blob: 20ccd0173407a9a7ba0ce03cfa608ac34554f444 [file] [log] [blame]
/*
* drivers/amlogic/uart/meson_uart.c
*
* Copyright (C) 2017 Amlogic, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/clk.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/serial.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/pinctrl/consumer.h>
#include <linux/clk-provider.h>
#include <linux/amlogic/iomap.h>
#if defined(CONFIG_AMLOGIC_SERIAL_MESON_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/serial_core.h>
#include <linux/vmalloc.h>
#include "meson_uart.h"
/* Register offsets */
#define AML_UART_WFIFO 0x00
#define AML_UART_RFIFO 0x04
#define AML_UART_CONTROL 0x08
#define AML_UART_STATUS 0x0c
#define AML_UART_MISC 0x10
#define AML_UART_REG5 0x14
/* AML_UART_CONTROL bits */
#define AML_UART_TX_EN BIT(12)
#define AML_UART_RX_EN BIT(13)
#define AML_UART_TX_RST BIT(22)
#define AML_UART_RX_RST BIT(23)
#define AML_UART_CLR_ERR BIT(24)
#define AML_UART_RX_INT_EN BIT(27)
#define AML_UART_TX_INT_EN BIT(28)
#define AML_UART_DATA_LEN_MASK (0x03 << 20)
#define AML_UART_DATA_LEN_8BIT (0x00 << 20)
#define AML_UART_DATA_LEN_7BIT (0x01 << 20)
#define AML_UART_DATA_LEN_6BIT (0x02 << 20)
#define AML_UART_DATA_LEN_5BIT (0x03 << 20)
/* AML_UART_STATUS bits */
#define AML_UART_PARITY_ERR BIT(16)
#define AML_UART_FRAME_ERR BIT(17)
#define AML_UART_TX_FIFO_WERR BIT(18)
#define AML_UART_RX_EMPTY BIT(20)
#define AML_UART_TX_FULL BIT(21)
#define AML_UART_TX_EMPTY BIT(22)
#define AML_UART_RX_FIFO_OVERFLOW BIT(24)
#define AML_UART_ERR (AML_UART_PARITY_ERR | \
AML_UART_FRAME_ERR | \
AML_UART_RX_FIFO_OVERFLOW)
/* AML_UART_CONTROL bits */
#define AML_UART_TWO_WIRE_EN BIT(15)
#define AML_UART_PARITY_TYPE BIT(18)
#define AML_UART_PARITY_EN BIT(19)
#define AML_UART_CLEAR_ERR BIT(24)
#define AML_UART_STOP_BIN_LEN_MASK (0x03 << 16)
#define AML_UART_STOP_BIN_1SB (0x00 << 16)
#define AML_UART_STOP_BIN_2SB (0x01 << 16)
/* AML_UART_MISC bits */
#define AML_UART_XMIT_IRQ(c) (((c) & 0xff) << 8)
#define AML_UART_RECV_IRQ(c) ((c) & 0xff)
/* AML_UART_REG5 bits */
#define AML_UART_BAUD_MASK 0x7fffff
#define AML_UART_BAUD_USE BIT(23)
#define AML_UART_BAUD_XTAL BIT(24)
#define AML_UART_BAUD_XTAL_TICK BIT(26)
#define AML_UART_BAUD_XTAL_DIV2 BIT(27)
#define AML_UART_PORT_MAX 16
#define AML_UART_DEV_NAME "ttyS"
/*#define UART_TEST_DEBUG*/
static struct uart_driver meson_uart_driver;
unsigned int xtal_tick_en;
struct meson_uart_port {
struct uart_port port;
spinlock_t wr_lock;
unsigned long baud;
struct pinctrl *p;
};
#define to_meson_port(uport) container_of(uport, struct meson_uart_port, port)
static struct meson_uart_port *meson_ports[AML_UART_PORT_MAX];
struct uart_port *get_uart_port(int id)
{
struct uart_port *port;
port = &meson_ports[id]->port;
return port;
}
EXPORT_SYMBOL(get_uart_port);
static int meson_serial_console_setup(struct console *co, char *options);
/*************** printk noblock *****************/
#define MESON_SERIAL_BUFFER_SIZE (1024 * 128)
#define DEFAULT_STR_LEN 4
#define DEFAULT_STR "..."
/*0: disable 1: enable*/
static bool new_printk_enabled;
struct meson_uart_struct {
struct console *co;
const char *s;
unsigned long offset;
long count;
struct list_head list;
};
struct meson_uart_management {
int user_count;
struct list_head list_head;
spinlock_t lock;
};
struct meson_uart_list {
int user_count;
struct meson_uart_struct *co_head;
struct meson_uart_struct *co_tail;
};
static struct meson_uart_management cur_col_management;
static struct meson_uart_list cur_col_list[AML_UART_PORT_MAX];
static char *data_cache;
static int meson_uart_console_index = -1;
static int __init new_printk_enable(char *str)
{
new_printk_enabled = 1;
return 1;
}
__setup("printk_no_block", new_printk_enable);
module_param_named(new_printk, new_printk_enabled,
bool, 0644);
MODULE_PARM_DESC(new_printk, "printk use no block mode");
static ssize_t printk_mode_show(struct device_driver *drv, char *buf)
{
return sprintf(buf, "0x%0x\n", new_printk_enabled);
}
static ssize_t printk_mode_store(struct device_driver *drv, const char *buf,
size_t count)
{
unsigned long long res = 0;
if (!kstrtoull(buf, 16, &res))
new_printk_enabled = res;
return count;
}
static DRIVER_ATTR(printkmode, 0644, printk_mode_show,
printk_mode_store);
/*********** SYSRQ **************/
static int support_sysrq;
static ssize_t support_sysrq_show(struct device_driver *drv, char *buf)
{
return sprintf(buf, "0x%0x\n", support_sysrq);
}
static ssize_t support_sysrq_store(struct device_driver *drv, const char *buf,
size_t count)
{
unsigned long long res = 0;
if (!kstrtoull(buf, 16, &res))
support_sysrq = res;
return count;
}
static DRIVER_ATTR(sysrqsupport, 0644, support_sysrq_show,
support_sysrq_store);
static void get_next_node(struct meson_uart_list *cur_col,
struct meson_uart_struct *co_struct, int index)
{
struct list_head *entry;
struct console *co = NULL;
struct list_head *list_head = NULL;
cur_col->user_count--;
list_del(&co_struct->list);
co_struct = NULL;
list_head = &cur_col_management.list_head;
if (!list_empty(list_head)) {
cur_col_management.user_count--;
list_for_each_prev(entry, list_head) {
co_struct = list_entry(entry,
struct meson_uart_struct, list);
co = co_struct->co;
if (co->index == index)
break;
}
}
if (co_struct && (co->index == index)) {
cur_col->co_head = co_struct;
} else {
cur_col->co_head = NULL;
cur_col->co_tail = NULL;
cur_col->user_count = 0;
}
}
static int print_more(struct meson_uart_port *mup)
{
int index = 0;
struct meson_uart_struct *co_struct = NULL;
struct meson_uart_port *mup_tmp = NULL;
struct meson_uart_list *cur_col = NULL;
struct console *co = NULL;
const char *s = NULL;
unsigned long flags = 0;
spin_lock_irqsave(&cur_col_management.lock, flags);
if (!data_cache || list_empty(&cur_col_management.list_head))
goto no_data_print;
for (index = 0; index < AML_UART_PORT_MAX; index++) {
mup_tmp = meson_ports[index];
if (mup == mup_tmp)
break;
}
if (index >= AML_UART_PORT_MAX)
goto no_data_print;
cur_col = &cur_col_list[index];
if ((cur_col->user_count == 0) || !cur_col->co_head)
goto no_data_print;
co_struct = cur_col->co_head;
co = co_struct->co;
index = co->index;
if (index < 0)
goto no_data_print;
spin_lock(&mup->wr_lock);
if (index != meson_uart_console_index)
meson_serial_console_setup(co, NULL);
while ((readl(mup->port.membase + AML_UART_CONTROL) & AML_UART_TX_EN)
&& (!(readl(mup->port.membase + AML_UART_STATUS)
& AML_UART_TX_FULL))) {
if (co_struct->count <= 0) {
get_next_node(cur_col, co_struct, index);
if (!cur_col->co_head)
break;
co_struct = cur_col->co_head;
}
s = co_struct->s + co_struct->offset;
if (*s == '\n')
writel('\r', mup->port.membase + AML_UART_WFIFO);
writel(*s++, mup->port.membase + AML_UART_WFIFO);
co_struct->count--;
co_struct->offset++;
}
spin_unlock(&mup->wr_lock);
no_data_print:
spin_unlock_irqrestore(&cur_col_management.lock, flags);
return 0;
}
static void meson_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
}
static unsigned int meson_uart_get_mctrl(struct uart_port *port)
{
return TIOCM_CTS;
}
static unsigned int meson_uart_tx_empty(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_STATUS);
return (val & AML_UART_TX_EMPTY) ? TIOCSER_TEMT : 0;
}
static void meson_uart_stop_tx(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_CONTROL);
val &= ~AML_UART_TX_EN;
writel(val, port->membase + AML_UART_CONTROL);
}
static void meson_uart_stop_rx(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_CONTROL);
val &= ~AML_UART_RX_EN;
writel(val, port->membase + AML_UART_CONTROL);
}
static void meson_uart_shutdown(struct uart_port *port)
{
unsigned long flags;
u32 val;
if (port->line == 0)
return;
spin_lock_irqsave(&port->lock, flags);
val = readl(port->membase + AML_UART_CONTROL);
val &= ~(AML_UART_RX_EN | AML_UART_TX_EN);
val &= ~(AML_UART_RX_INT_EN | AML_UART_TX_INT_EN);
val |= UART_CTS_EN;
writel(val, port->membase + AML_UART_CONTROL);
spin_unlock_irqrestore(&port->lock, flags);
}
static void meson_uart_start_tx(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
unsigned int ch;
struct meson_uart_port *mup = to_meson_port(port);
unsigned long flags;
spin_lock_irqsave(&mup->wr_lock, flags);
while (!uart_circ_empty(xmit)) {
if (!(readl(port->membase + AML_UART_STATUS) &
AML_UART_TX_FULL)) {
ch = xmit->buf[xmit->tail];
writel(ch, port->membase + AML_UART_WFIFO);
xmit->tail = (xmit->tail + 1) & (SERIAL_XMIT_SIZE - 1);
port->icount.tx++;
} else
break;
}
spin_unlock_irqrestore(&mup->wr_lock, flags);
}
static void meson_transmit_chars(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
struct meson_uart_port *mup = to_meson_port(port);
unsigned int ch;
int count = 256;
spin_lock(&port->lock);
if (port->x_char) {
writel(port->x_char, port->membase + AML_UART_WFIFO);
port->icount.tx++;
port->x_char = 0;
goto clear_and_return;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(port))
goto clear_and_return;
spin_lock(&mup->wr_lock);
while (!uart_circ_empty(xmit) && count-- > 0) {
if (!(readl(port->membase + AML_UART_STATUS) &
AML_UART_TX_FULL)) {
ch = xmit->buf[xmit->tail];
writel(ch, port->membase + AML_UART_WFIFO);
xmit->tail = (xmit->tail + 1) & (SERIAL_XMIT_SIZE - 1);
port->icount.tx++;
} else
break;
}
spin_unlock(&mup->wr_lock);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
clear_and_return:
spin_unlock(&port->lock);
return;
}
static void meson_receive_chars(struct uart_port *port)
{
struct tty_port *tport = &port->state->port;
char flag;
u32 status, ch, mode;
spin_lock(&port->lock);
do {
flag = TTY_NORMAL;
port->icount.rx++;
status = readl(port->membase + AML_UART_STATUS);
if (status & AML_UART_ERR) {
if (status & AML_UART_RX_FIFO_OVERFLOW)
port->icount.overrun++;
else if (status & AML_UART_FRAME_ERR)
port->icount.frame++;
else if (status & AML_UART_PARITY_ERR)
port->icount.frame++;
mode = readl(port->membase + AML_UART_CONTROL);
mode |= AML_UART_CLEAR_ERR;
writel(mode, port->membase + AML_UART_CONTROL);
/* It doesn't clear to 0 automatically */
mode &= ~AML_UART_CLEAR_ERR;
writel(mode, port->membase + AML_UART_CONTROL);
status &= port->read_status_mask;
if (status & (AML_UART_FRAME_ERR |
AML_UART_RX_FIFO_OVERFLOW))
flag = TTY_FRAME;
else if (status & AML_UART_PARITY_ERR)
flag = TTY_PARITY;
}
ch = readl(port->membase + AML_UART_RFIFO);
ch &= 0xff;
#ifdef SUPPORT_SYSRQ
if (support_sysrq == 1) {
if ((status == 0) && (ch == 0)) {
port->icount.brk++;
if (uart_handle_break(port))
continue;
}
if (port->sysrq)
flag = TTY_BREAK;
if (uart_handle_sysrq_char(port, ch))
continue;
}
#endif
uart_insert_char(port, status, AML_UART_RX_FIFO_OVERFLOW,
ch, flag);
/*
* if ((status & port->ignore_status_mask) == 0)
* tty_insert_flip_char(tport, ch, flag);
*
* if (status & AML_UART_TX_FIFO_WERR)
* tty_insert_flip_char(tport, 0, TTY_OVERRUN);
*/
} while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY));
spin_unlock(&port->lock);
tty_flip_buffer_push(tport);
}
static irqreturn_t meson_uart_interrupt(int irq, void *dev_id)
{
struct uart_port *port = (struct uart_port *)dev_id;
u32 val;
struct meson_uart_port *mup = to_meson_port(port);
spin_lock(&port->lock);
val = readl(port->membase + AML_UART_CONTROL);
spin_unlock(&port->lock);
if (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY))
meson_receive_chars(port);
if ((val & AML_UART_TX_EN)
&& (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)))
meson_transmit_chars(port);
if (!list_empty(&cur_col_management.list_head))
print_more(mup);
return IRQ_HANDLED;
}
static const char *meson_uart_type(struct uart_port *port)
{
return (port->type == PORT_MESON) ? "meson_uart" : NULL;
}
static int meson_uart_startup(struct uart_port *port)
{
u32 val;
int ret = 0;
val = readl(port->membase + AML_UART_CONTROL);
val |= (AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLR_ERR);
writel(val, port->membase + AML_UART_CONTROL);
val &= ~(AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLR_ERR);
writel(val, port->membase + AML_UART_CONTROL);
val |= (AML_UART_RX_EN | AML_UART_TX_EN);
writel(val, port->membase + AML_UART_CONTROL);
val |= (AML_UART_RX_INT_EN | AML_UART_TX_INT_EN);
val &= ~UART_CTS_EN;
writel(val, port->membase + AML_UART_CONTROL);
return ret;
}
static void meson_uart_change_speed(struct uart_port *port, unsigned long baud)
{
u32 val;
struct meson_uart_port *mup = to_meson_port(port);
struct platform_device *pdev = to_platform_device(port->dev);
while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_EMPTY))
cpu_relax();
#ifdef UART_TEST_DEBUG
if (port->line != 0)
baud = 115200;
#endif
val = readl(port->membase + AML_UART_REG5);
val &= ~AML_UART_BAUD_MASK;
if (port->uartclk == 24000000) {
if (xtal_tick_en) {
/*xtal_tick_en first*/
aml_aobus_update_bits((0x19<<2), (1<<18), (1<<18));
dev_info(&pdev->dev, "ttyS%d use xtal(24M) %d change %ld to %ld\n",
port->line, port->uartclk,
mup->baud, baud);
if (xtal_tick_en == 1) {
val = (port->uartclk + baud / 2) / baud - 1;
val |= (AML_UART_BAUD_USE|AML_UART_BAUD_XTAL
|AML_UART_BAUD_XTAL_TICK);
} else if (xtal_tick_en == 2) {
val = (port->uartclk/2 + baud / 2) / baud - 1;
val |= (AML_UART_BAUD_USE|AML_UART_BAUD_XTAL
|AML_UART_BAUD_XTAL_DIV2);
}
} else {
dev_info(&pdev->dev, "ttyS%d use xtal(8M) %d change %ld to %ld\n",
port->line, port->uartclk,
mup->baud, baud);
val = ((port->uartclk / 3) + baud / 2) / baud - 1;
val &= (~AML_UART_BAUD_XTAL_TICK);
val |= (AML_UART_BAUD_USE|AML_UART_BAUD_XTAL);
}
} else {
dev_info(&pdev->dev, "ttyS%d use clk81 %d change %ld to %ld\n",
port->line, port->uartclk,
mup->baud, baud);
val = ((port->uartclk * 10 / (baud * 4) + 5) / 10) - 1;
val &= (~(AML_UART_BAUD_XTAL|AML_UART_BAUD_XTAL_TICK));
val |= AML_UART_BAUD_USE;
}
writel(val, port->membase + AML_UART_REG5);
mup->baud = baud;
}
static void meson_uart_set_termios(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
unsigned int cflags, iflags, baud;
unsigned long flags;
u32 val;
spin_lock_irqsave(&port->lock, flags);
cflags = termios->c_cflag;
iflags = termios->c_iflag;
val = readl(port->membase + AML_UART_CONTROL);
val &= ~AML_UART_DATA_LEN_MASK;
switch (cflags & CSIZE) {
case CS8:
val |= AML_UART_DATA_LEN_8BIT;
break;
case CS7:
val |= AML_UART_DATA_LEN_7BIT;
break;
case CS6:
val |= AML_UART_DATA_LEN_6BIT;
break;
case CS5:
val |= AML_UART_DATA_LEN_5BIT;
break;
}
if (cflags & PARENB)
val |= AML_UART_PARITY_EN;
else
val &= ~AML_UART_PARITY_EN;
if (cflags & PARODD)
val |= AML_UART_PARITY_TYPE;
else
val &= ~AML_UART_PARITY_TYPE;
val &= ~AML_UART_STOP_BIN_LEN_MASK;
if (cflags & CSTOPB)
val |= AML_UART_STOP_BIN_2SB;
else
val &= ~AML_UART_STOP_BIN_1SB;
if (cflags & CRTSCTS)
val &= ~AML_UART_TWO_WIRE_EN;
else
val |= AML_UART_TWO_WIRE_EN;
writel(val, port->membase + AML_UART_CONTROL);
spin_unlock_irqrestore(&port->lock, flags);
baud = uart_get_baud_rate(port, termios, old, 2400, 4000000);
meson_uart_change_speed(port, baud);
port->read_status_mask = AML_UART_RX_FIFO_OVERFLOW;
if (iflags & INPCK)
port->read_status_mask |= AML_UART_PARITY_ERR |
AML_UART_FRAME_ERR;
port->ignore_status_mask = 0;
if (iflags & IGNPAR)
port->ignore_status_mask |= AML_UART_PARITY_ERR |
AML_UART_FRAME_ERR;
uart_update_timeout(port, termios->c_cflag, baud);
}
static int meson_uart_verify_port(struct uart_port *port,
struct serial_struct *ser)
{
int ret = 0;
if (port->type != PORT_MESON)
ret = -EINVAL;
if (port->irq != ser->irq)
ret = -EINVAL;
if (ser->baud_base < 9600)
ret = -EINVAL;
return ret;
}
static void meson_uart_release_port(struct uart_port *port)
{
if (port->flags & UPF_IOREMAP) {
iounmap(port->membase);
port->membase = NULL;
}
}
static int meson_uart_request_port(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
struct resource *res;
int size, ret;
u32 val;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "cannot obtain I/O memory region");
return -ENODEV;
}
size = resource_size(res);
if (!devm_request_mem_region(port->dev, port->mapbase, size,
dev_name(port->dev))) {
dev_err(port->dev, "Memory region busy\n");
return -EBUSY;
}
if (port->flags & UPF_IOREMAP) {
port->membase = devm_ioremap_nocache(port->dev,
port->mapbase, size);
if (port->membase == NULL)
return -ENOMEM;
}
dev_info(&pdev->dev, "==uart%d reg addr = %p\n",
port->line, port->membase);
val = (AML_UART_RECV_IRQ(1) | AML_UART_XMIT_IRQ(port->fifosize / 2));
writel(val, port->membase + AML_UART_MISC);
writel(readl(port->membase + AML_UART_CONTROL) | UART_CTS_EN,
port->membase + AML_UART_CONTROL);
ret = request_irq(port->irq, meson_uart_interrupt, 0,
meson_uart_type(port), port);
return 0;
}
static void meson_uart_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_MESON;
meson_uart_request_port(port);
}
}
static struct uart_ops const meson_uart_ops = {
.set_mctrl = meson_uart_set_mctrl,
.get_mctrl = meson_uart_get_mctrl,
.tx_empty = meson_uart_tx_empty,
.start_tx = meson_uart_start_tx,
.stop_tx = meson_uart_stop_tx,
.stop_rx = meson_uart_stop_rx,
.startup = meson_uart_startup,
.shutdown = meson_uart_shutdown,
.set_termios = meson_uart_set_termios,
.type = meson_uart_type,
.config_port = meson_uart_config_port,
.request_port = meson_uart_request_port,
.release_port = meson_uart_release_port,
.verify_port = meson_uart_verify_port,
};
#ifdef CONFIG_AMLOGIC_SERIAL_MESON_CONSOLE
static void meson_console_putchar(struct uart_port *port, int ch)
{
if (!port->membase)
return;
while (readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)
cpu_relax();
writel(ch, port->membase + AML_UART_WFIFO);
}
static void meson_serial_console_write(struct console *co, const char *s,
u_int count)
{
struct uart_port *port;
const char *cur_s = NULL;
struct meson_uart_struct *head_s = NULL;
struct meson_uart_struct *tail_s = NULL;
struct list_head *list_head = NULL;
struct meson_uart_struct *co_struct = NULL;
struct meson_uart_list *cur_col = NULL;
long tmp_count = 0;
long tmp_count_1 = 0;
long struct_size = sizeof(struct meson_uart_struct);
int need_default = 0;
static int last_msg_full;
unsigned long flags = 0;
int index = co->index;
port = &meson_ports[co->index]->port;
if (!port)
return;
if (!new_printk_enabled || !data_cache) {
uart_console_write(port, s, count, meson_console_putchar);
return;
}
spin_lock_irqsave(&cur_col_management.lock, flags);
if (count > 0 && count < MESON_SERIAL_BUFFER_SIZE) {
list_head = &cur_col_management.list_head;
cur_s = NULL;
if (list_empty(list_head)) {
cur_s = data_cache;
} else {
head_s = list_entry(list_head->prev,
struct meson_uart_struct, list);
tail_s = list_entry(list_head->next,
struct meson_uart_struct, list);
tmp_count_1 = (struct_size << 1)
+ (unsigned long)tail_s->s + tail_s->offset
+ tail_s->count;
if (head_s->s <= tail_s->s) {
tmp_count = data_cache
+ MESON_SERIAL_BUFFER_SIZE
- tail_s->s - tail_s->offset
- tail_s->count;
if (tmp_count < (long long)count + struct_size
+ (struct_size+DEFAULT_STR_LEN)) {
if ((head_s->s > (data_cache
+ (struct_size << 1)))
&& ((head_s->s -
(data_cache
+ (struct_size << 1)))
> count
+(struct_size
+DEFAULT_STR_LEN))) {
cur_s = data_cache;
} else if (tmp_count > (struct_size +
DEFAULT_STR_LEN)) {
cur_s = tail_s->s +
tail_s->offset + tail_s->count;
need_default = 1;
} else {
cur_s = data_cache;
need_default = 1;
}
} else {
cur_s = tail_s->s + tail_s->offset
+ tail_s->count;
}
} else if (((long)head_s->s > tmp_count_1)
&& ((long)head_s->s - tmp_count_1
> count + (struct_size+DEFAULT_STR_LEN))) {
cur_s = tail_s->s + tail_s->offset
+ tail_s->count;
} else {
cur_s = tail_s->s + tail_s->offset
+ tail_s->count;
need_default = 1;
}
}
if (need_default == 0) {
co_struct = (struct meson_uart_struct *)cur_s;
co_struct->s = cur_s + struct_size;
co_struct->count = count;
co_struct->co = co;
co_struct->offset = 0;
cur_col = &cur_col_list[index];
cur_col->co_tail = co_struct;
if (!cur_col->co_head)
cur_col->co_head = co_struct;
cur_col->user_count++;
cur_col_management.user_count++;
memcpy((char *)(co_struct->s), (char *)s, count);
list_add(&co_struct->list,
&cur_col_management.list_head);
last_msg_full = 0;
} else {
if (last_msg_full == 0) {
co_struct = (struct meson_uart_struct *)cur_s;
co_struct->s = cur_s + struct_size;
co_struct->count = DEFAULT_STR_LEN;
co_struct->co = co;
co_struct->offset = 0;
cur_col = &cur_col_list[index];
cur_col->co_tail = co_struct;
if (!cur_col->co_head)
cur_col->co_head = co_struct;
cur_col->user_count++;
cur_col_management.user_count++;
memcpy((char *)(co_struct->s),
DEFAULT_STR, DEFAULT_STR_LEN);
s = co_struct->s;
*((char *)s + DEFAULT_STR_LEN-1) = '\n';
list_add(&co_struct->list,
&cur_col_management.list_head);
last_msg_full = 1;
}
}
cur_col = &cur_col_list[index];
if (cur_col->co_head) {
co_struct = cur_col->co_head;
s = co_struct->s + co_struct->offset;
if (index != meson_uart_console_index)
meson_serial_console_setup(co, NULL);
while ((readl(port->membase + AML_UART_CONTROL)
& AML_UART_TX_EN)
&& (!(readl(port->membase + AML_UART_STATUS)
& AML_UART_TX_FULL))) {
if (co_struct->count <= 0) {
get_next_node(cur_col,
co_struct, index);
if (!cur_col->co_head)
break;
co_struct = cur_col->co_head;
s = co_struct->s + co_struct->offset;
}
if (*s == '\n')
writel('\r', port->membase
+ AML_UART_WFIFO);
writel(*s++, port->membase + AML_UART_WFIFO);
co_struct->count--;
co_struct->offset++;
}
}
}
spin_unlock_irqrestore(&cur_col_management.lock, flags);
}
static int meson_serial_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index < 0 || co->index >= AML_UART_PORT_MAX)
return -EINVAL;
meson_uart_console_index = (int)co->index;
port = &meson_ports[co->index]->port;
if (!port || !port->membase)
return -ENODEV;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(port, co, baud, parity, bits, flow);
}
static void meson_early_write(struct console *con, const char *s,
unsigned int n)
{
struct earlycon_device *dev = con->data;
uart_console_write(&dev->port, s, n, meson_console_putchar);
}
static int __init meson_early_console_setup(struct earlycon_device *device,
const char *opt)
{
if (!device->port.membase)
return -ENODEV;
device->con->write = meson_early_write;
return 0;
}
EARLYCON_DECLARE(aml_uart, meson_early_console_setup);
static struct console meson_serial_console = {
.name = AML_UART_DEV_NAME,
.write = meson_serial_console_write,
.device = uart_console_device,
.setup = meson_serial_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &meson_uart_driver,
};
static int __init meson_serial_console_init(void)
{
register_console(&meson_serial_console);
return 0;
}
console_initcall(meson_serial_console_init);
#define MESON_SERIAL_CONSOLE (&meson_serial_console)
#else
#define MESON_SERIAL_CONSOLE NULL
#endif
static struct uart_driver meson_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "meson_uart",
.dev_name = AML_UART_DEV_NAME,
.nr = AML_UART_PORT_MAX,
.cons = MESON_SERIAL_CONSOLE,
};
#ifdef CONFIG_HIBERNATION
static u32 save_mode;
static int meson_uart_freeze(struct device *dev)
{
struct platform_device *pdev;
struct uart_port *port;
pdev = to_platform_device(dev);
port = platform_get_drvdata(pdev);
save_mode = readl(port->membase + AML_UART_CONTROL);
pr_debug("uart freeze, mode: %x\n", save_mode);
return 0;
}
static int meson_uart_thaw(struct device *dev)
{
return 0;
}
static int meson_uart_restore(struct device *dev)
{
struct platform_device *pdev;
struct uart_port *port;
pdev = to_platform_device(dev);
port = platform_get_drvdata(pdev);
writel(save_mode, port->membase + AML_UART_CONTROL);
pr_debug("uart restore, mode: %x\n", save_mode);
return 0;
}
static int meson_uart_suspend(struct platform_device *pdev,
pm_message_t state);
static int meson_uart_resume(struct platform_device *pdev);
static int meson_uart_pm_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
return meson_uart_suspend(pdev, PMSG_SUSPEND);
}
static int meson_uart_pm_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
return meson_uart_resume(pdev);
}
const struct dev_pm_ops meson_uart_pm = {
.freeze = meson_uart_freeze,
.thaw = meson_uart_thaw,
.restore = meson_uart_restore,
.suspend = meson_uart_pm_suspend,
.resume = meson_uart_pm_resume,
};
#endif
static int meson_uart_probe(struct platform_device *pdev)
{
struct resource *res_mem, *res_irq;
struct uart_port *port;
struct meson_uart_port *mup;
struct clk *clk;
const void *prop;
int ret = 0;
if (pdev->dev.of_node)
pdev->id = of_alias_get_id(pdev->dev.of_node, "serial");
if (pdev->id < 0 || pdev->id >= AML_UART_PORT_MAX)
return -EINVAL;
res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res_mem)
return -ENODEV;
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq)
return -ENODEV;
if (meson_ports[pdev->id]) {
dev_err(&pdev->dev, "port %d already allocated\n", pdev->id);
return -EBUSY;
}
mup = devm_kzalloc(&pdev->dev,
sizeof(struct meson_uart_port), GFP_KERNEL);
if (!mup)
return -ENOMEM;
spin_lock_init(&mup->wr_lock);
port = &mup->port;
#ifdef CONFIG_AMLOGIC_CLK
clk = devm_clk_get(&pdev->dev, "clk_gate");
if (IS_ERR(clk)) {
pr_err("%s: clock gate not found\n", dev_name(&pdev->dev));
/* return PTR_ERR(clk); */
} else {
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("uart: clock failed to prepare+enable: %d\n",
ret);
clk_put(clk);
/* return ret; */
}
}
clk = devm_clk_get(&pdev->dev, "clk_uart");
if (IS_ERR(clk)) {
pr_err("%s: clock source not found\n", dev_name(&pdev->dev));
/* return PTR_ERR(clk); */
}
if (!IS_ERR(clk))
port->uartclk = clk_get_rate(clk);
#endif
port->fifosize = 64;
prop = of_get_property(pdev->dev.of_node, "fifosize", NULL);
if (prop)
port->fifosize = of_read_ulong(prop, 1);
if (!xtal_tick_en) {
prop = of_get_property(pdev->dev.of_node, "xtal_tick_en", NULL);
if (prop) {
xtal_tick_en = of_read_ulong(prop, 1);
if (xtal_tick_en == 1)
xtal_tick_en = 0;
}
}
port->iotype = UPIO_MEM;
port->mapbase = res_mem->start;
port->irq = res_irq->start;
port->flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP | UPF_LOW_LATENCY;
port->dev = &pdev->dev;
port->line = pdev->id;
port->type = PORT_MESON;
port->x_char = 0;
port->ops = &meson_uart_ops;
meson_ports[pdev->id] = mup;
platform_set_drvdata(pdev, port);
if (of_get_property(pdev->dev.of_node, "pinctrl-names", NULL)) {
mup->p = devm_pinctrl_get_select_default(&pdev->dev);
/* if (!mup->p) */
/* return -1; */
}
ret = uart_add_one_port(&meson_uart_driver, port);
if (ret)
meson_ports[pdev->id] = NULL;
prop = of_get_property(pdev->dev.of_node, "support-sysrq", NULL);
if (prop)
support_sysrq = of_read_ulong(prop, 1);
return ret;
}
static int meson_uart_remove(struct platform_device *pdev)
{
struct uart_port *port;
port = platform_get_drvdata(pdev);
uart_remove_one_port(&meson_uart_driver, port);
meson_ports[pdev->id] = NULL;
return 0;
}
static int meson_uart_resume(struct platform_device *pdev)
{
struct uart_port *port;
u32 val;
port = platform_get_drvdata(pdev);
if (!port) {
dev_err(&pdev->dev, "port is NULL");
return 0;
}
if (port->line == 0)
return 0;
uart_resume_port(&meson_uart_driver, port);
val = readl(port->membase + AML_UART_CONTROL);
if (!(val & AML_UART_TWO_WIRE_EN)) {
val &= ~(0x1 << 31);
writel(val, port->membase + AML_UART_CONTROL);
}
return 0;
}
static int meson_uart_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct uart_port *port;
u32 val;
port = platform_get_drvdata(pdev);
if (!port) {
dev_err(&pdev->dev, "port is NULL");
return 0;
}
if (port->line == 0)
return 0;
uart_suspend_port(&meson_uart_driver, port);
val = readl(port->membase + AML_UART_CONTROL);
/* if rts/cts is open, pull up rts pin
* when in suspend
*/
if (!(val & AML_UART_TWO_WIRE_EN)) {
dev_info(&pdev->dev, "pull up rts");
val |= (0x1 << 31);
writel(val, port->membase + AML_UART_CONTROL);
}
return 0;
}
static const struct of_device_id meson_uart_dt_match[] = {
{.compatible = "amlogic, meson-uart"},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, meson_uart_dt_match);
static struct platform_driver meson_uart_platform_driver = {
.probe = meson_uart_probe,
.remove = meson_uart_remove,
.suspend = meson_uart_suspend,
.resume = meson_uart_resume,
.driver = {
.owner = THIS_MODULE,
.name = "meson_uart",
.of_match_table = meson_uart_dt_match,
#ifdef CONFIG_HIBERNATION
.pm = &meson_uart_pm,
#endif
},
};
static int __init meson_uart_init(void)
{
int ret;
ret = uart_register_driver(&meson_uart_driver);
if (ret)
return ret;
ret = platform_driver_register(&meson_uart_platform_driver);
if (ret) {
uart_unregister_driver(&meson_uart_driver);
return ret;
}
ret = driver_create_file(&meson_uart_platform_driver.driver,
&driver_attr_printkmode);
ret = driver_create_file(&meson_uart_platform_driver.driver,
&driver_attr_sysrqsupport);
INIT_LIST_HEAD(&cur_col_management.list_head);
spin_lock_init(&cur_col_management.lock);
data_cache = vmalloc(MESON_SERIAL_BUFFER_SIZE);
if (!data_cache) {
pr_info("buffer alloc failed for uart\n");
platform_driver_unregister(&meson_uart_platform_driver);
uart_unregister_driver(&meson_uart_driver);
return -ENOMEM;
}
return ret;
}
static void __exit meson_uart_exit(void)
{
platform_driver_unregister(&meson_uart_platform_driver);
uart_unregister_driver(&meson_uart_driver);
}
module_init(meson_uart_init);
module_exit(meson_uart_exit);
MODULE_AUTHOR("Carlo Caione <carlo@caione.org>");
MODULE_DESCRIPTION("Amlogic Meson serial port driver");
MODULE_LICENSE("GPL v2");