blob: cbb9367c67b0d558840f263f9be507957f29ad25 [file] [log] [blame]
/* drivers/input/touchscreen/gt1x_generic.c
*
* 2010 - 2014 Goodix Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be a reference
* to you, when you are integrating the GOODiX's CTP IC into your system,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* Version: 1.4
* Release Date: 2015/07/10
*/
//#include "gt1x_tpd_custom.h"
#include "gt1x.h"
#include "gt1x_generic.h"
#if GTP_PROXIMITY&&defined(PLATFORM_MTK)
#include <linux/hwmsensor.h>
#include <linux/hwmsen_dev.h>
#include <linux/sensors_io.h>
#endif
#if GTP_ICS_SLOT_REPORT
#include <linux/input/mt.h>
#endif
/*******************GLOBAL VARIABLE*********************/
struct i2c_client *gt1x_i2c_client = NULL;
static struct workqueue_struct *gt1x_workqueue = NULL;
u8 gt1x_config[GTP_CONFIG_MAX_LENGTH] = { 0 };
u32 gt1x_cfg_length = GTP_CONFIG_MAX_LENGTH;
CHIP_TYPE_T gt1x_chip_type = CHIP_TYPE_NONE;
struct gt1x_version_info gt1x_version = {
.product_id = {0},
.patch_id = 0,
.mask_id = 0,
.sensor_id = 0,
.match_opt = 0
};
#ifndef TPD_HAVE_BUTTON
#define TPD_HAVE_BUTTON 0
#endif
#if GTP_HAVE_TOUCH_KEY
const u16 gt1x_touch_key_array[] = GTP_KEY_TAB;
#elif TPD_HAVE_BUTTON
struct key_map_t {
int x;
int y;
};
static struct key_map_t tpd_virtual_key_array[]= TPD_KEY_MAP_ARRAY;
#endif
#if GTP_WITH_STYLUS && GTP_HAVE_STYLUS_KEY
static const u16 gt1x_stylus_key_array[] = GTP_STYLUS_KEY_TAB;
#endif
#define GOODIX_SYSFS_DIR "goodix"
static struct kobject *sysfs_rootdir = NULL;
volatile int gt1x_rawdiff_mode = 0;
u8 gt1x_wakeup_level = 0;
u8 gt1x_init_failed = 0;
u8 gt1x_int_type = 0;
u32 gt1x_abs_x_max = 0;
u32 gt1x_abs_y_max = 0;
int gt1x_halt = 0;
static ssize_t gt1x_debug_read_proc(struct file *, char __user *, size_t, loff_t *);
static ssize_t gt1x_debug_write_proc(struct file *, const char __user *, size_t, loff_t *);
static struct proc_dir_entry *gt1x_debug_proc_entry = NULL;
static const struct file_operations gt1x_debug_fops = {
.owner = THIS_MODULE,
.read = gt1x_debug_read_proc,
.write = gt1x_debug_write_proc,
};
static s32 gt1x_init_debug_node(void)
{
gt1x_debug_proc_entry = proc_create(GT1X_DEBUG_PROC_FILE, 0660, NULL, &gt1x_debug_fops);
if (gt1x_debug_proc_entry == NULL) {
GTP_ERROR("Create proc entry /proc/%s FAILED!", GT1X_DEBUG_PROC_FILE);
return -1;
}
GTP_INFO("Created proc entry /proc/%s.", GT1X_DEBUG_PROC_FILE);
return 0;
}
static void gt1x_deinit_debug_node(void)
{
if (gt1x_debug_proc_entry != NULL) {
remove_proc_entry(GT1X_DEBUG_PROC_FILE, NULL);
}
}
static ssize_t gt1x_debug_read_proc(struct file *file, char __user * page, size_t size, loff_t * ppos)
{
char *ptr = page;
char temp_data[GTP_CONFIG_MAX_LENGTH] = { 0 };
int i, ret = -1;
if (*ppos) {
return 0;
}
ptr += sprintf(ptr, "==== GT1X default config setting in driver====\n");
for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) {
ptr += sprintf(ptr, "0x%02X,", gt1x_config[i]);
if (i % 10 == 9)
ptr += sprintf(ptr, "\n");
}
ptr += sprintf(ptr, "\n");
ptr += sprintf(ptr, "==== GT1X config read from chip====\n");
i = gt1x_i2c_read(GTP_REG_CONFIG_DATA, temp_data, GTP_CONFIG_MAX_LENGTH);
GTP_INFO("I2C TRANSFER: %d", i);
for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) {
ptr += sprintf(ptr, "0x%02X,", temp_data[i]);
if (i % 10 == 9)
ptr += sprintf(ptr, "\n");
}
ptr += sprintf(ptr, "\n");
/* Touch PID & VID */
ptr += sprintf(ptr, "==== GT1X Version Info ====\n");
ret = gt1x_i2c_read(GTP_REG_VERSION, temp_data, 12);
if (ret < 0)
return ret;
ptr += sprintf(ptr, "ProductID: GT%c%c%c%c\n", temp_data[0], temp_data[1], temp_data[2], temp_data[3]);
ptr += sprintf(ptr, "PatchID: %02X%02X\n", temp_data[4], temp_data[5]);
ptr += sprintf(ptr, "MaskID: %02X%02X\n", temp_data[7], temp_data[8]);
ptr += sprintf(ptr, "SensorID: %02X\n", temp_data[10] & 0x0F);
*ppos += ptr - page;
return (ptr - page);
}
static ssize_t gt1x_debug_write_proc(struct file *file, const char *buffer, size_t count, loff_t * ppos)
{
s32 ret = 0;
u8 buf[GTP_CONFIG_MAX_LENGTH] = { 0 };
char mode_str[50] = { 0 };
int mode;
int cfg_len;
char arg1[50] = { 0 };
u8 temp_config[GTP_CONFIG_MAX_LENGTH] = { 0 };
GTP_DEBUG("write count %ld\n", (unsigned long)count);
if (count > GTP_CONFIG_MAX_LENGTH) {
GTP_ERROR("Too much data, buffer size: %d, data:%ld", GTP_CONFIG_MAX_LENGTH, (unsigned long)count);
return -EFAULT;
}
if (copy_from_user(buf, buffer, count)) {
GTP_ERROR("copy from user fail!");
return -EFAULT;
}
// send config
if (count == gt1x_cfg_length) {
memcpy(gt1x_config, buf, count);
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
if (ret < 0) {
GTP_ERROR("send gt1x_config failed.");
return -EFAULT;
}
gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) + gt1x_config[RESOLUTION_LOC];
gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) + gt1x_config[RESOLUTION_LOC + 2];
return count;
}
sscanf(buf, "%s %d", (char *)&mode_str, &mode);
//force clear gt1x_config
if (strcmp(mode_str, "clear_config") == 0) {
GTP_INFO("Force clear gt1x_config");
gt1x_send_cmd(GTP_CMD_CLEAR_CFG, 0);
return count;
}
if (strcmp(mode_str, "init") == 0) {
GTP_INFO("Init panel");
gt1x_init_panel();
return count;
}
if (strcmp(mode_str, "chip") == 0) {
GTP_INFO("Get chip type:");
gt1x_get_chip_type();
return count;
}
if (strcmp(mode_str, "int") == 0) {
if (mode == 0) {
GTP_INFO("Disable irq.");
gt1x_irq_disable();
} else {
GTP_INFO("Enable irq.");
gt1x_irq_enable();
}
return count;
}
if (strcmp(mode_str, "poweron") == 0) {
gt1x_power_switch(1);
return count;
}
if (strcmp(mode_str, "poweroff") == 0) {
gt1x_power_switch(0);
return count;
}
if (strcmp(mode_str, "version") == 0) {
gt1x_read_version(NULL);
return count;
}
if (strcmp(mode_str, "reset") == 0) {
gt1x_irq_disable();
gt1x_reset_guitar();
gt1x_irq_enable();
return count;
}
#if GTP_CHARGER_SWITCH
if (strcmp(mode_str, "charger") == 0) {
gt1x_charger_config(mode);
return count;
}
#endif
sscanf(buf, "%s %s", (char *)&mode_str, (char *)&arg1);
if (strcmp(mode_str, "update") == 0) {
gt1x_update_firmware(arg1);
return count;
}
if (strcmp(mode_str, "sendconfig") == 0) {
cfg_len = gt1x_parse_config(arg1, temp_config);
if (cfg_len < 0) {
return -1;
}
gt1x_send_cfg(temp_config, gt1x_cfg_length);
return count;
}
if (strcmp(mode_str, "debug_gesture") == 0) {
#if GTP_GESTURE_WAKEUP
gt1x_gesture_debug(!!mode);
#endif
}
if (strcmp(mode_str, "force_update") == 0) {
update_info.force_update = !!mode;
}
return gt1x_debug_proc(buf, count);
}
static u8 ascii2hex(u8 a)
{
s8 value = 0;
if (a >= '0' && a <= '9') {
value = a - '0';
} else if (a >= 'A' && a <= 'F') {
value = a - 'A' + 0x0A;
} else if (a >= 'a' && a <= 'f') {
value = a - 'a' + 0x0A;
} else {
value = 0xff;
}
return value;
}
int gt1x_parse_config(char *filename, u8 * config)
{
mm_segment_t old_fs;
struct file *fp = NULL;
u8 *buf;
int i;
int len;
int cur_len = -1;
u8 high, low;
old_fs = get_fs();
set_fs(KERNEL_DS);
fp = filp_open(filename, O_RDONLY, 0);
if (IS_ERR(fp)) {
GTP_ERROR("Open config file error!(file: %s)", filename);
goto parse_cfg_fail1;
}
len = fp->f_op->llseek(fp, 0, SEEK_END);
if (len > GTP_CONFIG_MAX_LENGTH * 6 || len < GTP_CONFIG_MAX_LENGTH) {
GTP_ERROR("Config is invalid!(length: %d)", len);
goto parse_cfg_fail2;
}
buf = (u8 *) kzalloc(len, GFP_KERNEL);
if (buf == NULL) {
GTP_ERROR("Allocate memory failed!(size: %d)", len);
goto parse_cfg_fail2;
}
fp->f_op->llseek(fp, 0, SEEK_SET);
if (fp->f_op->read(fp, (char *)buf, len, &fp->f_pos) != len) {
GTP_ERROR("Read %d bytes from file failed!", len);
}
GTP_INFO("Parse config file: %s (%d bytes)", filename, len);
for (i = 0, cur_len = 0; i < len && cur_len < GTP_CONFIG_MAX_LENGTH;) {
if (buf[i] == ' ' || buf[i] == '\r' || buf[i] == '\n' || buf[i] == ',') {
i++;
continue;
}
if (buf[i] == '0' && (buf[i + 1] == 'x' || buf[i + 1] == 'X')) {
high = ascii2hex(buf[i + 2]);
low = ascii2hex(buf[i + 3]);
if (high != 0xFF && low != 0xFF) {
config[cur_len++] = (high << 4) + low;
i += 4;
continue;
}
}
GTP_ERROR("Illegal config file!");
cur_len = -1;
break;
}
if (cur_len < GTP_CONFIG_MIN_LENGTH || config[cur_len - 1] != 0x01) {
cur_len = -1;
} else {
for (i = 0; i < cur_len; i++) {
if (i % 10 == 0) {
printk("\n<<GTP-DBG>>:");
}
printk("0x%02x,", config[i]);
}
printk("\n");
}
kfree(buf);
parse_cfg_fail2:
filp_close(fp, NULL);
parse_cfg_fail1:
set_fs(old_fs);
return cur_len;
}
s32 _do_i2c_read(struct i2c_msg * msgs, u16 addr, u8 * buffer, s32 len)
{
s32 ret = -1;
s32 pos = 0;
s32 data_length = len;
s32 transfer_length = 0;
u8 *data = NULL;
u16 address = addr;
data = (u8 *) kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ? IIC_MAX_TRANSFER_SIZE : (len + GTP_ADDR_LENGTH), GFP_KERNEL);
if (data == NULL) {
return ERROR_MEM;
}
msgs[1].buf = data;
while (pos != data_length) {
if ((data_length - pos) > IIC_MAX_TRANSFER_SIZE) {
transfer_length = IIC_MAX_TRANSFER_SIZE;
} else {
transfer_length = data_length - pos;
}
msgs[0].buf[0] = (address >> 8) & 0xFF;
msgs[0].buf[1] = address & 0xFF;
msgs[1].len = transfer_length;
ret = i2c_transfer(gt1x_i2c_client->adapter, msgs, 2);
if (ret != 2) {
GTP_ERROR("I2c Transfer error! (%d)", ret);
kfree(data);
return ERROR_IIC;
}
memcpy(&buffer[pos], msgs[1].buf, transfer_length);
pos += transfer_length;
address += transfer_length;
}
kfree(data);
return 0;
}
s32 _do_i2c_write(struct i2c_msg * msg, u16 addr, u8 * buffer, s32 len)
{
s32 ret = -1;
s32 pos = 0;
s32 data_length = len;
s32 transfer_length = 0;
u8 *data = NULL;
u16 address = addr;
data = (u8 *) kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ? IIC_MAX_TRANSFER_SIZE : (len + GTP_ADDR_LENGTH), GFP_KERNEL);
if (data == NULL) {
return ERROR_MEM;
}
msg->buf = data;
while (pos != data_length) {
if ((data_length - pos) > (IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH)) {
transfer_length = IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH;
} else {
transfer_length = data_length - pos;
}
msg->buf[0] = (address >> 8) & 0xFF;
msg->buf[1] = address & 0xFF;
msg->len = transfer_length + GTP_ADDR_LENGTH;
memcpy(&msg->buf[GTP_ADDR_LENGTH], &buffer[pos], transfer_length);
ret = i2c_transfer(gt1x_i2c_client->adapter, msg, 1);
if (ret != 1) {
GTP_ERROR("I2c transfer error! (%d)", ret);
kfree(data);
return ERROR_IIC;
}
pos += transfer_length;
address += transfer_length;
}
kfree(data);
return 0;
}
#if !GTP_ESD_PROTECT
static s32 gt1x_i2c_test(void)
{
u8 retry = 0;
s32 ret = -1;
u32 hw_info = 0;
GTP_DEBUG_FUNC();
while (retry++ < 3) {
ret = gt1x_i2c_read(GTP_REG_HW_INFO, (u8 *) & hw_info, sizeof(hw_info));
if (!ret) {
GTP_INFO("Hardware Info:%08X", hw_info);
return ret;
}
msleep(10);
GTP_ERROR("Hardware Info:%08X", hw_info);
GTP_ERROR("I2c failed%d.", retry);
}
return ERROR_RETRY;
}
#endif
/**
* gt1x_i2c_read_dbl_check - read twice and double check
* @addr: register address
* @buffer: data buffer
* @len: bytes to read
* Return <0: i2c error, 0: ok, 1:fail
*/
s32 gt1x_i2c_read_dbl_check(u16 addr, u8 * buffer, s32 len)
{
u8 buf[16] = { 0 };
u8 confirm_buf[16] = { 0 };
int ret;
if (len > 16) {
GTP_ERROR("i2c_read_dbl_check length %d is too long, exceed %zu", len, sizeof(buf));
return ERROR;
}
memset(buf, 0xAA, sizeof(buf));
ret = gt1x_i2c_read(addr, buf, len);
if (ret < 0) {
return ret;
}
msleep(5);
memset(confirm_buf, 0, sizeof(confirm_buf));
ret = gt1x_i2c_read(addr, confirm_buf, len);
if (ret < 0) {
return ret;
}
if (!memcmp(buf, confirm_buf, len)) {
memcpy(buffer, confirm_buf, len);
return 0;
}
GTP_ERROR("i2c read 0x%04X, %d bytes, double check failed!", addr, len);
return 1;
}
/**
* gt1x_get_info - Get information from ic, such as resolution and
* int trigger type
* Return <0: i2c failed, 0: i2c ok
*/
s32 gt1x_get_info(void)
{
u8 opr_buf[4] = { 0 };
s32 ret = 0;
ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA + 1, opr_buf, 4);
if (ret < 0) {
return ret;
}
gt1x_abs_x_max = (opr_buf[1] << 8) + opr_buf[0];
gt1x_abs_y_max = (opr_buf[3] << 8) + opr_buf[2];
ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA + 6, opr_buf, 1);
if (ret < 0) {
return ret;
}
gt1x_int_type = opr_buf[0] & 0x03;
GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x", gt1x_abs_x_max, gt1x_abs_y_max, gt1x_int_type);
return 0;
}
/**
* gt1x_send_cfg - Send gt1x_config Function.
* @config: pointer of the configuration array.
* @cfg_len: length of configuration array.
* Return 0--success,non-0--fail.
*/
s32 gt1x_send_cfg(u8 * config, int cfg_len)
{
#if GTP_DRIVER_SEND_CFG
static DEFINE_MUTEX(mutex_cfg);
int i;
s32 ret = 0;
s32 retry = 0;
u16 checksum = 0;
if (update_info.status) {
GTP_DEBUG("Ignore cfg during fw update.");
return -1;
}
mutex_lock(&mutex_cfg);
GTP_DEBUG("Driver send config, length:%d", cfg_len);
for (i = 0; i < cfg_len - 3; i += 2) {
checksum += (config[i] << 8) + config[i + 1];
}
if (!checksum) {
GTP_ERROR("Invalid config, all of the bytes is zero!");
mutex_unlock(&mutex_cfg);
return -1;
}
checksum = 0 - checksum;
GTP_DEBUG("Config checksum: 0x%04X", checksum);
config[cfg_len - 3] = (checksum >> 8) & 0xFF;
config[cfg_len - 2] = checksum & 0xFF;
config[cfg_len - 1] = 0x01;
while (retry++ < 5) {
ret = gt1x_i2c_write(GTP_REG_CONFIG_DATA, config, cfg_len);
if (!ret) {
msleep(200); /* at least 200ms, wait for storing config into flash. */
mutex_unlock(&mutex_cfg);
GTP_DEBUG("Send config successfully!");
return 0;
}
}
GTP_ERROR("Send config failed!");
mutex_unlock(&mutex_cfg);
return ret;
#endif
return 0;
}
/**
* gt1x_init_panel - Prepare config data for touch ic, don't call this function
* after initialization.
*
* Return 0--success,<0 --fail.
*/
s32 gt1x_init_panel(void)
{
s32 ret = 0;
u8 cfg_len = 0;
#if GTP_DRIVER_SEND_CFG
u8 sensor_id = 0;
const u8 cfg_grp0[] = GTP_CFG_GROUP0;
const u8 cfg_grp1[] = GTP_CFG_GROUP1;
const u8 cfg_grp2[] = GTP_CFG_GROUP2;
const u8 cfg_grp3[] = GTP_CFG_GROUP3;
const u8 cfg_grp4[] = GTP_CFG_GROUP4;
const u8 cfg_grp5[] = GTP_CFG_GROUP5;
const u8 *cfgs[] = {
cfg_grp0, cfg_grp1, cfg_grp2,
cfg_grp3, cfg_grp4, cfg_grp5
};
u8 cfg_lens[] = {
CFG_GROUP_LEN(cfg_grp0),
CFG_GROUP_LEN(cfg_grp1),
CFG_GROUP_LEN(cfg_grp2),
CFG_GROUP_LEN(cfg_grp3),
CFG_GROUP_LEN(cfg_grp4),
CFG_GROUP_LEN(cfg_grp5)
};
GTP_DEBUG("Config groups length:%d,%d,%d,%d,%d,%d", cfg_lens[0], cfg_lens[1], cfg_lens[2], cfg_lens[3], cfg_lens[4], cfg_lens[5]);
sensor_id = gt1x_version.sensor_id;
if (sensor_id >= 6 || cfg_lens[sensor_id] < GTP_CONFIG_MIN_LENGTH || cfg_lens[sensor_id] > GTP_CONFIG_MAX_LENGTH) {
sensor_id = 0;
gt1x_version.sensor_id = 0;
}
cfg_len = cfg_lens[sensor_id];
GTP_INFO("Config group%d used, length:%d", sensor_id, cfg_len);
if (cfg_len < GTP_CONFIG_MIN_LENGTH || cfg_len > GTP_CONFIG_MAX_LENGTH) {
GTP_ERROR("Config group%d is INVALID! You need to check you header file CFG_GROUP section!", sensor_id + 1);
return -1;
}
memset(gt1x_config, 0, sizeof(gt1x_config));
memcpy(gt1x_config, cfgs[sensor_id], cfg_len);
/* clear the flag, avoid failure when send the_config of driver. */
gt1x_config[0] &= 0x7F;
#if GTP_CUSTOM_CFG
gt1x_config[RESOLUTION_LOC] = (u8) GTP_MAX_WIDTH;
gt1x_config[RESOLUTION_LOC + 1] = (u8) (GTP_MAX_WIDTH >> 8);
gt1x_config[RESOLUTION_LOC + 2] = (u8) GTP_MAX_HEIGHT;
gt1x_config[RESOLUTION_LOC + 3] = (u8) (GTP_MAX_HEIGHT >> 8);
if (GTP_INT_TRIGGER == 0) { /* RISING */
gt1x_config[TRIGGER_LOC] &= 0xfe;
} else if (GTP_INT_TRIGGER == 1) { /* FALLING */
gt1x_config[TRIGGER_LOC] |= 0x01;
}
set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level);
#endif /* END GTP_CUSTOM_CFG */
#else /* DRIVER NOT SEND CONFIG */
cfg_len = GTP_CONFIG_MAX_LENGTH;
ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA, gt1x_config, cfg_len);
if (ret < 0) {
return ret;
}
#endif /* END GTP_DRIVER_SEND_CFG */
GTP_DEBUG_FUNC();
/* match resolution when gt1x_abs_x_max & gt1x_abs_y_max have been set already */
if ((gt1x_abs_x_max == 0) && (gt1x_abs_y_max == 0)) {
gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) + gt1x_config[RESOLUTION_LOC];
gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) + gt1x_config[RESOLUTION_LOC + 2];
gt1x_int_type = (gt1x_config[TRIGGER_LOC]) & 0x03;
gt1x_wakeup_level = !(gt1x_config[MODULE_SWITCH3_LOC] & 0x20);
} else {
gt1x_config[RESOLUTION_LOC] = (u8) gt1x_abs_x_max;
gt1x_config[RESOLUTION_LOC + 1] = (u8) (gt1x_abs_x_max >> 8);
gt1x_config[RESOLUTION_LOC + 2] = (u8) gt1x_abs_y_max;
gt1x_config[RESOLUTION_LOC + 3] = (u8) (gt1x_abs_y_max >> 8);
set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level);
gt1x_config[TRIGGER_LOC] = (gt1x_config[TRIGGER_LOC] & 0xFC) | gt1x_int_type;
}
GTP_INFO("X_MAX=%d,Y_MAX=%d,TRIGGER=0x%02x,WAKEUP_LEVEL=%d", gt1x_abs_x_max, gt1x_abs_y_max, gt1x_int_type, gt1x_wakeup_level);
gt1x_cfg_length = cfg_len;
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
return ret;
}
void gt1x_select_addr(void)
{
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_i2c_client->addr == 0x14);
msleep(2);
GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
msleep(2);
}
static s32 gt1x_set_reset_status(void)
{
/* 0x8040 ~ 0x8043 */
u8 value[] = {0xAA, 0x00, 0x56, 0xAA};
int ret;
GTP_DEBUG("Set reset status.");
ret = gt1x_i2c_write(GTP_REG_CMD + 1, &value[1], 3);
if (ret < 0)
return ret;
return gt1x_i2c_write(GTP_REG_CMD, value, 1);
}
#if GTP_INCELL_PANEL
int gt1x_write_and_readback(u16 addr, u8 * buffer, s32 len)
{
int ret;
u8 d[len];
ret = gt1x_i2c_write(addr, buffer, len);
if (ret < 0)
return -1;
ret = gt1x_i2c_read(addr, d, len);
if (ret < 0 || memcmp(buffer, d, len))
return -1;
return 0;
}
int gt1x_incell_reset(void)
{
#define RST_RETRY 5
int ret, retry = RST_RETRY;
u8 d[2];
do {
/* select i2c address */
gt1x_select_addr();
/* test i2c */
ret = gt1x_i2c_read(0x4220, d, 1);
} while (--retry && ret < 0);
if (ret < 0) {
return -1;
}
/* Stop cpu of the touch ic */
retry = RST_RETRY;
do {
d[0] = 0x0C;
ret = gt1x_write_and_readback(0x4180, d, 1);
} while (--retry && ret < 0);
if (ret < 0) {
GTP_ERROR("Hold error.");
return -1;
}
/* skip sensor id check. [start] */
retry = RST_RETRY;
do {
d[0] = 0x00;
ret = gt1x_write_and_readback(0x4305, d, 1);
if (ret < 0)
continue;
d[0] = 0x2B;
d[1] = 0x24;
ret = gt1x_write_and_readback(0x42c4, d, 2);
if (ret < 0)
continue;
d[0] = 0xE1;
d[1] = 0xD3;
ret = gt1x_write_and_readback(0x42e4, d, 2);
if (ret < 0)
continue;
d[0] = 0x01;
ret = gt1x_write_and_readback(0x4305, d, 1);
if (ret < 0)
continue;
else
break;
} while (--retry );
if (!retry)
return -1;
/* skip sensor id check. [end] */
/* release hold of cpu */
retry = RST_RETRY;
do {
d[0] = 0x00;
ret = gt1x_write_and_readback(0x4180, d, 1);
} while (--retry && ret < 0);
if (ret < 0)
return -1;
return 0;
}
#endif
s32 gt1x_reset_guitar(void)
{
int ret;
GTP_INFO("GTP RESET!");
#if GTP_INCELL_PANEL
ret = gt1x_incell_reset();
if (ret < 0)
return ret;
#else
gt1x_select_addr();
msleep(8); //must >= 6ms
#endif
/* int synchronization */
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(50);
GTP_GPIO_AS_INT(GTP_INT_PORT);
/* this operation is necessary even when the esd check
fucntion dose not turn on */
ret = gt1x_set_reset_status();
return ret;
}
/**
* gt1x_read_version - Read gt1x version info.
* @ver_info: address to store version info
* Return 0-succeed.
*/
s32 gt1x_read_version(struct gt1x_version_info * ver_info)
{
s32 ret = -1;
u8 buf[12] = { 0 };
u32 mask_id = 0;
u32 patch_id = 0;
u8 product_id[5] = { 0 };
u8 sensor_id = 0;
u8 match_opt = 0;
int i, retry = 3;
u8 checksum = 0;
GTP_DEBUG_FUNC();
while (retry--) {
ret = gt1x_i2c_read_dbl_check(GTP_REG_VERSION, buf, sizeof(buf));
if (!ret) {
checksum = 0;
for (i = 0; i < sizeof(buf); i++) {
checksum += buf[i];
}
if (checksum == 0 && /* first 3 bytes must be number or char */
IS_NUM_OR_CHAR(buf[0]) && IS_NUM_OR_CHAR(buf[1]) && IS_NUM_OR_CHAR(buf[2]) && buf[10] != 0xFF) { /*sensor id == 0xFF, retry */
break;
} else {
GTP_ERROR("Read version failed!(checksum error)");
}
} else {
GTP_ERROR("Read version failed!");
}
GTP_DEBUG("Read version : %d", retry);
msleep(100);
}
if (retry <= 0) {
if (ver_info)
ver_info->sensor_id = 0;
return -1;
}
mask_id = (u32) ((buf[7] << 16) | (buf[8] << 8) | buf[9]);
patch_id = (u32) ((buf[4] << 16) | (buf[5] << 8) | buf[6]);
memcpy(product_id, buf, 4);
sensor_id = buf[10] & 0x0F;
match_opt = (buf[10] >> 4) & 0x0F;
GTP_INFO("IC VERSION:GT%s_%06X(Patch)_%04X(Mask)_%02X(SensorID)", product_id, patch_id, mask_id >> 8, sensor_id);
if (ver_info != NULL) {
ver_info->mask_id = mask_id;
ver_info->patch_id = patch_id;
memcpy(ver_info->product_id, product_id, 5);
ver_info->sensor_id = sensor_id;
ver_info->match_opt = match_opt;
}
return 0;
}
/**
* gt1x_get_chip_type - get chip type .
*
* different chip synchronize in different way,
*/
s32 gt1x_get_chip_type(void)
{
u8 opr_buf[4] = { 0x00 };
u8 gt1x_data[] = { 0x02, 0x08, 0x90, 0x00 };
u8 gt9l_data[] = { 0x03, 0x10, 0x90, 0x00 };
s32 ret = -1;
/* chip type already exist */
if (gt1x_chip_type != CHIP_TYPE_NONE) {
return 0;
}
/* read hardware */
ret = gt1x_i2c_read_dbl_check(GTP_REG_HW_INFO, opr_buf, sizeof(opr_buf));
if (ret) {
GTP_ERROR("I2c communication error.");
return -1;
}
/* find chip type */
if (!memcmp(opr_buf, gt1x_data, sizeof(gt1x_data))) {
gt1x_chip_type = CHIP_TYPE_GT1X;
} else if (!memcmp(opr_buf, gt9l_data, sizeof(gt9l_data))) {
gt1x_chip_type = CHIP_TYPE_GT2X;
}
if (gt1x_chip_type != CHIP_TYPE_NONE) {
GTP_INFO("Chip Type: %s", (gt1x_chip_type == CHIP_TYPE_GT1X) ? "GT1X" : "GT2X");
return 0;
} else {
return -1;
}
}
/**
* gt1x_enter_sleep - Eter sleep function.
*
* Returns 0--success,non-0--fail.
*/
static s32 gt1x_enter_sleep(void)
{
#if GTP_POWER_CTRL_SLEEP
gt1x_power_switch(SWITCH_OFF);
return 0;
#else
{
s32 retry = 0;
if (gt1x_wakeup_level == 1) { /* high level wakeup */
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
}
msleep(5);
while (retry++ < 3) {
if (!gt1x_send_cmd(GTP_CMD_SLEEP, 0)) {
GTP_INFO("Enter sleep mode!");
return 0;
}
msleep(10);
}
GTP_ERROR("Enter sleep mode failed.");
return -1;
}
#endif
}
/**
* gt1x_wakeup_sleep - wakeup from sleep mode Function.
*
* Return: 0--success,non-0--fail.
*/
static s32 gt1x_wakeup_sleep(void)
{
#if !GTP_POWER_CTRL_SLEEP
u8 retry = 0;
s32 ret = -1;
int flag = 0;
#endif
GTP_DEBUG("Wake up begin.");
gt1x_irq_disable();
#if GTP_POWER_CTRL_SLEEP /* power manager unit control the procedure */
gt1x_power_reset();
GTP_INFO("Wakeup by poweron");
return 0;
#else /* gesture wakeup & int port wakeup */
while (retry++ < 2) {
#if GTP_GESTURE_WAKEUP
if (gesture_enabled) {
gesture_doze_status = DOZE_DISABLED;
ret = gt1x_reset_guitar();
if(!ret) {
break;
}
} else
#endif
{
/* wake up through int port */
GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_wakeup_level);
msleep(5);
/* Synchronize int IO */
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(50);
GTP_GPIO_AS_INT(GTP_INT_PORT);
flag = 1;
#if GTP_ESD_PROTECT
ret = gt1x_set_reset_status();
#else
ret = gt1x_i2c_test();
#endif
if (!ret)
break;
} /* end int wakeup */
}
if (ret < 0 && flag) { /* int wakeup failed , try waking up by reset */
while (retry--) {
ret = gt1x_reset_guitar();
if(!ret)
break;
}
}
if (ret) {
GTP_ERROR("Wake up sleep failed.");
return -1;
} else {
GTP_INFO("Wake up end.");
return 0;
}
#endif /* END GTP_POWER_CTRL_SLEEP */
}
/**
* gt1x_send_cmd - seng cmd
* must write data & checksum first
* byte content
* 0 cmd
* 1 data
* 2 checksum
* Returns 0 - succeed,non-0 - failed
*/
s32 gt1x_send_cmd(u8 cmd, u8 data)
{
s32 ret;
static DEFINE_MUTEX(cmd_mutex);
u8 buffer[3] = { cmd, data, 0 };
mutex_lock(&cmd_mutex);
buffer[2] = (u8) ((0 - cmd - data) & 0xFF);
ret = gt1x_i2c_write(GTP_REG_CMD + 1, &buffer[1], 2);
ret |= gt1x_i2c_write(GTP_REG_CMD, &buffer[0], 1);
msleep(50);
mutex_unlock(&cmd_mutex);
return ret;
}
void gt1x_power_reset(void)
{
static int rst_flag;
s32 i = 0;
if (rst_flag || update_info.status) {
return;
}
GTP_INFO("force_reset_guitar");
rst_flag = 1;
gt1x_irq_disable();
gt1x_power_switch(SWITCH_OFF);
msleep(30);
gt1x_power_switch(SWITCH_ON);
msleep(30);
for (i = 0; i < 5; i++) {
if(gt1x_reset_guitar()) {
continue;
}
if(gt1x_send_cfg(gt1x_config, gt1x_cfg_length)) {
msleep(500);
continue;
}
break;
}
gt1x_irq_enable();
rst_flag = 0;
}
s32 gt1x_request_event_handler(void)
{
s32 ret = -1;
u8 rqst_data = 0;
ret = gt1x_i2c_read(GTP_REG_RQST, &rqst_data, 1);
if (ret) {
GTP_ERROR("I2C transfer error. errno:%d", ret);
return -1;
}
GTP_DEBUG("Request state:0x%02x.", rqst_data);
switch (rqst_data & 0x0F) {
case GTP_RQST_CONFIG:
GTP_INFO("Request Config.");
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
if (ret) {
GTP_ERROR("Send gt1x_config error.");
} else {
GTP_INFO("Send gt1x_config success.");
rqst_data = GTP_RQST_RESPONDED;
gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1);
}
break;
case GTP_RQST_RESET:
GTP_INFO("Request Reset.");
gt1x_reset_guitar();
rqst_data = GTP_RQST_RESPONDED;
gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1);
break;
case GTP_RQST_BAK_REF:
GTP_INFO("Request Ref.");
break;
case GTP_RQST_MAIN_CLOCK:
GTP_INFO("Request main clock.");
break;
#if GTP_HOTKNOT
case GTP_RQST_HOTKNOT_CODE:
GTP_INFO("Request HotKnot Code.");
break;
#endif
default:
break;
}
return 0;
}
/**
* gt1x_touch_event_handler - handle touch event
* (pen event, key event, finger touch envent)
* @data:
* Return <0: failed, 0: succeed
*/
s32 gt1x_touch_event_handler(u8 * data, struct input_dev * dev, struct input_dev * pen_dev)
{
u8 touch_data[1 + 8 * GTP_MAX_TOUCH + 2] = { 0 };
static u16 pre_event = 0;
static u16 pre_index = 0;
u8 touch_num = 0;
u8 key_value = 0;
u16 cur_event = 0;
u8 *coor_data = NULL;
u8 check_sum = 0;
s32 input_x = 0;
s32 input_y = 0;
s32 input_w = 0;
s32 id = 0;
s32 i = 0;
s32 ret = -1;
GTP_DEBUG_FUNC();
touch_num = data[0] & 0x0f;
if (touch_num > GTP_MAX_TOUCH) {
GTP_ERROR("Illegal finger number!");
return ERROR_VALUE;
}
memcpy(touch_data, data, 11);
/* read the remaining coor data
* 0x814E(touch status) + 8(every coordinate consist of 8 bytes data) * touch num +
* keycode + checksum
*/
if (touch_num > 1) {
ret = gt1x_i2c_read((GTP_READ_COOR_ADDR + 11), &touch_data[11], 1 + 8 * touch_num + 2 - 11);
if (ret) {
return ret;
}
}
/* cacl checksum */
for (i = 0; i < 1 + 8 * touch_num + 2; i++) {
check_sum += touch_data[i];
}
if (check_sum) { /* checksum error*/
ret = gt1x_i2c_read(GTP_READ_COOR_ADDR, touch_data, 3 + 8 * touch_num);
if (ret) {
return ret;
}
for (i = 0, check_sum = 0; i < 3 + 8 * touch_num; i++) {
check_sum += touch_data[i];
}
if (check_sum) {
GTP_ERROR("Checksum error[%x]",check_sum);
return ERROR_VALUE;
}
}
/*
* cur_event , pre_event bit defination
* bits: bit4 bit3 bit2 bit1 bit0
* event: hover stylus_key stylus key touch
*/
key_value = touch_data[1 + 8 * touch_num];
/* start check current event */
if ((touch_data[0] & 0x10) && key_value) {
#if (GTP_HAVE_STYLUS_KEY || GTP_HAVE_TOUCH_KEY || TPD_HAVE_BUTTON)
/* get current key states */
if (key_value & 0xF0) {
SET_BIT(cur_event, BIT_STYLUS_KEY);
} else if (key_value & 0x0F) {
SET_BIT(cur_event, BIT_TOUCH_KEY);
}
#endif
}
#if GTP_WITH_STYLUS
else if (touch_data[1] & 0x80) {
SET_BIT(cur_event, BIT_STYLUS);
}
#endif
else if (touch_num) {
SET_BIT(cur_event, BIT_TOUCH);
}
/* start handle current event and pre-event */
#if GTP_HAVE_STYLUS_KEY
if (CHK_BIT(cur_event, BIT_STYLUS_KEY) || CHK_BIT(pre_event, BIT_STYLUS_KEY)) {
/*
* 0x10 -- stylus key0 down
* 0x20 -- stylus key1 down
* 0x40 -- stylus key0 & stylus key1 both down
*/
u8 temp = (key_value & 0x40) ? 0x30 : key_value;
for (i = 4; i < 6; i++) {
input_report_key(pen_dev, gt1x_stylus_key_array[i - 4], temp & (0x01 << i));
}
GTP_DEBUG("Stulus key event.");
}
#endif
#if GTP_WITH_STYLUS
if (CHK_BIT(cur_event, BIT_STYLUS)) {
coor_data = &touch_data[1];
id = coor_data[0] & 0x7F;
input_x = coor_data[1] | (coor_data[2] << 8);
input_y = coor_data[3] | (coor_data[4] << 8);
input_w = coor_data[5] | (coor_data[6] << 8);
input_x = GTP_WARP_X(gt1x_abs_x_max, input_x);
input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y);
GTP_DEBUG("Pen touch DOWN.");
gt1x_pen_down(input_x, input_y, input_w, 0);
} else if (CHK_BIT(pre_event, BIT_STYLUS)) {
GTP_DEBUG("Pen touch UP.");
gt1x_pen_up(0);
}
#endif
#if GTP_HAVE_TOUCH_KEY
if (CHK_BIT(cur_event, BIT_TOUCH_KEY) || CHK_BIT(pre_event, BIT_TOUCH_KEY)) {
for (i = 0; i < GTP_MAX_KEY_NUM; i++) {
input_report_key(dev, gt1x_touch_key_array[i], key_value & (0x01 << i));
}
if (CHK_BIT(cur_event, BIT_TOUCH_KEY)) {
GTP_DEBUG("Key Down.");
} else {
GTP_DEBUG("Key Up.");
}
}
#elif TPD_HAVE_BUTTON
if (CHK_BIT(cur_event, BIT_TOUCH_KEY) || CHK_BIT(pre_event, BIT_TOUCH_KEY)) {
for (i = 0; i < TPD_KEY_COUNT; i++) {
if (key_value & (0x01 << i)) {
gt1x_touch_down(tpd_virtual_key_array[i].x, tpd_virtual_key_array[i].y, 0, 0);
GTP_DEBUG("Key Down.");
break;
}
}
if (i == TPD_KEY_COUNT) {
gt1x_touch_up(0);
GTP_DEBUG("Key Up.");
}
}
#endif
/* finger touch event*/
if (CHK_BIT(cur_event, BIT_TOUCH)) {
u8 report_num = 0;
coor_data = &touch_data[1];
id = coor_data[0] & 0x0F;
for (i = 0; i < GTP_MAX_TOUCH; i++) {
if (i == id) {
input_x = coor_data[1] | (coor_data[2] << 8);
input_y = coor_data[3] | (coor_data[4] << 8);
input_w = coor_data[5] | (coor_data[6] << 8);
input_x = GTP_WARP_X(gt1x_abs_x_max, input_x);
input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y);
GTP_DEBUG("(%d)(%d,%d)[%d]", id, input_x, input_y, input_w);
gt1x_touch_down(input_x, input_y, input_w, i);
if (report_num++ < touch_num) {
coor_data += 8;
id = coor_data[0] & 0x0F;
}
pre_index |= 0x01 << i;
} else if (pre_index & (0x01 << i)) {
#if GTP_ICS_SLOT_REPORT
gt1x_touch_up(i);
#endif
pre_index &= ~(0x01 << i);
}
}
} else if (CHK_BIT(pre_event, BIT_TOUCH)) {
#if GTP_ICS_SLOT_REPORT
int cycles = pre_index < 3 ? 3 : GTP_MAX_TOUCH;
for (i = 0; i < cycles; i++) {
if (pre_index >> i & 0x01) {
gt1x_touch_up(i);
}
}
#else
gt1x_touch_up(0);
#endif
GTP_DEBUG("Released Touch.");
pre_index = 0;
}
/* start sync input report */
if (CHK_BIT(cur_event, BIT_STYLUS_KEY | BIT_STYLUS)
|| CHK_BIT(pre_event, BIT_STYLUS_KEY | BIT_STYLUS)) {
input_sync(pen_dev);
}
if (CHK_BIT(cur_event, BIT_TOUCH_KEY | BIT_TOUCH)
|| CHK_BIT(pre_event, BIT_TOUCH_KEY | BIT_TOUCH)) {
input_sync(dev);
}
if (unlikely(!pre_event && !cur_event)) {
GTP_DEBUG("Additional Int Pulse.");
} else {
pre_event = cur_event;
}
return 0;
}
#if GTP_WITH_STYLUS
struct input_dev *pen_dev;
static void gt1x_pen_init(void)
{
s32 ret = 0;
pen_dev = input_allocate_device();
if (pen_dev == NULL) {
GTP_ERROR("Failed to allocate input device for pen/stylus.");
return;
}
pen_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
pen_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
set_bit(BTN_TOOL_PEN, pen_dev->keybit);
set_bit(INPUT_PROP_DIRECT, pen_dev->propbit);
#if GTP_HAVE_STYLUS_KEY
input_set_capability(pen_dev, EV_KEY, BTN_STYLUS);
input_set_capability(pen_dev, EV_KEY, BTN_STYLUS2);
#endif
input_set_abs_params(pen_dev, ABS_MT_POSITION_X, 0, gt1x_abs_x_max, 0, 0);
input_set_abs_params(pen_dev, ABS_MT_POSITION_Y, 0, gt1x_abs_y_max, 0, 0);
input_set_abs_params(pen_dev, ABS_MT_PRESSURE, 0, 255, 0, 0);
input_set_abs_params(pen_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(pen_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);
pen_dev->name = "goodix-pen";
pen_dev->phys = "input/ts";
pen_dev->id.bustype = BUS_I2C;
ret = input_register_device(pen_dev);
if (ret) {
GTP_ERROR("Register %s input device failed", pen_dev->name);
return;
}
}
void gt1x_pen_down(s32 x, s32 y, s32 size, s32 id)
{
input_report_key(pen_dev, BTN_TOOL_PEN, 1);
#if GTP_CHANGE_X2Y
GTP_SWAP(x, y);
#endif
#if GTP_ICS_SLOT_REPORT
input_mt_slot(pen_dev, id);
input_report_abs(pen_dev, ABS_MT_PRESSURE, size);
input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size);
input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(pen_dev, ABS_MT_POSITION_X, x);
input_report_abs(pen_dev, ABS_MT_POSITION_Y, y);
#else
input_report_key(pen_dev, BTN_TOUCH, 1);
if ((!size) && (!id)) {
/* for virtual button */
input_report_abs(pen_dev, ABS_MT_PRESSURE, 100);
input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, 100);
} else {
input_report_abs(pen_dev, ABS_MT_PRESSURE, size);
input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size);
input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id);
}
input_report_abs(pen_dev, ABS_MT_POSITION_X, x);
input_report_abs(pen_dev, ABS_MT_POSITION_Y, y);
input_mt_sync(pen_dev);
#endif
}
void gt1x_pen_up(s32 id)
{
input_report_key(pen_dev, BTN_TOOL_PEN, 0);
#if GTP_ICS_SLOT_REPORT
input_mt_slot(pen_dev, id);
input_report_abs(pen_dev, ABS_MT_TRACKING_ID, -1);
#else
input_report_key(pen_dev, BTN_TOUCH, 0);
input_mt_sync(pen_dev);
#endif
}
#endif
/**
* Proximity Module
*/
#if GTP_PROXIMITY
#define GTP_PS_DEV_NAME "goodix_proximity"
#define GTP_REG_PROXIMITY_ENABLE 0x8049
#define PS_FARAWAY 1
#define PS_NEAR 0
struct gt1x_ps_device{
int enabled; // module enabled/disabled
int state; // Faraway or Near
#ifdef PLATFORM_MTK
struct hwmsen_object obj_ps;
#else
struct input_dev *input_dev;
struct kobject *kobj;
#endif
};
static struct gt1x_ps_device *gt1x_ps_dev;
static void gt1x_ps_report(int state)
{
#ifdef PLATFORM_MTK
s32 ret = -1;
hwm_sensor_data sensor_data;
//map and store data to hwm_sensor_data
sensor_data.values[0] = !!state;
sensor_data.value_divide = 1;
sensor_data.status = SENSOR_STATUS_ACCURACY_MEDIUM;
//report to the up-layer
ret = hwmsen_get_interrupt_data(ID_PROXIMITY, &sensor_data);
if (ret) {
GTP_ERROR("Call hwmsen_get_interrupt_data fail = %d\n", ret);
}
#else
input_report_abs(gt1x_ps_dev->input_dev, ABS_DISTANCE, !!state);
input_sync(gt1x_ps_dev->input_dev);
#endif /* End PLATFROM_MTK */
GTP_INFO("Report proximity state: %s", state == PS_FARAWAY? "FARAWAY":"NEAR");
}
static s32 gt1x_ps_enable(s32 enable)
{
u8 state;
s32 ret = -1;
GTP_INFO("Proximity function to be %s.", enable ? "on" : "off");
state = enable ? 1 : 0;
if (gt1x_chip_type == CHIP_TYPE_GT1X)
ret = gt1x_i2c_write(GTP_REG_PROXIMITY_ENABLE, &state, 1);
else if (gt1x_chip_type == CHIP_TYPE_GT2X)
ret = gt1x_send_cmd(state ? 0x12 : 0x13, 0);
if (ret) {
GTP_ERROR("GTP %s proximity cmd failed.", state ? "enable" : "disable");
}
if (!ret && enable) {
gt1x_ps_dev->enabled = 1;
} else {
gt1x_ps_dev->enabled = 0;
}
gt1x_ps_dev->state = PS_FARAWAY;
GTP_INFO("Proximity function %s %s.", state ? "enable" : "disable", ret ? "fail" : "success");
return ret;
}
int gt1x_prox_event_handler(u8 * data)
{
u8 ps = 0;
if (gt1x_ps_dev && gt1x_ps_dev->enabled) {
ps = (data[0] & 0x60) ? 0 : 1;
if (ps != gt1x_ps_dev->state) {
gt1x_ps_report(ps);
gt1x_ps_dev->state = ps;
GTP_DEBUG("REG INDEX[0x814E]:0x%02X\n", data[0]);
}
return (ps == PS_NEAR? 1 : 0);
}
return -1;
}
#ifdef PLATFORM_MTK
static inline s32 gt1x_get_ps_value(void)
{
return gt1x_ps_dev->state;
}
static s32 gt1x_ps_operate(void *self, u32 command, void *buff_in, s32 size_in, void *buff_out, s32 size_out, s32 * actualout)
{
s32 err = 0;
s32 value;
hwm_sensor_data *sensor_data;
GTP_INFO("psensor operator cmd:%d", command);
switch (command) {
case SENSOR_DELAY:
if ((buff_in == NULL) || (size_in < sizeof(int))) {
GTP_ERROR("Set delay parameter error!");
err = -EINVAL;
}
// Do nothing
break;
case SENSOR_ENABLE:
if ((buff_in == NULL) || (size_in < sizeof(int))) {
GTP_ERROR("Enable sensor parameter error!");
err = -EINVAL;
} else {
value = *(int *)buff_in;
err = gt1x_ps_enable(value);
}
break;
case SENSOR_GET_DATA:
if ((buff_out == NULL) || (size_out < sizeof(hwm_sensor_data))) {
GTP_ERROR("Get sensor data parameter error!");
err = -EINVAL;
} else {
sensor_data = (hwm_sensor_data *) buff_out;
sensor_data->values[0] = gt1x_get_ps_value();
sensor_data->value_divide = 1;
sensor_data->status = SENSOR_STATUS_ACCURACY_MEDIUM;
}
break;
default:
GTP_ERROR("proxmy sensor operate function no this parameter %d!\n", command);
err = -1;
break;
}
return err;
}
#endif
#ifndef PLATFORM_MTK
static ssize_t gt1x_ps_enable_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf) {
return scnprintf(buf, PAGE_SIZE, "%d", gt1x_ps_dev->enabled);
}
static ssize_t gt1x_ps_enable_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count) {
unsigned int input;
if(sscanf(buf, "%u", &input) != 1) {
return -EINVAL;
}
if(input == 1) {
gt1x_ps_enable(1);
gt1x_ps_report(PS_FARAWAY);
} else if(input == 0) {
gt1x_ps_report(PS_FARAWAY);
gt1x_ps_enable(0);
} else {
return -EINVAL;
}
return count;
}
static ssize_t gt1x_ps_state_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf) {
return scnprintf(buf, PAGE_SIZE, "%d", gt1x_ps_dev->state);
}
static ssize_t gt1x_ps_state_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count) {
unsigned int input;
if(sscanf(buf, "%u", &input) != 1) {
return -EINVAL;
}
if (!gt1x_ps_dev->enabled) {
return -EINVAL;
}
if(input == 1) {
gt1x_ps_dev->state = PS_FARAWAY;
} else if(input == 0) {
gt1x_ps_dev->state = PS_NEAR;
} else {
return -EINVAL;
}
gt1x_ps_report(gt1x_ps_dev->state);
return count;
}
static struct kobj_attribute ps_attrs[] = {
__ATTR(enable, S_IWUGO | S_IRUGO, gt1x_ps_enable_show, gt1x_ps_enable_store),
__ATTR(state, S_IWUGO | S_IRUGO, gt1x_ps_state_show, gt1x_ps_state_store)
};
#endif /* End PLATFORM_MTK */
static int gt1x_ps_init(void)
{
int err;
gt1x_ps_dev = kzalloc(sizeof(struct gt1x_ps_device), GFP_KERNEL);
if (!gt1x_ps_dev) {
return -ENOMEM;
}
gt1x_ps_dev->state = PS_FARAWAY;
#ifdef PLATFORM_MTK
gt1x_ps_dev->obj_ps.polling = 0; //0--interrupt mode;1--polling mode;
gt1x_ps_dev->obj_ps.sensor_operate = gt1x_ps_operate;
if ((err = hwmsen_attach(ID_PROXIMITY, &gt1x_ps_dev->obj_ps))) {
GTP_ERROR("hwmsen attach fail, return:%d.", err);
goto err_exit;
}
GTP_INFO("hwmsen attach OK.");
return 0;
#else
gt1x_ps_dev->input_dev = input_allocate_device();
if(!gt1x_ps_dev->input_dev) {
GTP_ERROR("Failed to alloc inpput device for proximity!");
err = -ENOMEM;
goto err_exit;
}
gt1x_ps_dev->input_dev->name = GTP_PS_DEV_NAME;
gt1x_ps_dev->input_dev->phys = "goodix/proximity";
gt1x_ps_dev->input_dev->id.bustype = BUS_I2C;
gt1x_ps_dev->input_dev->id.vendor = 0xDEED;
gt1x_ps_dev->input_dev->id.product = 0xBEEF;
gt1x_ps_dev->input_dev->id.version = 1;
set_bit(EV_ABS, gt1x_ps_dev->input_dev->evbit);
input_set_abs_params(gt1x_ps_dev->input_dev, ABS_DISTANCE, 0, 1, 0, 0);
err = input_register_device(gt1x_ps_dev->input_dev);
if(err) {
GTP_ERROR("Failed to register proximity input device: %s!", gt1x_ps_dev->input_dev->name);
goto err_register_dev;
}
/* register sysfs interface */
if (!sysfs_rootdir) {
sysfs_rootdir = kobject_create_and_add("goodix", NULL);
if(!sysfs_rootdir){
GTP_ERROR("Failed to create and add sysfs interface: goodix.");
err = -ENOMEM;
goto err_register_dev;
}
}
gt1x_ps_dev->kobj = kobject_create_and_add("proximity", sysfs_rootdir);
if(!gt1x_ps_dev->kobj){
GTP_ERROR("Failed to create and add sysfs interface: proximity.");
err = -ENOMEM;
goto err_register_dev;
}
// create sysfs files
{
int i;
for(i = 0; i < sizeof(ps_attrs)/sizeof(ps_attrs[0]); i++) {
if((err = sysfs_create_file(gt1x_ps_dev->kobj, &ps_attrs[i].attr))) {
goto err_create_file;
}
}
}
GTP_INFO("Proximity sensor init OK.");
return 0;
err_create_file:
kobject_put(gt1x_ps_dev->kobj);
err_register_dev:
input_free_device(gt1x_ps_dev->input_dev);
#endif /* End PLATFROM_MTK */
err_exit:
kfree(gt1x_ps_dev);
gt1x_ps_dev = NULL;
return err;
}
static void gt1x_ps_deinit(void)
{
if(gt1x_ps_dev) {
#ifndef PLATFORM_MTK
int i = 0;
for(; i < sizeof(ps_attrs) / sizeof(ps_attrs[0]); i++) {
sysfs_remove_file(gt1x_ps_dev->kobj, &ps_attrs[i].attr);
}
kobject_del(gt1x_ps_dev->kobj);
input_free_device(gt1x_ps_dev->input_dev);
#endif
kfree(gt1x_ps_dev);
}
}
#endif /*GTP_PROXIMITY */
/**
* ESD Protect Module
*/
#if GTP_ESD_PROTECT
static int esd_work_cycle = 200;
static struct delayed_work esd_check_work;
static int esd_running = 0;
static struct mutex esd_lock;
static void gt1x_esd_check_func(struct work_struct *);
void gt1x_init_esd_protect(void)
{
esd_work_cycle = 2 * HZ; // HZ: clock ticks in 1 second generated by system
GTP_DEBUG("Clock ticks for an esd cycle: %d", esd_work_cycle);
INIT_DELAYED_WORK(&esd_check_work, gt1x_esd_check_func);
mutex_init(&esd_lock);
}
static void gt1x_deinit_esd_protect(void)
{
gt1x_esd_switch(SWITCH_OFF);
}
void gt1x_esd_switch(s32 on)
{
mutex_lock(&esd_lock);
if (SWITCH_ON == on) { /* switch on esd check */
if (!esd_running) {
esd_running = 1;
GTP_INFO("Esd protector started!");
queue_delayed_work(gt1x_workqueue, &esd_check_work, esd_work_cycle);
}
} else { /* switch off esd check */
if (esd_running) {
esd_running = 0;
GTP_INFO("Esd protector stoped!");
cancel_delayed_work(&esd_check_work);
}
}
mutex_unlock(&esd_lock);
}
static void gt1x_esd_check_func(struct work_struct *work)
{
s32 i = 0;
s32 ret = -1;
u8 esd_buf[4] = { 0 };
if (!esd_running) {
GTP_INFO("Esd protector suspended!");
return;
}
for (i = 0; i < 3; i++) {
ret = gt1x_i2c_read(GTP_REG_CMD, esd_buf, 4);
GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8043 = 0x%02X", esd_buf[0], esd_buf[3]);
if (!ret && esd_buf[0] != 0xAA && esd_buf[3] == 0xAA) {
break;
}
msleep(50);
}
if (likely(i < 3)) {
/* IC works normally, Write 0x8040 0xAA, feed the watchdog */
gt1x_send_cmd(GTP_CMD_ESD, 0);
} else {
if (esd_running) {
GTP_ERROR("IC works abnormally! Process reset guitar.");
memset(esd_buf, 0x01, sizeof(esd_buf));
gt1x_i2c_write(0x4226, esd_buf, sizeof(esd_buf));
msleep(50);
gt1x_power_reset();
} else {
GTP_INFO("Esd protector suspended, no need reset!");
}
}
mutex_lock(&esd_lock);
if (esd_running) {
queue_delayed_work(gt1x_workqueue, &esd_check_work, esd_work_cycle);
} else {
GTP_INFO("Esd protector suspended!");
}
mutex_unlock(&esd_lock);
}
#endif
/**
* Smart Cover Module
*/
#if GTP_SMART_COVER
struct smart_cover_device{
int enabled;
int state; // 0:cover faraway 1:near
int suspended; // suspended or woring
struct kobject *kobj;
u8 config[GTP_CONFIG_MAX_LENGTH];
int cfg_len;
};
static struct smart_cover_device *gt1x_sc_dev;
/**
* gt1x_smart_cover_update_state - update smart cover config
*/
static int gt1x_smart_cover_update_state(void)
{
int ret = 0;
struct smart_cover_device *dev = gt1x_sc_dev;
if (!dev) {
return -ENODEV;
}
if(!dev->suspended) {
if(dev->state) { /* near */
ret = gt1x_send_cfg(dev->config, dev->cfg_len);
} else {
#if GTP_CHARGER_SWITCH
gt1x_charger_config(1); // charger detector module check and
// send a config
#else
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
#endif
}
GTP_DEBUG("Update cover state %s.", dev->state ? "Nearby" : "Far away");
} else {
GTP_DEBUG("TP is suspended, do nothing.");
}
return ret;
}
static ssize_t smart_cover_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct smart_cover_device *dev = gt1x_sc_dev;
if (!dev) {
return -ENODEV;
}
return scnprintf(buf, PAGE_SIZE, "%d", dev->state);
}
static ssize_t smart_cover_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count)
{
struct smart_cover_device *dev = gt1x_sc_dev;
int s = (buf[0] - '0');
if (!dev || !dev->enabled || s > 1 || s == dev->state) {
return count;
}
dev->state = s;
gt1x_smart_cover_update_state();
return count;
}
/**
* gt1x_parse_sc_cfg - parse smart cover config
* @sensor_id: sensor id of the hardware
*/
int gt1x_parse_sc_cfg(int sensor_id)
{
#undef _cfg_array_
#define _cfg_array_(n) GTP_SMART_COVER_CFG_GROUP##n
u8 *cfg;
int *len;
if (!gt1x_sc_dev)
return -ENODEV;
cfg = gt1x_sc_dev->config;
len = &gt1x_sc_dev->cfg_len;
#if GTP_DRIVER_SEND_CFG
do{
u8 cfg_grp0[] = _cfg_array_(0);
u8 cfg_grp1[] = _cfg_array_(1);
u8 cfg_grp2[] = _cfg_array_(2);
u8 cfg_grp3[] = _cfg_array_(3);
u8 cfg_grp4[] = _cfg_array_(4);
u8 cfg_grp5[] = _cfg_array_(5);
u8 *cfgs[] = {
cfg_grp0, cfg_grp1, cfg_grp2,
cfg_grp3, cfg_grp4, cfg_grp5
};
u8 cfg_lens[] = {
CFG_GROUP_LEN(cfg_grp0), CFG_GROUP_LEN(cfg_grp1),
CFG_GROUP_LEN(cfg_grp2), CFG_GROUP_LEN(cfg_grp3),
CFG_GROUP_LEN(cfg_grp4), CFG_GROUP_LEN(cfg_grp5)
};
if (sensor_id >= sizeof(cfgs) / sizeof(cfgs[0])) {
GTP_ERROR("Invalid sensor id.");
return -1;
}
*len = cfg_lens[sensor_id];
if (*len == 0 || *len != gt1x_cfg_length) {
memset(cfg, 0, GTP_CONFIG_MAX_LENGTH);
*len = 0;
GTP_ERROR("Length of config is incorrect.");
return -1;
}
memcpy(cfg, cfgs[sensor_id], cfg_lens[sensor_id]);
cfg[0] &= 0x7F;
set_reg_bit(cfg[TRIGGER_LOC], 0, gt1x_int_type);
set_reg_bit(cfg[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level);
}while(0);
#endif
return 0;
}
static struct kobj_attribute sc_attr =
__ATTR(state, S_IWUGO | S_IRUGO, smart_cover_show, smart_cover_store);
static int gt1x_smart_cover_init(void)
{
int err = 0;
gt1x_sc_dev = kzalloc(sizeof(struct smart_cover_device), GFP_KERNEL);
if (!gt1x_sc_dev) {
GTP_ERROR("SmartCover init failed in step: 1.");
return -ENOMEM;
}
gt1x_sc_dev->enabled = 1;
gt1x_parse_sc_cfg(gt1x_version.sensor_id);
if (!sysfs_rootdir) {
// this kobject is shared between modules, do not free it when error occur
sysfs_rootdir = kobject_create_and_add(GOODIX_SYSFS_DIR, NULL);
if (!sysfs_rootdir) {
err = -2;
goto exit_free_mem;
}
}
if (!gt1x_sc_dev->kobj)
gt1x_sc_dev->kobj = kobject_create_and_add("smartcover", sysfs_rootdir);
if (!gt1x_sc_dev->kobj) {
err = -3;
goto exit_free_mem;
}
if(sysfs_create_file(gt1x_sc_dev->kobj, &sc_attr.attr)) {
err = -4;
goto exit_put_kobj;
}
GTP_INFO("SmartCover module init OK.");
return 0;
exit_put_kobj:
kobject_put(gt1x_sc_dev->kobj);
exit_free_mem:
kfree(gt1x_sc_dev);
gt1x_sc_dev = NULL;
GTP_ERROR("SmartCover init failed in step:%d", -err);
return err;
}
static void gt1x_smart_cover_deinit(void)
{
if (!gt1x_sc_dev) {
return;
}
kobject_del(gt1x_sc_dev->kobj);
kfree(gt1x_sc_dev);
gt1x_sc_dev = NULL;
}
#endif
/**
* Charger Detect & Switch Module
*/
#if GTP_CHARGER_SWITCH
static u8 gt1x_config_charger[GTP_CONFIG_MAX_LENGTH] = { 0 };
static struct delayed_work charger_switch_work;
static int charger_work_cycle = 200;
static spinlock_t charger_lock;
static int charger_running = 0;
static void gt1x_charger_work_func(struct work_struct *);
/**
* gt1x_parse_chr_cfg - parse charger config
* @sensor_id: sensor id of the hardware
* Return: 0: succeed, <0 error
*/
int gt1x_parse_chr_cfg(int sensor_id)
{
#undef _cfg_array_
#define _cfg_array_(n) GTP_CHARGER_CFG_GROUP##n
u8 *cfg;
int len;
cfg = gt1x_config_charger;
#if GTP_DRIVER_SEND_CFG
do{
u8 cfg_grp0[] = _cfg_array_(0);
u8 cfg_grp1[] = _cfg_array_(1);
u8 cfg_grp2[] = _cfg_array_(2);
u8 cfg_grp3[] = _cfg_array_(3);
u8 cfg_grp4[] = _cfg_array_(4);
u8 cfg_grp5[] = _cfg_array_(5);
u8 *cfgs[] = {
cfg_grp0, cfg_grp1, cfg_grp2,
cfg_grp3, cfg_grp4, cfg_grp5
};
u8 cfg_lens[] = {
CFG_GROUP_LEN(cfg_grp0), CFG_GROUP_LEN(cfg_grp1),
CFG_GROUP_LEN(cfg_grp2), CFG_GROUP_LEN(cfg_grp3),
CFG_GROUP_LEN(cfg_grp4), CFG_GROUP_LEN(cfg_grp5)
};
if (sensor_id >= sizeof(cfgs) / sizeof(cfgs[0])) {
return -1;
}
len = cfg_lens[sensor_id];
if (len == 0 || len != gt1x_cfg_length) {
memset(cfg, 0, GTP_CONFIG_MAX_LENGTH);
GTP_ERROR("Length of config is incorrect.");
return -1;
}
memcpy(cfg, cfgs[sensor_id], cfg_lens[sensor_id]);
cfg[0] &= 0x7F;
cfg[RESOLUTION_LOC] = (u8) gt1x_abs_x_max;
cfg[RESOLUTION_LOC + 1] = (u8) (gt1x_abs_x_max >> 8);
cfg[RESOLUTION_LOC + 2] = (u8) gt1x_abs_y_max;
cfg[RESOLUTION_LOC + 3] = (u8) (gt1x_abs_y_max >> 8);
set_reg_bit(cfg[TRIGGER_LOC], 0, gt1x_int_type);
set_reg_bit(cfg[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level);
}while(0);
#endif
return 0;
}
static void gt1x_init_charger(void)
{
charger_work_cycle = 2 * HZ; // HZ: clock ticks in 1 second generated by system
GTP_DEBUG("Clock ticks for an charger cycle: %d", charger_work_cycle);
INIT_DELAYED_WORK(&charger_switch_work, gt1x_charger_work_func);
spin_lock_init(&charger_lock);
if (gt1x_parse_chr_cfg(gt1x_version.sensor_id) < 0) {
GTP_ERROR("Error occured when parse charger config.");
}
}
/**
* gt1x_charger_switch - switch states of charging work thread
*
* @on: SWITCH_ON - start work thread, SWITCH_OFF: stop .
*
*/
void gt1x_charger_switch(s32 on)
{
spin_lock(&charger_lock);
if (SWITCH_ON == on) {
if (!charger_running) {
charger_running = 1;
spin_unlock(&charger_lock);
GTP_INFO("Charger checker started!");
queue_delayed_work(gt1x_workqueue, &charger_switch_work, charger_work_cycle);
} else {
spin_unlock(&charger_lock);
}
} else {
if (charger_running) {
charger_running = 0;
spin_unlock(&charger_lock);
cancel_delayed_work(&charger_switch_work);
GTP_INFO("Charger checker stoped!");
} else {
spin_unlock(&charger_lock);
}
}
}
/**
* gt1x_charger_config - check and update charging status configuration
* @dir_update
* 0: check before send charging status configuration
* 1: directly send charging status configuration
*
*/
void gt1x_charger_config(s32 dir_update)
{
static u8 chr_pluggedin = 0;
#if GTP_SMART_COVER
if (gt1x_sc_dev && gt1x_sc_dev->enabled
&& gt1x_sc_dev->state) {
return;
}
#endif
if (gt1x_get_charger_status()) {
if (!chr_pluggedin || dir_update) {
GTP_INFO("Charger Plugin.");
if (gt1x_send_cfg(gt1x_config_charger, gt1x_cfg_length)) {
GTP_ERROR("Send config for Charger Plugin failed!");
}
if (gt1x_send_cmd(GTP_CMD_CHARGER_ON, 0)) {
GTP_ERROR("Update status for Charger Plugin failed!");
}
chr_pluggedin = 1;
}
} else {
if (chr_pluggedin || dir_update) {
GTP_INFO("Charger Plugout.");
if (gt1x_send_cfg(gt1x_config, gt1x_cfg_length)) {
GTP_ERROR("Send config for Charger Plugout failed!");
}
if (gt1x_send_cmd(GTP_CMD_CHARGER_OFF, 0)) {
GTP_ERROR("Update status for Charger Plugout failed!");
}
chr_pluggedin = 0;
}
}
}
static void gt1x_charger_work_func(struct work_struct *work)
{
if (!charger_running) {
GTP_INFO("Charger checker suspended!");
return;
}
gt1x_charger_config(0);
GTP_DEBUG("Charger check done!");
if (charger_running) {
queue_delayed_work(gt1x_workqueue, &charger_switch_work, charger_work_cycle);
}
}
#endif
int gt1x_suspend(void)
{
s32 ret = -1;
#if GTP_HOTKNOT && !HOTKNOT_BLOCK_RW
u8 buf[1] = { 0 };
#endif
if (update_info.status) {
return 0;
}
#if GTP_SMART_COVER
if (gt1x_sc_dev) {
gt1x_sc_dev->suspended = 1;
}
#endif
GTP_INFO("Suspend start...");
#if GTP_PROXIMITY
if (gt1x_ps_dev && gt1x_ps_dev->enabled) {
GTP_INFO("proximity is detected!");
return 0;
}
#endif
#if GTP_HOTKNOT
if (hotknot_enabled) {
#if HOTKNOT_BLOCK_RW
if (hotknot_paired_flag) {
GTP_INFO("hotknot is paired!");
return 0;
}
#else
ret = gt1x_i2c_read_dbl_check(GTP_REG_HN_PAIRED, buf, sizeof(buf));
if ((!ret && buf[0] == 0x55) || hotknot_transfer_mode) {
GTP_DEBUG("0x81AA: 0x%02X", buf[0]);
GTP_INFO("hotknot is paired!");
return 0;
}
#endif
}
#endif
gt1x_halt = 1;
#if GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_OFF);
#endif
#if GTP_CHARGER_SWITCH
gt1x_charger_switch(SWITCH_OFF);
#endif
gt1x_irq_disable();
#if GTP_GESTURE_WAKEUP
gesture_clear_wakeup_data();
if (gesture_enabled) {
gesture_enter_doze();
gt1x_irq_enable();
gt1x_halt = 0;
} else
#endif
{
ret = gt1x_enter_sleep();
if (ret < 0) {
GTP_ERROR("Suspend failed.");
}
}
/* to avoid waking up while not sleeping
delay 48 + 10ms to ensure reliability */
msleep(58);
GTP_INFO("Suspend end...");
return 0;
}
int gt1x_resume(void)
{
s32 ret = -1;
if (update_info.status) {
return 0;
}
#if GTP_SMART_COVER
if (gt1x_sc_dev) {
gt1x_sc_dev->suspended = 0;
}
#endif
GTP_INFO("Resume start...");
#if GTP_PROXIMITY
if (gt1x_ps_dev && gt1x_ps_dev->enabled) {
GTP_INFO("Proximity is on!");
return 0;
}
#endif
#if GTP_HOTKNOT
if (hotknot_enabled) {
#if HOTKNOT_BLOCK_RW
if (hotknot_paired_flag) {
hotknot_paired_flag = 0;
GTP_INFO("Hotknot is paired!");
return 0;
}
#endif
}
#endif
#if GTP_GESTURE_WAKEUP
/* just return 0 if IC does not suspend */
if (!gesture_enabled && !gt1x_halt)
return 0;
#else
if (!gt1x_halt)
return 0;
#endif
ret = gt1x_wakeup_sleep();
if (ret < 0) {
GTP_ERROR("Resume failed.");
}
#if GTP_HOTKNOT
if (!hotknot_enabled) {
gt1x_send_cmd(GTP_CMD_HN_EXIT_SLAVE, 0);
}
#endif
#if GTP_CHARGER_SWITCH
gt1x_charger_config(0);
gt1x_charger_switch(SWITCH_ON);
#endif
gt1x_halt = 0;
gt1x_irq_enable();
#if GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_ON);
#endif
GTP_DEBUG("Resume end.");
return 0;
}
s32 gt1x_init(void)
{
s32 ret = -1;
s32 retry = 0;
u8 reg_val[1];
/* power on */
gt1x_power_switch(SWITCH_ON);
while (retry++ < 5) {
gt1x_init_failed = 0;
/* reset ic */
ret = gt1x_reset_guitar();
if (ret != 0) {
GTP_ERROR("Reset guitar failed!");
continue;
}
/* check main system firmware */
ret = gt1x_i2c_read_dbl_check(GTP_REG_FW_CHK_MAINSYS, reg_val, 1);
if (ret != 0) {
continue;
} else if (reg_val[0] != 0xBE) {
GTP_ERROR("Check main system not pass[0x%2X].", reg_val[0]);
gt1x_init_failed = 1;
}
#if !GTP_AUTO_UPDATE
/* debug info */
ret = gt1x_i2c_read_dbl_check(GTP_REG_FW_CHK_SUBSYS, reg_val, 1);
if (!ret && reg_val[0] == 0xAA) {
GTP_ERROR("Check subsystem not pass[0x%2X].", reg_val[0]);
}
#endif
break;
}
/* if the initialization fails, set default setting */
ret |= gt1x_init_failed;
if (ret) {
GTP_ERROR("Init failed, use default setting");
gt1x_abs_x_max = GTP_MAX_WIDTH;
gt1x_abs_y_max = GTP_MAX_HEIGHT;
gt1x_int_type = GTP_INT_TRIGGER;
gt1x_wakeup_level = GTP_WAKEUP_LEVEL;
}
/* get chip type */
ret = gt1x_get_chip_type();
if (ret != 0) {
GTP_ERROR("Get chip type failed!");
}
/* read version information */
ret = gt1x_read_version(&gt1x_version);
if (ret != 0) {
GTP_ERROR("Get verision failed!");
}
/* init and send configs */
ret = gt1x_init_panel();
if (ret != 0) {
GTP_ERROR("Init panel failed.");
}
gt1x_workqueue = create_singlethread_workqueue("gt1x_workthread");
if (gt1x_workqueue == NULL) {
GTP_ERROR("Create workqueue failed!");
}
/* init auxiliary node and functions */
gt1x_init_debug_node();
#if GTP_CREATE_WR_NODE
gt1x_init_tool_node();
#endif
#if GTP_GESTURE_WAKEUP || GTP_HOTKNOT
gt1x_init_node();
#endif
#if GTP_PROXIMITY
gt1x_ps_init();
#endif
#if GTP_CHARGER_SWITCH
gt1x_init_charger();
gt1x_charger_config(1);
gt1x_charger_switch(SWITCH_ON);
#endif
#if GTP_SMART_COVER
gt1x_smart_cover_init();
#endif
#if GTP_WITH_STYLUS
gt1x_pen_init();
#endif
return ret;
}
void gt1x_deinit(void)
{
gt1x_deinit_debug_node();
#if GTP_GESTURE_WAKEUP || GTP_HOTKNOT
gt1x_deinit_node();
#endif
#if GTP_CREATE_WR_NODE
gt1x_deinit_tool_node();
#endif
#if GTP_ESD_PROTECT
gt1x_deinit_esd_protect();
#endif
#if GTP_CHARGER_SWITCH
gt1x_charger_switch(SWITCH_OFF);
#endif
#if GTP_PROXIMITY
gt1x_ps_deinit();
#endif
#if GTP_SMART_COVER
gt1x_smart_cover_deinit();
#endif
if (sysfs_rootdir) {
kobject_del(sysfs_rootdir);
sysfs_rootdir = NULL;
}
if (gt1x_workqueue) {
destroy_workqueue(gt1x_workqueue);
}
}