin_unlock_irqrestore(&dd->dma->dma_lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ahash_request_cast(async_req);
ctx = ahash_request_ctx(req);
dbgp(1, "handling new req, ctx: %p, op: %lu, nbytes: %d\n",
ctx, ctx->op, req->nbytes);
err = aml_sha_hw_init(dd);
if (err)
goto err1;
if (ctx->flags & SHA_FLAGS_NEED_KEY) {
err = aml_hmac_install_key(dd, req);
if (err)
goto err1;
ctx->flags &= ~SHA_FLAGS_NEED_KEY;
}
aml_sha_state_restore(req);
if (ctx->op == SHA_OP_UPDATE) {
err = aml_sha_update_req(dd, req);
/* no final() after finup() */
if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINAL))
err = aml_sha_final_req(dd, req);
} else if (ctx->op == SHA_OP_FINAL) {
err = aml_sha_final_req(dd, req);
}
err1:
if (err != -EINPROGRESS)
/* done_task will not finish it, so do it here */
aml_sha_finish_req(req, err);
return ret;
}
static int aml_sha_enqueue(struct ahash_request *req, unsigned int op)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
struct aml_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct aml_sha_dev *dd = tctx->dd;
ctx->op = op;
return aml_sha_handle_queue(dd, req);
}
static int aml_sha_update(struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->nbytes)
return 0;
ctx->total = req->nbytes;
ctx->sg = req->src;
ctx->offset = 0;
return aml_sha_enqueue(req, SHA_OP_UPDATE);
}
static int aml_sha_final(struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
ctx->flags |= SHA_FLAGS_FINAL;
ctx->total = 0;
ctx->sg = 0;
ctx->offset = 0;
if (ctx->flags & SHA_FLAGS_ERROR)
return 0; /* uncompleted hash is not needed */
return aml_sha_enqueue(req, SHA_OP_FINAL);
}
static int aml_sha_finup(struct ahash_request *req)
{
struct aml_sha_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->flags |= SHA_FLAGS_FINAL;
err1 = aml_sha_update(req);
if (err1 == -EINPROGRESS || err1 == -EBUSY)
return err1;
/*
* final() has to be always called to cleanup resources
* even if update() failed, except EINPROGRESS
*/
err2 = aml_sha_final(req);
return err1 ?: err2;
}
static int aml_sha_digest(struct ahash_request *req)
{
return aml_sha_init(req) ?: aml_sha_finup(req);
}
static int aml_sha_import(struct ahash_request *req, const void *in)
{
struct aml_sha_reqctx *rctx = ahash_request_ctx(req);
const struct aml_sha_reqctx *ctx_in = in;
memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
return 0;
}
static int aml_sha_export(struct ahash_request *req, void *out)
{
struct aml_sha_reqctx *rctx = ahash_request_ctx(req);
memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
return 0;
}
static int aml_shash_digest(struct crypto_shash *tfm, u32 flags,
const u8 *data, unsigned int len, u8 *out)
{
char *__shash_desc = kzalloc(sizeof(struct shash_desc) +
crypto_shash_descsize(tfm), GFP_KERNEL | GFP_ATOMIC);
struct shash_desc *shash = (struct shash_desc *)__shash_desc;
int err;
if (!shash)
return -ENOMEM;
shash->tfm = tfm;
shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypto_shash_digest(shash, data, len, out);
kfree(shash);
return err;
}
static int aml_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct aml_sha_ctx *tctx = crypto_ahash_ctx(tfm);
int bs = crypto_shash_blocksize(tctx->shash);
int ds = crypto_shash_digestsize(tctx->shash);
struct aml_sha_dev *dd = NULL, *tmp;
int err = 0;
spin_lock_bh(&aml_sha.lock);
if (!tctx->dd) {
list_for_each_entry(tmp, &aml_sha.dev_list, list) {
dd = tmp;
break;
}
tctx->dd = dd;
} else {
dd = tctx->dd;
}
spin_unlock_bh(&aml_sha.lock);
if (keylen > bs) {
err = aml_shash_digest(tctx->shash,
crypto_shash_get_flags(tctx->shash),
key, keylen, tctx->key);
if (err)
return err;
tctx->keylen = ds;
} else {
tctx->keylen = keylen;
memcpy(tctx->key, key, tctx->keylen);
}
return err;
}
static int aml_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct aml_sha_reqctx) +
SHA_BUFFER_LEN);
if (alg_base) {
tctx->shash = crypto_alloc_shash(alg_base, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(tctx->shash)) {
pr_err("aml-sha: could not load base driver '%s' c ",
alg_base);
return PTR_ERR(tctx->shash);
}
} else {
tctx->shash = NULL;
}
return 0;
}
static int aml_sha_cra_init(struct crypto_tfm *tfm)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(tfm);
tctx->is_hmac = 0;
return aml_sha_cra_init_alg(tfm, NULL);
}
static void aml_sha_cra_exit(struct crypto_tfm *tfm)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(tfm);
if (tctx->is_hmac && tctx->shash != NULL)
crypto_free_shash(tctx->shash);
}
static int aml_hmac_sha1_cra_init(struct crypto_tfm *tfm)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(tfm);
tctx->is_hmac = 1;
return aml_sha_cra_init_alg(tfm, "sha1");
}
static int aml_hmac_sha224_cra_init(struct crypto_tfm *tfm)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(tfm);
tctx->is_hmac = 1;
return aml_sha_cra_init_alg(tfm, "sha224");
}
static int aml_hmac_sha256_cra_init(struct crypto_tfm *tfm)
{
struct aml_sha_ctx *tctx = crypto_tfm_ctx(tfm);
tctx->is_hmac = 1;
return aml_sha_cra_init_alg(tfm, "sha256");
}
static void aml_hmac_cra_exit(struct crypto_tfm *tfm)
{
}
static struct ahash_alg sha_algs[] = {
{
.init = aml_sha_init,
.update = aml_sha_update,
.final = aml_sha_final,
.finup = aml_sha_finup,
.digest = aml_sha_digest,
.export = aml_sha_export,
.import = aml_sha_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize =
sizeof(struct aml_sha_reqctx) + SHA_BUFFER_LEN,
.base = {
.cra_name = "sha1",
.cra_driver_name = "aml-sha1",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = aml_sha_cra_init,
.cra_exit = aml_sha_cra_exit,
}
}
},
{
.init = aml_sha_init,
.update = aml_sha_update,
.final = aml_sha_final,
.finup = aml_sha_finup,
.digest = aml_sha_digest,
.export = aml_sha_export,
.import = aml_sha_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize =
sizeof(struct aml_sha_reqctx) + SHA_BUFFER_LEN,
.base = {
.cra_name = "sha256",
.cra_driver_name = "aml-sha256",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = aml_sha_cra_init,
.cra_exit = aml_sha_cra_exit,
}
}
},
{
.init = aml_sha_init,
.update = aml_sha_update,
.final = aml_sha_final,
.finup = aml_sha_finup,
.digest = aml_sha_digest,
.export = aml_sha_export,
.import = aml_sha_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize =
sizeof(struct aml_sha_reqctx) + SHA_BUFFER_LEN,
.base = {
.cra_name = "sha224",
.cra_driver_name = "aml-sha224",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = aml_sha_cra_init,
.cra_exit = aml_sha_cra_exit,
}
}
},
{
.init = aml_sha_init,
.update = aml_sha_update,
.final = aml_sha_final,
.finup = aml_sha_finup,
.digest = aml_sha_digest,
.export = aml_sha_export,
.import = aml_sha_import,
.setkey = aml_sha_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize =
sizeof(struct aml_sha_reqctx) + SHA_BUFFER_LEN,
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "aml-hmac-sha1",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = aml_hmac_sha1_cra_init,
.cra_exit = aml_hmac_cra_exit,
}
}
},
{
.init = aml_sha_init,
.update = aml_sha_update,
.final = aml_sha_final,
.finup = aml_sha_finup,
.digest = aml_sha_digest,
.export = aml_sha_export,
.import = aml_sha_import,
.setkey = aml_sha_setkey,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize =
sizeof(struct aml_sha_reqctx) + SHA_BUFFER_LEN,
.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "aml-hmac-sha224",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = aml_hmac_sha224_cra_init,
.cra_exit = aml_hmac_cra_exit,
}
}
},
{
.init = aml_sha_init,
.update = aml_sha_update,
.final = aml_sha_final,
.finup = aml_sha_finup,
.digest = aml_sha_digest,
.export = aml_sha_export,
.import = aml_sha_import,
.setkey = aml_sha_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize =
sizeof(struct aml_sha_reqctx) + SHA_BUFFER_LEN,
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "aml-hmac-sha256",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aml_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = aml_hmac_sha256_cra_init,
.cra_exit = aml_hmac_cra_exit,
}
}
}
};
static void aml_sha_done_task(unsigned long data)
{
struct aml_sha_dev *dd = (struct aml_sha_dev *)data;
int err = 0;
if (!(SHA_FLAGS_BUSY & dd->flags)) {
aml_sha_handle_queue(dd, NULL);
return;
}
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
aml_sha_update_dma_stop(dd);
if (dd->err) {
err = dd->err;
goto finish;
}
/* hash or semi-hash ready */
dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
err = aml_sha_update_dma_start(dd, dd->req);
if (err != -EINPROGRESS)
goto finish;
}
}
return;
finish:
/* finish curent request */
aml_sha_finish_req(dd->req, err);
if (!(SHA_FLAGS_BUSY & dd->flags)) {
aml_sha_handle_queue(dd, NULL);
return;
}
}
static irqreturn_t aml_sha_irq(int irq, void *dev_id)
{
struct aml_sha_dev *sha_dd = dev_id;
uint8_t status = aml_read_crypto_reg(sha_dd->status);
if (status) {
if (status == 0x1)
dev_err(sha_dd->dev, "irq overwrite\n");
if (sha_dd->dma->dma_busy == DMA_FLAG_MAY_OCCUPY)
return IRQ_HANDLED;
if (sha_dd->flags & SHA_FLAGS_DMA_ACTIVE &&
(sha_dd->dma->dma_busy & DMA_FLAG_SHA_IN_USE)) {
sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
aml_write_crypto_reg(sha_dd->status, 0xf);
sha_dd->dma->dma_busy &= ~DMA_FLAG_SHA_IN_USE;
tasklet_schedule(&sha_dd->done_task);
return IRQ_HANDLED;
} else {
return IRQ_NONE;
}
}
return IRQ_NONE;
}
static void aml_sha_unregister_algs(struct aml_sha_dev *dd)
{
int i;
for (i = 0; i < ARRAY_SIZE(sha_algs); i++)
crypto_unregister_ahash(&sha_algs[i]);
}
static int aml_sha_register_algs(struct aml_sha_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
err = crypto_register_ahash(&sha_algs[i]);
if (err)
goto err_sha_algs;
}
return 0;
err_sha_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_algs[j]);
return err;
}
static int aml_sha_probe(struct platform_device *pdev)
{
struct aml_sha_dev *sha_dd;
struct device *dev = &pdev->dev;
int err = -EPERM;
sha_dd = devm_kzalloc(dev, sizeof(struct aml_sha_dev), GFP_KERNEL);
if (sha_dd == NULL) {
err = -ENOMEM;
goto sha_dd_err;
}
sha_dd->dev = dev;
sha_dd->dma = dev_get_drvdata(dev->parent);
sha_dd->thread = sha_dd->dma->thread;
sha_dd->status = sha_dd->dma->status;
sha_dd->irq = sha_dd->dma->irq;
platform_set_drvdata(pdev, sha_dd);
INIT_LIST_HEAD(&sha_dd->list);
tasklet_init(&sha_dd->done_task, aml_sha_done_task,
(unsigned long)sha_dd);
crypto_init_queue(&sha_dd->queue, AML_SHA_QUEUE_LENGTH);
err = devm_request_irq(dev, sha_dd->irq, aml_sha_irq, IRQF_SHARED,
"aml-sha", sha_dd);
if (err) {
dev_err(dev, "unable to request sha irq.\n");
goto res_err;
}
aml_sha_hw_init(sha_dd);
spin_lock(&aml_sha.lock);
list_add_tail(&sha_dd->list, &aml_sha.dev_list);
spin_unlock(&aml_sha.lock);
err = aml_sha_register_algs(sha_dd);
if (err)
goto err_algs;
dev_info(dev, "Aml SHA1/SHA224/SHA256 dma\n");
return 0;
err_algs:
spin_lock(&aml_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&aml_sha.lock);
res_err:
tasklet_kill(&sha_dd->done_task);
sha_dd_err:
dev_err(dev, "initialization failed.\n");
return err;
}
static int aml_sha_remove(struct platform_device *pdev)
{
static struct aml_sha_dev *sha_dd;
sha_dd = platform_get_drvdata(pdev);
if (!sha_dd)
return -ENODEV;
spin_lock(&aml_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&aml_sha.lock);
aml_sha_unregister_algs(sha_dd);
tasklet_kill(&sha_dd->done_task);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id aml_sha_dt_match[] = {
{ .compatible = "amlogic,sha_dma",
},
{},
};
#else
#define aml_aes_dt_match NULL
#endif
static struct platform_driver aml_sha_driver = {
.probe = aml_sha_probe,
.remove = aml_sha_remove,
.driver = {
.name = "aml_sha_dma",
.owner = THIS_MODULE,
.of_match_table = aml_sha_dt_match,
},
};
module_platform_driver(aml_sha_driver);
MODULE_DESCRIPTION("Aml SHA (1/256/224) hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("matthew.shyu <matthew.shyu@amlogic.com>");