blob: 4279e470bbe9190ef67669a7ced2492e08750c20 [file] [log] [blame]
/* drivers/input/touchscreen/gt1x_extents.c
*
* 2010 - 2014 Goodix Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be a reference
* to you, when you are integrating the GOODiX's CTP IC into your system,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* Version: 1.4
* Release Date: 2015/07/10
*/
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/input.h>
#include <asm/uaccess.h>
#include <linux/proc_fs.h> /*proc */
#include <asm/ioctl.h>
#include "gt1x_generic.h"
#if GTP_GESTURE_WAKEUP
#define GESTURE_NODE "goodix_gesture"
#define GESTURE_MAX_POINT_COUNT 64
#pragma pack(1)
typedef struct {
u8 ic_msg[6]; /*from the first byte */
u8 gestures[4];
u8 data[3 + GESTURE_MAX_POINT_COUNT * 4 + 80]; /*80 bytes for extra data */
} st_gesture_data;
#pragma pack()
#define SETBIT(longlong, bit) (longlong[bit/8] |= (1 << bit%8))
#define CLEARBIT(longlong, bit) (longlong[bit/8] &=(~(1 << bit%8)))
#define QUERYBIT(longlong, bit) (!!(longlong[bit/8] & (1 << bit%8)))
#define CHKBITS_32 32
#define CHKBITS_16 16
#define CHKBITS_8 8
int gesture_enabled = 0; /* module switch */
DOZE_T gesture_doze_status = DOZE_DISABLED; /* doze status */
static u8 gestures_flag[32]; /* gesture flag, every bit stands for a gesture */
static st_gesture_data gesture_data; /* gesture data buffer */
static struct mutex gesture_data_mutex; /* lock for gesture data */
static ssize_t gt1x_gesture_data_read(struct file *file, char __user * page, size_t size, loff_t * ppos)
{
s32 ret = -1;
GTP_DEBUG("visit gt1x_gesture_data_read. ppos:%d", (int)*ppos);
if (*ppos) {
return 0;
}
if (size == 4) {
ret = copy_to_user(((u8 __user *) page), "GT1X", 4);
return 4;
}
ret = simple_read_from_buffer(page, size, ppos, &gesture_data, sizeof(gesture_data));
GTP_DEBUG("Got the gesture data.");
return ret;
}
static ssize_t gt1x_gesture_data_write(struct file *filp, const char __user * buff, size_t len, loff_t * off)
{
s32 ret = 0;
GTP_DEBUG_FUNC();
ret = copy_from_user(&gesture_enabled, buff, 1);
if (ret) {
GTP_ERROR("copy_from_user failed.");
return -EPERM;
}
GTP_DEBUG("gesture enabled:%x, ret:%d", gesture_enabled, ret);
return len;
}
/**
* calc_checksum - Calc checksum.
* @buf: data to be calc
* @len: length of buf.
* @bits: checkbits
* Return true-pass, false:not pass.
*/
static bool calc_checksum(u8 *buf, int len, int bits)
{
int i;
if (bits == CHKBITS_16) {
u16 chksum, *b = (u16 *)buf;
if (len % 2) {
return false;
}
len /= 2;
for (i = 0, chksum = 0; i < len; i++) {
if (i == len - 1)
chksum += le16_to_cpu(b[i]);
else
chksum += be16_to_cpu(b[i]);
}
return chksum == 0 ? true : false;
} else if (bits == CHKBITS_8) {
u8 chksum;
for (i = 0, chksum =0; i < len; i++) {
chksum += buf[i];
}
return chksum == 0 ? true : false;
}
return false;
}
int gesture_enter_doze(void)
{
int retry = 0;
GTP_DEBUG_FUNC();
GTP_DEBUG("Entering doze mode...");
while (retry++ < 5) {
if (!gt1x_send_cmd(0x08, 0)) {
gesture_doze_status = DOZE_ENABLED;
GTP_DEBUG("Working in doze mode!");
return 0;
}
msleep(10);
}
GTP_ERROR("Send doze cmd failed.");
return -1;
}
s32 gesture_event_handler(struct input_dev * dev)
{
u8 doze_buf[4] = { 0 }, ges_type;
static int err_flag1 = 0, err_flag2 = 0;
int len, extra_len, need_chk;
unsigned int key_code;
s32 ret = 0;
if (DOZE_ENABLED != gesture_doze_status) {
return -1;
}
/** package: -head 4B + track points + extra info-
* - head -
* doze_buf[0]: gesture type,
* doze_buf[1]: number of gesture points ,
* doze_buf[2]: protocol type,
* doze_buf[3]: gesture extra data length.
*/
ret = gt1x_i2c_read(GTP_REG_WAKEUP_GESTURE, doze_buf, 4);
if (ret < 0) {
return 0;
}
ges_type = doze_buf[0];
len = doze_buf[1];
need_chk = doze_buf[2] & 0x80;
extra_len = doze_buf[3];
GTP_DEBUG("0x%x = 0x%02X,0x%02X,0x%02X,0x%02X", GTP_REG_WAKEUP_GESTURE,
doze_buf[0], doze_buf[1], doze_buf[2], doze_buf[3]);
if (len > GESTURE_MAX_POINT_COUNT) {
GTP_ERROR("Gesture contain too many points!(%d)", len);
len = GESTURE_MAX_POINT_COUNT;
}
if (extra_len > 32) {
GTP_ERROR("Gesture contain too many extra data!(%d)", extra_len);
extra_len = 32;
}
/* get gesture extra info */
if (extra_len >= 0) {
u8 ges_data[extra_len + 1];
/* head 4 + extra data * 4 + chksum 1 */
ret = gt1x_i2c_read(GTP_REG_WAKEUP_GESTURE + 4,
ges_data, extra_len + 1);
if (ret < 0) {
GTP_ERROR("Read extra gesture data failed.");
return 0;
}
if (likely(need_chk)) { /* calc checksum */
bool val;
ges_data[extra_len] += doze_buf[0] + doze_buf[1]
+ doze_buf[2] + doze_buf[3];
val = calc_checksum(ges_data, extra_len + 1, CHKBITS_8);
if (unlikely(!val)) { /* check failed */
GTP_ERROR("Gesture checksum error.");
if (err_flag1) {
err_flag1 = 0;
ret = 0;
goto clear_reg;
} else {
/* just return 0 without clear reg,
this will receive another int, we
check the data in the next frame */
err_flag1 = 1;
return 0;
}
}
err_flag1 = 0;
}
mutex_lock(&gesture_data_mutex);
memcpy(&gesture_data.data[4 + len * 4], ges_data, extra_len);
mutex_unlock(&gesture_data_mutex);
}
/* check gesture type (if available?) */
if (ges_type == 0 || !QUERYBIT(gestures_flag, ges_type)) {
GTP_INFO("Gesture[0x%02X] has been disabled.", doze_buf[0]);
doze_buf[0] = 0x00;
gt1x_i2c_write(GTP_REG_WAKEUP_GESTURE, doze_buf, 1);
gesture_enter_doze();
return 0;
}
/* get gesture point data */
if (len > 0) { /* coor num * 4 + chksum 2*/
u8 ges_data[len * 4 + 2];
ret = gt1x_i2c_read(GES_BUFFER_ADDR, ges_data, len * 4);
if (ret < 0) {
GTP_ERROR("Read gesture data failed.");
return 0;
}
/* checksum reg for gesture point data */
ret = gt1x_i2c_read(0x819F, &ges_data[len * 4], 2);
if (ret < 0) {
GTP_ERROR("Read gesture data failed.");
return 0;
}
if (likely(need_chk)) {
bool val = calc_checksum(ges_data,
len * 4 + 2, CHKBITS_16);
if (unlikely(!val)) { /* check failed */
GTP_ERROR("Gesture checksum error.");
if (err_flag2) {
err_flag2 = 0;
ret = 0;
goto clear_reg;
} else {
err_flag2 = 1;
return 0;
}
}
err_flag2 = 0;
}
mutex_lock(&gesture_data_mutex);
memcpy(&gesture_data.data[4], ges_data, len * 4);
mutex_unlock(&gesture_data_mutex);
}
mutex_lock(&gesture_data_mutex);
gesture_data.data[0] = ges_type; // gesture type
gesture_data.data[1] = len; // gesture points number
gesture_data.data[2] = doze_buf[2] & 0x7F; // protocol type
gesture_data.data[3] = extra_len; // gesture date length
mutex_unlock(&gesture_data_mutex);
/* get key code */
key_code = ges_type < 16? KEY_GES_CUSTOM : KEY_GES_REGULAR;
GTP_DEBUG("Gesture: 0x%02X, points: %d", doze_buf[0], doze_buf[1]);
input_report_key(dev, key_code, 1);
input_sync(dev);
input_report_key(dev, key_code, 0);
input_sync(dev);
clear_reg:
doze_buf[0] = 0; // clear ges flag
gt1x_i2c_write(GTP_REG_WAKEUP_GESTURE, doze_buf, 1);
return ret;
}
void gesture_clear_wakeup_data(void)
{
mutex_lock(&gesture_data_mutex);
memset(gesture_data.data, 0, 4);
mutex_unlock(&gesture_data_mutex);
}
void gt1x_gesture_debug(int on)
{
if (on) {
gesture_enabled = 1;
memset(gestures_flag, 0xFF, sizeof(gestures_flag));
} else {
gesture_enabled = 0;
memset(gestures_flag, 0x00, sizeof(gestures_flag));
gesture_doze_status = DOZE_DISABLED;
}
GTP_DEBUG("Gesture debug %s", on ? "on":"off");
}
#endif // GTP_GESTURE_WAKEUP
//HotKnot module
#if GTP_HOTKNOT
#define HOTKNOT_NODE "hotknot"
#define HOTKNOT_VERSION "GOODIX,GT1X"
u8 hotknot_enabled = 0;
u8 hotknot_transfer_mode = 0;
static int hotknot_open(struct inode *node, struct file *flip)
{
GTP_DEBUG("Hotknot is enabled.");
hotknot_enabled = 1;
return 0;
}
static int hotknot_release(struct inode *node, struct file *filp)
{
GTP_DEBUG("Hotknot is disabled.");
hotknot_enabled = 0;
return 0;
}
static s32 hotknot_enter_transfer_mode(void)
{
int ret = 0;
u8 buffer[5] = { 0 };
hotknot_transfer_mode = 1;
#if GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_OFF);
#endif
gt1x_irq_disable();
gt1x_send_cmd(GTP_CMD_HN_TRANSFER, 0);
msleep(100);
gt1x_irq_enable();
ret = gt1x_i2c_read(0x8140, buffer, sizeof(buffer));
if (ret) {
hotknot_transfer_mode = 0;
return ret;
}
buffer[4] = 0;
GTP_DEBUG("enter transfer mode: %s ", buffer);
if (strcmp(buffer, "GHot")) {
hotknot_transfer_mode = 0;
return ERROR_HN_VER;
}
return 0;
}
static s32 hotknot_load_hotknot_subsystem(void)
{
return hotknot_enter_transfer_mode();
}
static s32 hotknot_load_authentication_subsystem(void)
{
s32 ret = 0;
u8 buffer[5] = { 0 };
ret = gt1x_hold_ss51_dsp_no_reset();
if (ret < 0) {
GTP_ERROR("Hold ss51 fail!");
return ERROR;
}
if (gt1x_chip_type == CHIP_TYPE_GT1X) {
GTP_INFO("hotknot load jump code.");
ret = gt1x_load_patch(gt1x_patch_jump_fw, 4096, 0, 1024 * 8);
if (ret < 0) {
GTP_ERROR("Load jump code fail!");
return ret;
}
GTP_INFO("hotknot load auth code.");
ret = gt1x_load_patch(hotknot_auth_fw, 4096, 4096, 1024 * 8);
if (ret < 0) {
GTP_ERROR("Load auth system fail!");
return ret;
}
} else { /* GT2X */
GTP_INFO("hotknot load auth code.");
ret = gt1x_load_patch(hotknot_auth_fw, 4096, 0, 1024 * 6);
if (ret < 0) {
GTP_ERROR("load auth system fail!");
return ret;
}
}
ret = gt1x_startup_patch();
if (ret < 0) {
GTP_ERROR("Startup auth system fail!");
return ret;
}
ret = gt1x_i2c_read(GTP_REG_VERSION, buffer, 4);
if (ret < 0) {
GTP_ERROR("i2c read error!");
return ERROR_IIC;
}
buffer[4] = 0;
GTP_INFO("Current System version: %s", buffer);
return 0;
}
static s32 hotknot_recovery_main_system(void)
{
gt1x_irq_disable();
gt1x_reset_guitar();
gt1x_irq_enable();
#if GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_ON);
#endif
hotknot_transfer_mode = 0;
return 0;
}
#if HOTKNOT_BLOCK_RW
DECLARE_WAIT_QUEUE_HEAD(bp_waiter);
static u8 got_hotknot_state = 0;
static u8 got_hotknot_extra_state = 0;
static u8 wait_hotknot_state = 0;
static u8 force_wake_flag = 0;
static u8 block_enable = 0;
s32 hotknot_paired_flag = 0;
static s32 hotknot_block_rw(u8 rqst_hotknot_state, s32 wait_hotknot_timeout)
{
s32 ret = 0;
wait_hotknot_state |= rqst_hotknot_state;
GTP_DEBUG("Goodix tool received wait polling state:0x%x,timeout:%d, all wait state:0x%x", rqst_hotknot_state, wait_hotknot_timeout, wait_hotknot_state);
got_hotknot_state &= (~rqst_hotknot_state);
set_current_state(TASK_INTERRUPTIBLE);
if (wait_hotknot_timeout <= 0) {
wait_event_interruptible(bp_waiter, force_wake_flag || rqst_hotknot_state == (got_hotknot_state & rqst_hotknot_state));
} else {
wait_event_interruptible_timeout(bp_waiter, force_wake_flag || rqst_hotknot_state == (got_hotknot_state & rqst_hotknot_state), wait_hotknot_timeout);
}
wait_hotknot_state &= (~rqst_hotknot_state);
if (rqst_hotknot_state != (got_hotknot_state & rqst_hotknot_state)) {
GTP_ERROR("Wait 0x%x block polling waiter failed.", rqst_hotknot_state);
ret = -1;
}
force_wake_flag = 0;
return ret;
}
static void hotknot_wakeup_block(void)
{
GTP_DEBUG("Manual wakeup all block polling waiter!");
got_hotknot_state = 0;
wait_hotknot_state = 0;
force_wake_flag = 1;
wake_up_interruptible(&bp_waiter);
}
s32 hotknot_event_handler(u8 * data)
{
u8 hn_pxy_state = 0;
u8 hn_pxy_state_bak = 0;
static u8 hn_paired_cnt = 0;
u8 hn_state_buf[10] = { 0 };
u8 finger = data[0];
u8 id = 0;
if (block_enable && !hotknot_paired_flag && (finger & 0x0F)) {
id = data[1];
hn_pxy_state = data[2] & 0x80;
hn_pxy_state_bak = data[3] & 0x80;
if ((32 == id) && (0x80 == hn_pxy_state) && (0x80 == hn_pxy_state_bak)) {
#ifdef HN_DBLCFM_PAIRED
if (hn_paired_cnt++ < 2) {
return 0;
}
#endif
GTP_DEBUG("HotKnot paired!");
if (wait_hotknot_state & HN_DEVICE_PAIRED) {
GTP_DEBUG("INT wakeup HN_DEVICE_PAIRED block polling waiter");
got_hotknot_state |= HN_DEVICE_PAIRED;
wake_up_interruptible(&bp_waiter);
}
block_enable = 0;
hotknot_paired_flag = 1;
return 0;
} else {
got_hotknot_state &= (~HN_DEVICE_PAIRED);
hn_paired_cnt = 0;
}
}
if (hotknot_paired_flag) {
s32 ret = -1;
ret = gt1x_i2c_read(GTP_REG_HN_STATE, hn_state_buf, 6);
if (ret < 0) {
GTP_ERROR("I2C transfer error. errno:%d\n ", ret);
return 0;
}
got_hotknot_state = 0;
GTP_DEBUG("wait_hotknot_state:%x", wait_hotknot_state);
GTP_DEBUG("[0x8800~0x8803]=0x%x,0x%x,0x%x,0x%x", hn_state_buf[0], hn_state_buf[1], hn_state_buf[2], hn_state_buf[3]);
if (wait_hotknot_state & HN_MASTER_SEND) {
if ((0x03 == hn_state_buf[0]) || (0x04 == hn_state_buf[0])
|| (0x07 == hn_state_buf[0])) {
GTP_DEBUG("Wakeup HN_MASTER_SEND block polling waiter");
got_hotknot_state |= HN_MASTER_SEND;
got_hotknot_extra_state = hn_state_buf[0];
wake_up_interruptible(&bp_waiter);
}
} else if (wait_hotknot_state & HN_SLAVE_RECEIVED) {
if ((0x03 == hn_state_buf[1]) || (0x04 == hn_state_buf[1])
|| (0x07 == hn_state_buf[1])) {
GTP_DEBUG("Wakeup HN_SLAVE_RECEIVED block polling waiter:0x%x", hn_state_buf[1]);
got_hotknot_state |= HN_SLAVE_RECEIVED;
got_hotknot_extra_state = hn_state_buf[1];
wake_up_interruptible(&bp_waiter);
}
} else if (wait_hotknot_state & HN_MASTER_DEPARTED) {
if (0x07 == hn_state_buf[0]) {
GTP_DEBUG("Wakeup HN_MASTER_DEPARTED block polling waiter");
got_hotknot_state |= HN_MASTER_DEPARTED;
wake_up_interruptible(&bp_waiter);
}
} else if (wait_hotknot_state & HN_SLAVE_DEPARTED) {
if (0x07 == hn_state_buf[1]) {
GTP_DEBUG("Wakeup HN_SLAVE_DEPARTED block polling waiter");
got_hotknot_state |= HN_SLAVE_DEPARTED;
wake_up_interruptible(&bp_waiter);
}
}
return 0;
}
return -1;
}
#endif //HOTKNOT_BLOCK_RW
#endif //GTP_HOTKNOT
#define GOODIX_MAGIC_NUMBER 'G'
#define NEGLECT_SIZE_MASK (~(_IOC_SIZEMASK << _IOC_SIZESHIFT))
#define GESTURE_ENABLE _IO(GOODIX_MAGIC_NUMBER, 1) // 1
#define GESTURE_DISABLE _IO(GOODIX_MAGIC_NUMBER, 2)
#define GESTURE_FLAG_SET _IO(GOODIX_MAGIC_NUMBER, 3)
#define GESTURE_FLAG_CLEAR _IO(GOODIX_MAGIC_NUMBER, 4)
//#define SET_ENABLED_GESTURE (_IOW(GOODIX_MAGIC_NUMBER, 5, u8) & NEGLECT_SIZE_MASK)
#define GESTURE_DATA_OBTAIN (_IOR(GOODIX_MAGIC_NUMBER, 6, u8) & NEGLECT_SIZE_MASK)
#define GESTURE_DATA_ERASE _IO(GOODIX_MAGIC_NUMBER, 7)
//#define HOTKNOT_LOAD_SUBSYSTEM (_IOW(GOODIX_MAGIC_NUMBER, 6, u8) & NEGLECT_SIZE_MASK)
#define HOTKNOT_LOAD_HOTKNOT _IO(GOODIX_MAGIC_NUMBER, 20)
#define HOTKNOT_LOAD_AUTHENTICATION _IO(GOODIX_MAGIC_NUMBER, 21)
#define HOTKNOT_RECOVERY_MAIN _IO(GOODIX_MAGIC_NUMBER, 22)
//#define HOTKNOT_BLOCK_RW (_IOW(GOODIX_MAGIC_NUMBER, 6, u8) & NEGLECT_SIZE_MASK)
#define HOTKNOT_DEVICES_PAIRED _IO(GOODIX_MAGIC_NUMBER, 23)
#define HOTKNOT_MASTER_SEND _IO(GOODIX_MAGIC_NUMBER, 24)
#define HOTKNOT_SLAVE_RECEIVE _IO(GOODIX_MAGIC_NUMBER, 25)
//#define HOTKNOT_DEVICES_COMMUNICATION
#define HOTKNOT_MASTER_DEPARTED _IO(GOODIX_MAGIC_NUMBER, 26)
#define HOTKNOT_SLAVE_DEPARTED _IO(GOODIX_MAGIC_NUMBER, 27)
#define HOTKNOT_VENDOR_VERSION (_IOR(GOODIX_MAGIC_NUMBER, 28, u8) & NEGLECT_SIZE_MASK)
#define HOTKNOT_WAKEUP_BLOCK _IO(GOODIX_MAGIC_NUMBER, 29)
#define IO_IIC_READ (_IOR(GOODIX_MAGIC_NUMBER, 100, u8) & NEGLECT_SIZE_MASK)
#define IO_IIC_WRITE (_IOW(GOODIX_MAGIC_NUMBER, 101, u8) & NEGLECT_SIZE_MASK)
#define IO_RESET_GUITAR _IO(GOODIX_MAGIC_NUMBER, 102)
#define IO_DISABLE_IRQ _IO(GOODIX_MAGIC_NUMBER, 103)
#define IO_ENABLE_IRQ _IO(GOODIX_MAGIC_NUMBER, 104)
#define IO_GET_VERISON (_IOR(GOODIX_MAGIC_NUMBER, 110, u8) & NEGLECT_SIZE_MASK)
#define IO_PRINT (_IOW(GOODIX_MAGIC_NUMBER, 111, u8) & NEGLECT_SIZE_MASK)
#define IO_VERSION "V1.3-20150420"
#define CMD_HEAD_LENGTH 20
static s32 io_iic_read(u8 * data, void __user * arg)
{
s32 err = ERROR;
s32 data_length = 0;
u16 addr = 0;
err = copy_from_user(data, arg, CMD_HEAD_LENGTH);
if (err) {
GTP_ERROR("Can't access the memory.");
return ERROR_MEM;
}
addr = data[0] << 8 | data[1];
data_length = data[2] << 8 | data[3];
err = gt1x_i2c_read(addr, &data[CMD_HEAD_LENGTH], data_length);
if (!err) {
err = copy_to_user(&((u8 __user *) arg)[CMD_HEAD_LENGTH], &data[CMD_HEAD_LENGTH], data_length);
if (err) {
GTP_ERROR("ERROR when copy to user.[addr: %04x], [read length:%d]", addr, data_length);
return ERROR_MEM;
}
err = CMD_HEAD_LENGTH + data_length;
}
//GTP_DEBUG("IIC_READ.addr:0x%4x, length:%d, ret:%d", addr, data_length, err);
//GTP_DEBUG_ARRAY((&data[CMD_HEAD_LENGTH]), data_length);
return err;
}
static s32 io_iic_write(u8 * data)
{
s32 err = ERROR;
s32 data_length = 0;
u16 addr = 0;
addr = data[0] << 8 | data[1];
data_length = data[2] << 8 | data[3];
err = gt1x_i2c_write(addr, &data[CMD_HEAD_LENGTH], data_length);
if (!err) {
err = CMD_HEAD_LENGTH + data_length;
}
//GTP_DEBUG("IIC_WRITE.addr:0x%4x, length:%d, ret:%d", addr, data_length, err);
//GTP_DEBUG_ARRAY((&data[CMD_HEAD_LENGTH]), data_length);
return err;
}
//@return, 0:operate successfully
// > 0: the length of memory size ioctl has accessed,
// error otherwise.
static long gt1x_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
u32 value = 0;
s32 ret = 0; //the initial value must be 0
u8 *data = NULL;
int cnt = 30;
/* Blocking when firmwaer updating */
while (cnt-- && update_info.status) {
ssleep(1);
}
//GTP_DEBUG("IOCTL CMD:%x", cmd);
/* GTP_DEBUG("command:%d, length:%d, rw:%s",
_IOC_NR(cmd),
_IOC_SIZE(cmd),
(_IOC_DIR(cmd) & _IOC_READ) ? "read" : (_IOC_DIR(cmd) & _IOC_WRITE) ? "write" : "-");
*/
if (_IOC_DIR(cmd)) {
s32 err = -1;
s32 data_length = _IOC_SIZE(cmd);
data = (u8 *) kzalloc(data_length, GFP_KERNEL);
memset(data, 0, data_length);
if (_IOC_DIR(cmd) & _IOC_WRITE) {
err = copy_from_user(data, (void __user *)arg, data_length);
if (err) {
GTP_ERROR("Can't access the memory.");
kfree(data);
return -1;
}
}
} else {
value = (u32) arg;
}
if (!data)
return -1;
switch (cmd & NEGLECT_SIZE_MASK) {
case IO_GET_VERISON:
if ((u8 __user *) arg) {
ret = copy_to_user(((u8 __user *) arg), IO_VERSION, sizeof(IO_VERSION));
if (!ret) {
ret = sizeof(IO_VERSION);
}
GTP_INFO("%s", IO_VERSION);
}
break;
case IO_IIC_READ:
ret = io_iic_read(data, (void __user *)arg);
break;
case IO_IIC_WRITE:
ret = io_iic_write(data);
break;
case IO_RESET_GUITAR:
gt1x_irq_disable();
gt1x_reset_guitar();
gt1x_irq_enable();
break;
case IO_DISABLE_IRQ:
gt1x_irq_disable();
#if GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_OFF);
#endif
break;
case IO_ENABLE_IRQ:
gt1x_irq_enable();
#if GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_ON);
#endif
break;
//print a string to syc log messages between application and kernel.
case IO_PRINT:
if (data)
GTP_INFO("%s", (char *)data);
break;
#if GTP_GESTURE_WAKEUP
case GESTURE_ENABLE:
GTP_DEBUG("Gesture switch ON.");
gesture_enabled = 1;
break;
case GESTURE_DISABLE:
GTP_DEBUG("Gesture switch OFF.");
gesture_enabled = 0;
break;
case GESTURE_FLAG_SET:
SETBIT(gestures_flag, (u8) value);
GTP_DEBUG("Gesture flag: 0x%02X enabled.", value);
break;
case GESTURE_FLAG_CLEAR:
CLEARBIT(gestures_flag, (u8) value);
GTP_DEBUG("Gesture flag: 0x%02X disabled.", value);
break;
case GESTURE_DATA_OBTAIN:
GTP_DEBUG("Obtain gesture data.");
mutex_lock(&gesture_data_mutex);
ret = copy_to_user(((u8 __user *) arg), &gesture_data.data, 4 + gesture_data.data[1] * 4 + gesture_data.data[3]);
if (ret) {
GTP_ERROR("ERROR when copy gesture data to user.");
ret = ERROR_MEM;
} else {
ret = 4 + gesture_data.data[1] * 4 + gesture_data.data[3];
}
mutex_unlock(&gesture_data_mutex);
break;
case GESTURE_DATA_ERASE:
GTP_DEBUG("ERASE_GESTURE_DATA");
gesture_clear_wakeup_data();
break;
#endif // GTP_GESTURE_WAKEUP
#if GTP_HOTKNOT
case HOTKNOT_VENDOR_VERSION:
ret = copy_to_user(((u8 __user *) arg), HOTKNOT_VERSION, sizeof(HOTKNOT_VERSION));
if (!ret) {
ret = sizeof(HOTKNOT_VERSION);
}
break;
case HOTKNOT_LOAD_HOTKNOT:
ret = hotknot_load_hotknot_subsystem();
break;
case HOTKNOT_LOAD_AUTHENTICATION:
#if GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_OFF);
#endif
ret = hotknot_load_authentication_subsystem();
break;
case HOTKNOT_RECOVERY_MAIN:
ret = hotknot_recovery_main_system();
break;
#if HOTKNOT_BLOCK_RW
case HOTKNOT_DEVICES_PAIRED:
hotknot_paired_flag = 0;
force_wake_flag = 0;
block_enable = 1;
ret = hotknot_block_rw(HN_DEVICE_PAIRED, (s32) value);
break;
case HOTKNOT_MASTER_SEND:
ret = hotknot_block_rw(HN_MASTER_SEND, (s32) value);
if (!ret)
ret = got_hotknot_extra_state;
break;
case HOTKNOT_SLAVE_RECEIVE:
ret = hotknot_block_rw(HN_SLAVE_RECEIVED, (s32) value);
if (!ret)
ret = got_hotknot_extra_state;
break;
case HOTKNOT_MASTER_DEPARTED:
ret = hotknot_block_rw(HN_MASTER_DEPARTED, (s32) value);
break;
case HOTKNOT_SLAVE_DEPARTED:
ret = hotknot_block_rw(HN_SLAVE_DEPARTED, (s32) value);
break;
case HOTKNOT_WAKEUP_BLOCK:
hotknot_wakeup_block();
break;
#endif //HOTKNOT_BLOCK_RW
#endif //GTP_HOTKNOT
default:
GTP_INFO("Unknown cmd.");
ret = -1;
break;
}
if (data != NULL) {
kfree(data);
}
return ret;
}
#ifdef CONFIG_COMPAT
static long gt1x_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
void __user *arg32 = compat_ptr(arg);
if (!file->f_op || !file->f_op->unlocked_ioctl)
return -ENOTTY;
return file->f_op->unlocked_ioctl(file, cmd, (unsigned long)arg32);
}
#endif
static const struct file_operations gt1x_fops = {
.owner = THIS_MODULE,
#if GTP_GESTURE_WAKEUP
.read = gt1x_gesture_data_read,
.write = gt1x_gesture_data_write,
#endif
.unlocked_ioctl = gt1x_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = gt1x_compat_ioctl,
#endif
};
#if GTP_HOTKNOT
static const struct file_operations hotknot_fops = {
.open = hotknot_open,
.release = hotknot_release,
.unlocked_ioctl = gt1x_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = gt1x_compat_ioctl,
#endif
};
static struct miscdevice hotknot_misc_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = HOTKNOT_NODE,
.fops = &hotknot_fops,
};
#endif
s32 gt1x_init_node(void)
{
#if GTP_GESTURE_WAKEUP
struct proc_dir_entry *proc_entry = NULL;
mutex_init(&gesture_data_mutex);
memset(gestures_flag, 0, sizeof(gestures_flag));
memset((u8 *) & gesture_data, 0, sizeof(st_gesture_data));
proc_entry = proc_create(GESTURE_NODE, 0666, NULL, &gt1x_fops);
if (proc_entry == NULL) {
GTP_ERROR("CAN't create proc entry /proc/%s.", GESTURE_NODE);
return -1;
} else {
GTP_INFO("Created proc entry /proc/%s.", GESTURE_NODE);
}
#endif
#if GTP_HOTKNOT
if (misc_register(&hotknot_misc_device)) {
GTP_ERROR("CAN't create misc device in /dev/hotknot.");
return -1;
} else {
GTP_INFO("Created misc device in /dev/hotknot.");
}
#endif
return 0;
}
void gt1x_deinit_node(void)
{
#if GTP_GESTURE_WAKEUP
remove_proc_entry(GESTURE_NODE, NULL);
#endif
#if GTP_HOTKNOT
misc_deregister(&hotknot_misc_device);
#endif
}