blob: e1aafd752d6b2d81cb4102eaf6b9110d15f514e9 [file] [log] [blame]
/* ==========================================================================
* $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
* $Revision: #46 $
* $Date: 2012/12/12 $
* $Change: 2124654 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
/** @file
*
* The diagnostic interface will provide access to the controller for
* bringing up the hardware and testing. The Linux driver attributes
* feature will be used to provide the Linux Diagnostic
* Interface. These attributes are accessed through sysfs.
*/
/** @page "Linux Module Attributes"
*
* The Linux module attributes feature is used to provide the Linux
* Diagnostic Interface. These attributes are accessed through sysfs.
* The diagnostic interface will provide access to the controller for
* bringing up the hardware and testing.
The following table shows the attributes.
<table>
<tr>
<td><b> Name</b></td>
<td><b> Description</b></td>
<td><b> Access</b></td>
</tr>
<tr>
<td> mode </td>
<td> Returns the current mode: 0 for device mode, 1 for host mode</td>
<td> Read</td>
</tr>
<tr>
<td> hnpcapable </td>
<td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
Read returns the current value.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> srpcapable </td>
<td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
Read returns the current value.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> hsic_connect </td>
<td> Gets or sets the "HSIC-Connect" bit in the GLPMCFG Register.
Read returns the current value.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> inv_sel_hsic </td>
<td> Gets or sets the "Invert Select HSIC" bit in the GLPMFG Register.
Read returns the current value.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> hnp </td>
<td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> srp </td>
<td> Initiates the Session Request Protocol. Read returns the status.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> buspower </td>
<td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
<td> Read/Write</td>
</tr>
<tr>
<td> bussuspend </td>
<td> Suspends the USB bus.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> busconnected </td>
<td> Gets the connection status of the bus</td>
<td> Read</td>
</tr>
<tr>
<td> gotgctl </td>
<td> Gets or sets the Core Control Status Register.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> gusbcfg </td>
<td> Gets or sets the Core USB Configuration Register</td>
<td> Read/Write</td>
</tr>
<tr>
<td> grxfsiz </td>
<td> Gets or sets the Receive FIFO Size Register</td>
<td> Read/Write</td>
</tr>
<tr>
<td> gnptxfsiz </td>
<td> Gets or sets the non-periodic Transmit Size Register</td>
<td> Read/Write</td>
</tr>
<tr>
<td> gpvndctl </td>
<td> Gets or sets the PHY Vendor Control Register</td>
<td> Read/Write</td>
</tr>
<tr>
<td> ggpio </td>
<td> Gets the value in the lower 16-bits of the General Purpose IO Register
or sets the upper 16 bits.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> guid </td>
<td> Gets or sets the value of the User ID Register</td>
<td> Read/Write</td>
</tr>
<tr>
<td> gsnpsid </td>
<td> Gets the value of the Synopsys ID Regester</td>
<td> Read</td>
</tr>
<tr>
<td> devspeed </td>
<td> Gets or sets the device speed setting in the DCFG register</td>
<td> Read/Write</td>
</tr>
<tr>
<td> enumspeed </td>
<td> Gets the device enumeration Speed.</td>
<td> Read</td>
</tr>
<tr>
<td> hptxfsiz </td>
<td> Gets the value of the Host Periodic Transmit FIFO</td>
<td> Read</td>
</tr>
<tr>
<td> hprt0 </td>
<td> Gets or sets the value in the Host Port Control and Status Register</td>
<td> Read/Write</td>
</tr>
<tr>
<td> regoffset </td>
<td> Sets the register offset for the next Register Access</td>
<td> Read/Write</td>
</tr>
<tr>
<td> regvalue </td>
<td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> remote_wakeup </td>
<td> On read, shows the status of Remote Wakeup. On write, initiates a remote
wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
Wakeup signalling bit in the Device Control Register is set for 1
milli-second.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> rem_wakeup_pwrdn </td>
<td> On read, shows the status core - hibernated or not. On write, initiates
a remote wakeup of the device from Hibernation. </td>
<td> Read/Write</td>
</tr>
<tr>
<td> mode_ch_tim_en </td>
<td> This bit is used to enable or disable the host core to wait for 200 PHY
clock cycles at the end of Resume to change the opmode signal to the PHY to 00
after Suspend or LPM. </td>
<td> Read/Write</td>
</tr>
<tr>
<td> fr_interval </td>
<td> On read, shows the value of HFIR Frame Interval. On write, dynamically
reload HFIR register during runtime. The application can write a value to this
register only after the Port Enable bit of the Host Port Control and Status
register (HPRT.PrtEnaPort) has been set </td>
<td> Read/Write</td>
</tr>
<tr>
<td> disconnect_us </td>
<td> On read, shows the status of disconnect_device_us. On write, sets disconnect_us
which causes soft disconnect for 100us. Applicable only for device mode of operation.</td>
<td> Read/Write</td>
</tr>
<tr>
<td> regdump </td>
<td> Dumps the contents of core registers.</td>
<td> Read</td>
</tr>
<tr>
<td> spramdump </td>
<td> Dumps the contents of core registers.</td>
<td> Read</td>
</tr>
<tr>
<td> hcddump </td>
<td> Dumps the current HCD state.</td>
<td> Read</td>
</tr>
<tr>
<td> hcd_frrem </td>
<td> Shows the average value of the Frame Remaining
field in the Host Frame Number/Frame Remaining register when an SOF interrupt
occurs. This can be used to determine the average interrupt latency. Also
shows the average Frame Remaining value for start_transfer and the "a" and
"b" sample points. The "a" and "b" sample points may be used during debugging
bto determine how long it takes to execute a section of the HCD code.</td>
<td> Read</td>
</tr>
<tr>
<td> rd_reg_test </td>
<td> Displays the time required to read the GNPTXFSIZ register many times
(the output shows the number of times the register is read).
<td> Read</td>
</tr>
<tr>
<td> wr_reg_test </td>
<td> Displays the time required to write the GNPTXFSIZ register many times
(the output shows the number of times the register is written).
<td> Read</td>
</tr>
<tr>
<td> lpm_response </td>
<td> Gets or sets lpm_response mode. Applicable only in device mode.
<td> Write</td>
</tr>
<tr>
<td> sleep_status </td>
<td> Shows sleep status of device.
<td> Read</td>
</tr>
<tr>
<td> hird_thres </td>
<td> Gets or sets the "HIRD_Thres[3:0]" bits in the Core LPM Configuration Register.
<td> Read/Write</td>
</tr>
<tr>
<td> besl_reject </td>
<td> Gets or sets the "besl_reject" bit in the Device Control Register.
<td> Read/Write</td>
</tr>
</table>
Example usage:
To get the current mode:
cat /sys/devices/lm0/mode
To power down the USB:
echo 0 > /sys/devices/lm0/buspower
*/
#include "dwc_otg_os_dep.h"
#include "dwc_os.h"
#include "dwc_otg_driver.h"
#include "dwc_otg_attr.h"
#include "dwc_otg_core_if.h"
#include "dwc_otg_pcd_if.h"
#include "dwc_otg_hcd_if.h"
#include "dwc_otg_cil.h"
#include <linux/amlogic/cpu_version.h>
#include <linux/platform_device.h>
/*
* MACROs for defining sysfs attribute
*/
#define DWC_DRIVER_VERSION "3.10a 12-MAY-2014"
#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _string_) \
static ssize_t _otg_attr_name_##_show(struct device *_dev, struct device_attribute *attr, char *buf) \
{ \
struct platform_device *pdev = to_platform_device(_dev); \
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id]; \
uint32_t val; \
val = dwc_otg_get_##_otg_attr_name_(otg_dev->core_if); \
return sprintf(buf, "%s = 0x%x\n", _string_, val); \
}
#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _string_) \
static ssize_t _otg_attr_name_##_store(struct device *_dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct platform_device *pdev = to_platform_device(_dev); \
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id]; \
uint32_t set = simple_strtoul(buf, NULL, 16); \
dwc_otg_set_##_otg_attr_name_(otg_dev->core_if, set);\
return count; \
}
/*
* MACROs for defining sysfs attribute for 32-bit registers
*/
#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _string_) \
static ssize_t _otg_attr_name_##_show(struct device *_dev, struct device_attribute *attr, char *buf) \
{ \
struct platform_device *pdev = to_platform_device(_dev); \
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id]; \
uint32_t val; \
val = dwc_otg_get_##_otg_attr_name_(otg_dev->core_if); \
return sprintf(buf, "%s = 0x%08x\n", _string_, val); \
}
#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _string_) \
static ssize_t _otg_attr_name_##_store(struct device *_dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct platform_device *pdev = to_platform_device(_dev); \
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id]; \
uint32_t val = simple_strtoul(buf, NULL, 16); \
dwc_otg_set_##_otg_attr_name_(otg_dev->core_if, val); \
return count; \
}
/** @name Functions for Show/Store of Attributes */
/**@{*/
/**
* Show the register offset of the Register Access.
*/
static ssize_t regoffset_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return snprintf(buf, sizeof("0xFFFFFFFF\n") + 1, "0x%08x\n",
otg_dev->os_dep.reg_offset);
}
/**
* Set the register offset for the next Register Access Read/Write
*/
static ssize_t regoffset_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t offset = simple_strtoul(buf, NULL, 16);
if (offset < SZ_256K)
otg_dev->os_dep.reg_offset = offset;
else
dev_err(_dev, "invalid offset\n");
return count;
}
DEVICE_ATTR(regoffset, S_IRUGO | S_IWUSR, regoffset_show, regoffset_store);
/**
* Show the value of the register at the offset in the reg_offset
* attribute.
*/
static ssize_t regvalue_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t val;
volatile uint32_t *addr;
if (otg_dev->os_dep.reg_offset != 0xFFFFFFFF && 0 != otg_dev->os_dep.base) {
/* Calculate the address */
addr = (uint32_t *) (otg_dev->os_dep.reg_offset +
(uint8_t *) otg_dev->os_dep.base);
val = DWC_READ_REG32(addr);
return snprintf(buf,
sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n") + 1,
"Reg@0x%06x = 0x%08x\n", otg_dev->os_dep.reg_offset,
val);
} else {
dev_err(_dev, "Invalid offset (0x%0x)\n", otg_dev->os_dep.reg_offset);
return sprintf(buf, "invalid offset\n");
}
}
/**
* Store the value in the register at the offset in the reg_offset
* attribute.
*
*/
static ssize_t regvalue_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
volatile uint32_t *addr;
uint32_t val = simple_strtoul(buf, NULL, 16);
if (otg_dev->os_dep.reg_offset != 0xFFFFFFFF && 0 != otg_dev->os_dep.base) {
/* Calculate the address */
addr = (uint32_t *) (otg_dev->os_dep.reg_offset +
(uint8_t *) otg_dev->os_dep.base);
DWC_WRITE_REG32(addr, val);
} else {
dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
otg_dev->os_dep.reg_offset);
}
return count;
}
DEVICE_ATTR(regvalue, S_IRUGO | S_IWUSR, regvalue_show, regvalue_store);
#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_, _string_) \
DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _string_)DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _string_)DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, _otg_attr_name_##_store);
#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_, _string_) \
DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _string_)DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_, _addr_, _string_) \
DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _string_)DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _string_)DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, _otg_attr_name_##_store);
#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_, _addr_, _string_) \
DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _string_)DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
/*
* Attributes
*/
DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode, "Mode");
DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable, "HNPCapable");
DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable, "SRPCapable");
DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hsic_connect, "HSIC Connect");
DWC_OTG_DEVICE_ATTR_BITFIELD_RW(inv_sel_hsic, "Invert Select HSIC");
DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected, "Bus Connected");
DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl, 0, "GOTGCTL");
DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,
&(otg_dev->core_if->core_global_regs->gusbcfg),
"GUSBCFG");
DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,
&(otg_dev->core_if->core_global_regs->grxfsiz),
"GRXFSIZ");
DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,
&(otg_dev->core_if->core_global_regs->gnptxfsiz),
"GNPTXFSIZ");
DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,
&(otg_dev->core_if->core_global_regs->gpvndctl),
"GPVNDCTL");
DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,
&(otg_dev->core_if->core_global_regs->ggpio),
"GGPIO");
DWC_OTG_DEVICE_ATTR_REG32_RW(guid, &(otg_dev->core_if->core_global_regs->guid),
"GUID");
DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,
&(otg_dev->core_if->core_global_regs->gsnpsid),
"GSNPSID");
DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed, "Device Speed");
DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed, "Device Enumeration Speed");
DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,
&(otg_dev->core_if->core_global_regs->hptxfsiz),
"HPTXFSIZ");
DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,
otg_dev->core_if->host_if->hprt0, "HPRT0");
/* peri regs */
static ssize_t peri_iddq_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
usb_dbg_uart_data_t uart;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uart.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->dbg_uart);
return sprintf(buf, "IDDQ = 0x%x\n", uart.b.set_iddq);
}
/**
* Set the HNP Request bit
*/
static ssize_t peri_iddq_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
usb_dbg_uart_data_t uart;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t in = simple_strtoul(buf, NULL, 16);
uart.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->dbg_uart);
uart.b.set_iddq = in;
DWC_WRITE_REG32(&otg_dev->core_if->usb_peri_reg->dbg_uart, uart.d32);
return count;
}
DEVICE_ATTR(peri_iddq, 0644, peri_iddq_show, peri_iddq_store);
static ssize_t peri_otg_disable_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
usb_adp_bc_data_t adp_bc;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
adp_bc.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->dbg_uart);
return sprintf(buf, "IDDQ = 0x%x\n", adp_bc.b.otgdisable);
}
/**
* Set the HNP Request bit
*/
static ssize_t peri_otg_disable_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
usb_adp_bc_data_t adp_bc;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t in = simple_strtoul(buf, NULL, 16);
adp_bc.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->adp_bc);
adp_bc.b.otgdisable = in;
DWC_WRITE_REG32(&otg_dev->core_if->usb_peri_reg->adp_bc, adp_bc.d32);
return count;
}
DEVICE_ATTR(peri_otg_disable, 0644, peri_otg_disable_show, peri_otg_disable_store);
/* PHY Power control get */
static ssize_t peri_power_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
usb_ctrl_data_t ctrl;
int power;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
ctrl.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->ctrl);
power = ctrl.b.por?0:1;
return sprintf(buf, "PHY Power = %d\n", power);
}
/* PHY Power control set */
static ssize_t peri_power_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int power;
usb_ctrl_data_t ctrl;
usb_adp_bc_data_t adp_bc;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
power = simple_strtoul(buf, NULL, 16);
if (power != 0 && power != 1) {
dev_err(_dev, "power (%d) mode error\n", power);
return count;
}
if (power == 0) {
adp_bc.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->adp_bc);
adp_bc.b.vbusvldextsel = 1;
adp_bc.b.vbusvldext = 0;
DWC_WRITE_REG32(&otg_dev->core_if->usb_peri_reg->adp_bc, adp_bc.d32);
}
ctrl.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->ctrl);
ctrl.b.por = power?0:1;
DWC_WRITE_REG32(&otg_dev->core_if->usb_peri_reg->ctrl, ctrl.d32);
if (power == 1) {
adp_bc.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->adp_bc);
adp_bc.b.vbusvldextsel = 0;
adp_bc.b.vbusvldext = 0;
DWC_WRITE_REG32(&otg_dev->core_if->usb_peri_reg->adp_bc, adp_bc.d32);
}
return count;
}
DEVICE_ATTR(peri_power, 0644, peri_power_show, peri_power_store);
/* peri sleepm regs control */
static ssize_t peri_sleepm_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
usb_ctrl_data_t ctrl;
int sleepm;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
ctrl.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->ctrl);
sleepm = ctrl.b.sleepm?0:1;
return sprintf(buf, "SLEEP MODULE = 0x%x\n", sleepm);
}
static ssize_t peri_sleepm_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
usb_ctrl_data_t ctrl;
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
const char *s_clock_name = NULL;
const char *cpu_type = NULL;
uint32_t in = simple_strtoul(buf, NULL, 16);
s_clock_name = of_get_property(pdev->dev.of_node, "clock-src", NULL);
if (!s_clock_name)
return 0;
cpu_type = of_get_property(pdev->dev.of_node, "cpu-type", NULL);
if (!cpu_type)
return 0;
if (!in) {
clk_resume_usb(pdev, s_clock_name,
(unsigned long)(otg_dev->core_if->usb_peri_reg),
cpu_type);
}
ctrl.d32 = DWC_READ_REG32(&otg_dev->core_if->usb_peri_reg->ctrl);
ctrl.b.sleepm = in?0:1;
DWC_WRITE_REG32(&otg_dev->core_if->usb_peri_reg->ctrl, ctrl.d32);
if (in) {
clk_suspend_usb(pdev, s_clock_name,
(unsigned long)(otg_dev->core_if->usb_peri_reg),
cpu_type);
}
return count;
}
DEVICE_ATTR(peri_sleepm, 0644, peri_sleepm_show, peri_sleepm_store);
/**
* @todo Add code to initiate the HNP.
*/
/**
* Show the HNP status bit
*/
static ssize_t hnp_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf, "HstNegScs = 0x%x\n",
dwc_otg_get_hnpstatus(otg_dev->core_if));
}
/**
* Set the HNP Request bit
*/
static ssize_t hnp_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t in = simple_strtoul(buf, NULL, 16);
dwc_otg_set_hnpreq(otg_dev->core_if, in);
return count;
}
DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
/**
* @todo Add code to initiate the SRP.
*/
/**
* Show the SRP status bit
*/
static ssize_t srp_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
#ifndef DWC_HOST_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf, "SesReqScs = 0x%x\n",
dwc_otg_get_srpstatus(otg_dev->core_if));
#else
return sprintf(buf, "Host Only Mode!\n");
#endif
}
/**
* Set the SRP Request bit
*/
static ssize_t srp_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
#ifndef DWC_HOST_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
dwc_otg_pcd_initiate_srp(otg_dev->pcd);
#endif
return count;
}
DEVICE_ATTR(srp, 0644, srp_show, srp_store);
/**
* @todo Need to do more for power on/off?
*/
/**
* Show the Bus Power status
*/
static ssize_t buspower_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf, "Bus Power = 0x%x\n",
dwc_otg_get_prtpower(otg_dev->core_if));
}
/**
* Set the Bus Power status
*/
static ssize_t buspower_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t on = simple_strtoul(buf, NULL, 16);
dwc_otg_set_prtpower(otg_dev->core_if, on);
return count;
}
DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
/**
* @todo Need to do more for suspend?
*/
/**
* Show the Bus Suspend status
*/
static ssize_t bussuspend_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf, "Bus Suspend = 0x%x\n",
dwc_otg_get_prtsuspend(otg_dev->core_if));
}
/**
* Set the Bus Suspend status
*/
static ssize_t bussuspend_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t in = simple_strtoul(buf, NULL, 16);
dwc_otg_set_prtsuspend(otg_dev->core_if, in);
return count;
}
DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
/**
* Show the Mode Change Ready Timer status
*/
static ssize_t mode_ch_tim_en_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf, "Mode Change Ready Timer Enable = 0x%x\n",
dwc_otg_get_mode_ch_tim(otg_dev->core_if));
}
/**
* Set the Mode Change Ready Timer status
*/
static ssize_t mode_ch_tim_en_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t in = simple_strtoul(buf, NULL, 16);
dwc_otg_set_mode_ch_tim(otg_dev->core_if, in);
return count;
}
DEVICE_ATTR(mode_ch_tim_en, 0644, mode_ch_tim_en_show, mode_ch_tim_en_store);
/**
* Show the value of HFIR Frame Interval bitfield
*/
static ssize_t fr_interval_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf, "Frame Interval = 0x%x\n",
dwc_otg_get_fr_interval(otg_dev->core_if));
}
/**
* Set the HFIR Frame Interval value
*/
static ssize_t fr_interval_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t in = simple_strtoul(buf, NULL, 10);
dwc_otg_set_fr_interval(otg_dev->core_if, in);
return count;
}
DEVICE_ATTR(fr_interval, 0644, fr_interval_show, fr_interval_store);
/**
* Show the status of Remote Wakeup.
*/
static ssize_t remote_wakeup_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
#ifndef DWC_HOST_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf,
"Remote Wakeup Sig = %d Enabled = %d LPM Remote Wakeup = %d\n",
dwc_otg_get_remotewakesig(otg_dev->core_if),
otg_dev->pcd ? dwc_otg_pcd_get_rmwkup_enable(otg_dev->pcd) : -1,
dwc_otg_get_lpm_remotewakeenabled(otg_dev->core_if));
#else
return sprintf(buf, "Host Only Mode!\n");
#endif /* DWC_HOST_ONLY */
}
/**
* Initiate a remote wakeup of the host. The Device control register
* Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
* flag is set.
*
*/
static ssize_t remote_wakeup_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
#ifndef DWC_HOST_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t val = simple_strtoul(buf, NULL, 16);
if (val & 1)
dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
else
dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
#endif /* DWC_HOST_ONLY */
return count;
}
DEVICE_ATTR(remote_wakeup, S_IRUGO | S_IWUSR, remote_wakeup_show,
remote_wakeup_store);
/**
* Show the whether core is hibernated or not.
*/
static ssize_t rem_wakeup_pwrdn_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
#ifndef DWC_HOST_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
if (dwc_otg_get_core_state(otg_dev->core_if))
DWC_PRINTF("Core is in hibernation\n");
else
DWC_PRINTF("Core is not in hibernation\n");
#endif /* DWC_HOST_ONLY */
return 0;
}
extern int dwc_otg_device_hibernation_restore(dwc_otg_core_if_t *core_if,
int rem_wakeup, int reset);
/**
* Initiate a remote wakeup of the device to exit from hibernation.
*/
static ssize_t rem_wakeup_pwrdn_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
#ifndef DWC_HOST_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
dwc_otg_device_hibernation_restore(otg_dev->core_if, 1, 0);
#endif
return count;
}
DEVICE_ATTR(rem_wakeup_pwrdn, S_IRUGO | S_IWUSR, rem_wakeup_pwrdn_show,
rem_wakeup_pwrdn_store);
static ssize_t disconnect_us(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
#ifndef DWC_HOST_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t val = simple_strtoul(buf, NULL, 16);
DWC_PRINTF("The Passed value is %04x\n", val);
dwc_otg_pcd_disconnect_us(otg_dev->pcd, 50);
#endif /* DWC_HOST_ONLY */
return count;
}
DEVICE_ATTR(disconnect_us, S_IWUSR, 0, disconnect_us);
/**
* Dump global registers and either host or device registers (depending on the
* current mode of the core).
*/
static ssize_t regdump_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
dwc_otg_dump_global_registers(otg_dev->core_if);
if (dwc_otg_is_host_mode(otg_dev->core_if))
dwc_otg_dump_host_registers(otg_dev->core_if);
else
dwc_otg_dump_dev_registers(otg_dev->core_if);
return sprintf(buf, "Register Dump\n");
}
DEVICE_ATTR(regdump, S_IRUGO, regdump_show, 0);
/**
* Dump global registers and either host or device registers (depending on the
* current mode of the core).
*/
static ssize_t spramdump_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
dwc_otg_dump_spram(otg_dev->core_if);
return sprintf(buf, "SPRAM Dump\n");
}
DEVICE_ATTR(spramdump, S_IRUGO, spramdump_show, 0);
/**
* Dump the current hcd state.
*/
static ssize_t hcddump_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
#ifndef DWC_DEVICE_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
dwc_otg_hcd_dump_state(otg_dev->hcd);
#endif /* DWC_DEVICE_ONLY */
return sprintf(buf, "HCD Dump\n");
}
DEVICE_ATTR(hcddump, S_IRUGO, hcddump_show, 0);
/**
* Dump the average frame remaining at SOF. This can be used to
* determine average interrupt latency. Frame remaining is also shown for
* start transfer and two additional sample points.
*/
static ssize_t hcd_frrem_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
#ifndef DWC_DEVICE_ONLY
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
dwc_otg_hcd_dump_frrem(otg_dev->hcd);
#endif /* DWC_DEVICE_ONLY */
return sprintf(buf, "HCD Dump Frame Remaining\n");
}
DEVICE_ATTR(hcd_frrem, S_IRUGO, hcd_frrem_show, 0);
/**
* Displays the time required to read the GNPTXFSIZ register many times (the
* output shows the number of times the register is read).
*/
#define RW_REG_COUNT 10000000
#define MSEC_PER_JIFFIE (1000/HZ)
static ssize_t rd_reg_test_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
int i;
int time;
int start_jiffies;
printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
start_jiffies = jiffies;
for (i = 0; i < RW_REG_COUNT; i++)
dwc_otg_get_gnptxfsiz(otg_dev->core_if);
time = jiffies - start_jiffies;
return sprintf(buf,
"Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
}
DEVICE_ATTR(rd_reg_test, S_IRUGO, rd_reg_test_show, 0);
/**
* Displays the time required to write the GNPTXFSIZ register many times (the
* output shows the number of times the register is written).
*/
static ssize_t wr_reg_test_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t reg_val;
int i;
int time;
int start_jiffies;
printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
reg_val = dwc_otg_get_gnptxfsiz(otg_dev->core_if);
start_jiffies = jiffies;
for (i = 0; i < RW_REG_COUNT; i++)
dwc_otg_set_gnptxfsiz(otg_dev->core_if, reg_val);
time = jiffies - start_jiffies;
return sprintf(buf,
"Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
}
DEVICE_ATTR(wr_reg_test, S_IRUGO, wr_reg_test_show, 0);
#ifdef CONFIG_USB_DWC_OTG_LPM
/**
* Show the lpm_response attribute.
*/
static ssize_t lpmresp_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if))
return sprintf(buf, "** LPM is DISABLED **\n");
if (!dwc_otg_is_device_mode(otg_dev->core_if))
return sprintf(buf, "** Current mode is not device mode\n");
return sprintf(buf, "lpm_response = %d\n",
dwc_otg_get_lpmresponse(otg_dev->core_if));
}
/**
* Store the lpm_response attribute.
*/
static ssize_t lpmresp_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t val = simple_strtoul(buf, NULL, 16);
if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if))
return 0;
if (!dwc_otg_is_device_mode(otg_dev->core_if))
return 0;
dwc_otg_set_lpmresponse(otg_dev->core_if, val);
return count;
}
DEVICE_ATTR(lpm_response, S_IRUGO | S_IWUSR, lpmresp_show, lpmresp_store);
/**
* Show the besl_reject attribute.
*/
static ssize_t beslreject_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if))
return sprintf(buf, "** LPM is DISABLED **\n");
if (!dwc_otg_get_param_besl_enable(otg_dev->core_if))
return sprintf(buf, "** EnBesl is DISABLED **\n");
if (!dwc_otg_is_device_mode(otg_dev->core_if))
return sprintf(buf, "** Current mode is not device mode\n");
return sprintf(buf, "besl_reject = %d\n",
dwc_otg_get_beslreject(otg_dev->core_if));
}
/**
* Store the besl_reject attribute.
*/
static ssize_t beslreject_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t val = simple_strtoul(buf, NULL, 16);
if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if))
return 0;
if (!dwc_otg_get_param_besl_enable(otg_dev->core_if))
return 0;
if (!dwc_otg_is_device_mode(otg_dev->core_if))
return 0;
dwc_otg_set_beslreject(otg_dev->core_if, val);
return count;
}
DEVICE_ATTR(besl_reject, S_IRUGO | S_IWUSR, beslreject_show, beslreject_store);
/**
* Show the hird_thresh attribute.
*/
static ssize_t hirdthresh_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if))
return sprintf(buf, "** LPM is DISABLED **\n");
if (!dwc_otg_is_device_mode(otg_dev->core_if))
return sprintf(buf, "** Current mode is not device mode\n");
return sprintf(buf, "hirdthresh = 0x%x\n",
dwc_otg_get_hirdthresh(otg_dev->core_if));
}
/**
* Store the hird_thresh attribute.
*/
static ssize_t hirdthresh_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
uint32_t val = simple_strtoul(buf, NULL, 16);
if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if))
return 0;
if (!dwc_otg_is_device_mode(otg_dev->core_if))
return 0;
dwc_otg_set_hirdthresh(otg_dev->core_if, val);
return count;
}
DEVICE_ATTR(hird_thres, S_IRUGO | S_IWUSR, hirdthresh_show, hirdthresh_store);
/**
* Show the sleep_status attribute.
*/
static ssize_t sleepstatus_show(struct device *_dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
return sprintf(buf, "Sleep Status = %d\n",
dwc_otg_get_lpm_portsleepstatus(otg_dev->core_if));
}
/**
* Store the sleep_status attribure.
*/
static ssize_t sleepstatus_store(struct device *_dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(_dev);
dwc_otg_device_t *otg_dev = g_dwc_otg_device[pdev->id];
dwc_otg_core_if_t *core_if = otg_dev->core_if;
if (dwc_otg_get_lpm_portsleepstatus(otg_dev->core_if)) {
if (dwc_otg_is_host_mode(core_if)) {
DWC_PRINTF("Host initiated resume\n");
dwc_otg_set_prtresume(otg_dev->core_if, 1);
}
}
return count;
}
DEVICE_ATTR(sleep_status, S_IRUGO | S_IWUSR, sleepstatus_show,
sleepstatus_store);
#endif /* CONFIG_USB_DWC_OTG_LPM_ENABLE */
/**
* Global Debug Level Mask.
*/
uint32_t g_dbg_lvl; /* OFF */
/**
* This function shows the Driver Version.
*/
static ssize_t version_show(struct device *_dev, struct device_attribute *attr, char *buf)
{
return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n",
DWC_DRIVER_VERSION);
}
DEVICE_ATTR(version, S_IRUGO, version_show, NULL);
/**
* This function shows the driver Debug Level.
*/
static ssize_t dbg_level_show(struct device *_dev, struct device_attribute *attr, char *buf)
{
return sprintf(buf, "0x%0x\n", g_dbg_lvl);
}
/**
* This function stores the driver Debug Level.
*/
static ssize_t dbg_level_store(struct device *_dev, struct device_attribute *attr, const char *buf,
size_t count)
{
g_dbg_lvl = simple_strtoul(buf, NULL, 16);
return count;
}
DEVICE_ATTR(debuglevel, S_IRUGO | S_IWUSR, dbg_level_show,
dbg_level_store);
/**@}*/
/**
* Create the device files
*/
void dwc_otg_attr_create(struct platform_device *pdev)
{
int error;
error = device_create_file(&pdev->dev, &dev_attr_regoffset);
error = device_create_file(&pdev->dev, &dev_attr_regvalue);
error = device_create_file(&pdev->dev, &dev_attr_mode);
error = device_create_file(&pdev->dev, &dev_attr_hnpcapable);
error = device_create_file(&pdev->dev, &dev_attr_srpcapable);
error = device_create_file(&pdev->dev, &dev_attr_hsic_connect);
error = device_create_file(&pdev->dev, &dev_attr_inv_sel_hsic);
error = device_create_file(&pdev->dev, &dev_attr_hnp);
error = device_create_file(&pdev->dev, &dev_attr_srp);
error = device_create_file(&pdev->dev, &dev_attr_buspower);
error = device_create_file(&pdev->dev, &dev_attr_bussuspend);
error = device_create_file(&pdev->dev, &dev_attr_mode_ch_tim_en);
error = device_create_file(&pdev->dev, &dev_attr_fr_interval);
error = device_create_file(&pdev->dev, &dev_attr_busconnected);
error = device_create_file(&pdev->dev, &dev_attr_gotgctl);
error = device_create_file(&pdev->dev, &dev_attr_gusbcfg);
error = device_create_file(&pdev->dev, &dev_attr_grxfsiz);
error = device_create_file(&pdev->dev, &dev_attr_gnptxfsiz);
error = device_create_file(&pdev->dev, &dev_attr_gpvndctl);
error = device_create_file(&pdev->dev, &dev_attr_ggpio);
error = device_create_file(&pdev->dev, &dev_attr_guid);
error = device_create_file(&pdev->dev, &dev_attr_gsnpsid);
error = device_create_file(&pdev->dev, &dev_attr_devspeed);
error = device_create_file(&pdev->dev, &dev_attr_enumspeed);
error = device_create_file(&pdev->dev, &dev_attr_hptxfsiz);
error = device_create_file(&pdev->dev, &dev_attr_hprt0);
error = device_create_file(&pdev->dev, &dev_attr_debuglevel);
error = device_create_file(&pdev->dev, &dev_attr_version);
error = device_create_file(&pdev->dev, &dev_attr_remote_wakeup);
error = device_create_file(&pdev->dev, &dev_attr_rem_wakeup_pwrdn);
error = device_create_file(&pdev->dev, &dev_attr_disconnect_us);
error = device_create_file(&pdev->dev, &dev_attr_regdump);
error = device_create_file(&pdev->dev, &dev_attr_spramdump);
error = device_create_file(&pdev->dev, &dev_attr_hcddump);
error = device_create_file(&pdev->dev, &dev_attr_hcd_frrem);
error = device_create_file(&pdev->dev, &dev_attr_rd_reg_test);
error = device_create_file(&pdev->dev, &dev_attr_wr_reg_test);
#ifdef CONFIG_USB_DWC_OTG_LPM
error = device_create_file(&pdev->dev, &dev_attr_lpm_response);
error = device_create_file(&pdev->dev, &dev_attr_sleep_status);
error = device_create_file(&pdev->dev, &dev_attr_besl_reject);
error = device_create_file(&pdev->dev, &dev_attr_hird_thres);
#endif
error = device_create_file(&pdev->dev, &dev_attr_peri_iddq);
error = device_create_file(&pdev->dev, &dev_attr_peri_otg_disable);
error = device_create_file(&pdev->dev, &dev_attr_peri_power);
error = device_create_file(&pdev->dev, &dev_attr_peri_sleepm);
}
/**
* Remove the device files
*/
void dwc_otg_attr_remove(struct platform_device *pdev)
{
device_remove_file(&pdev->dev, &dev_attr_regoffset);
device_remove_file(&pdev->dev, &dev_attr_regvalue);
device_remove_file(&pdev->dev, &dev_attr_mode);
device_remove_file(&pdev->dev, &dev_attr_hnpcapable);
device_remove_file(&pdev->dev, &dev_attr_srpcapable);
device_remove_file(&pdev->dev, &dev_attr_hsic_connect);
device_remove_file(&pdev->dev, &dev_attr_inv_sel_hsic);
device_remove_file(&pdev->dev, &dev_attr_hnp);
device_remove_file(&pdev->dev, &dev_attr_srp);
device_remove_file(&pdev->dev, &dev_attr_buspower);
device_remove_file(&pdev->dev, &dev_attr_bussuspend);
device_remove_file(&pdev->dev, &dev_attr_mode_ch_tim_en);
device_remove_file(&pdev->dev, &dev_attr_fr_interval);
device_remove_file(&pdev->dev, &dev_attr_busconnected);
device_remove_file(&pdev->dev, &dev_attr_gotgctl);
device_remove_file(&pdev->dev, &dev_attr_gusbcfg);
device_remove_file(&pdev->dev, &dev_attr_grxfsiz);
device_remove_file(&pdev->dev, &dev_attr_gnptxfsiz);
device_remove_file(&pdev->dev, &dev_attr_gpvndctl);
device_remove_file(&pdev->dev, &dev_attr_ggpio);
device_remove_file(&pdev->dev, &dev_attr_guid);
device_remove_file(&pdev->dev, &dev_attr_gsnpsid);
device_remove_file(&pdev->dev, &dev_attr_devspeed);
device_remove_file(&pdev->dev, &dev_attr_enumspeed);
device_remove_file(&pdev->dev, &dev_attr_hptxfsiz);
device_remove_file(&pdev->dev, &dev_attr_hprt0);
device_remove_file(&pdev->dev, &dev_attr_remote_wakeup);
device_remove_file(&pdev->dev, &dev_attr_rem_wakeup_pwrdn);
device_remove_file(&pdev->dev, &dev_attr_disconnect_us);
device_remove_file(&pdev->dev, &dev_attr_regdump);
device_remove_file(&pdev->dev, &dev_attr_spramdump);
device_remove_file(&pdev->dev, &dev_attr_hcddump);
device_remove_file(&pdev->dev, &dev_attr_hcd_frrem);
device_remove_file(&pdev->dev, &dev_attr_rd_reg_test);
device_remove_file(&pdev->dev, &dev_attr_wr_reg_test);
device_remove_file(&pdev->dev, &dev_attr_debuglevel);
device_remove_file(&pdev->dev, &dev_attr_version);
#ifdef CONFIG_USB_DWC_OTG_LPM
device_remove_file(&pdev->dev, &dev_attr_lpm_response);
device_remove_file(&pdev->dev, &dev_attr_sleep_status);
#endif
device_remove_file(&pdev->dev, &dev_attr_peri_iddq);
device_remove_file(&pdev->dev, &dev_attr_peri_otg_disable);
device_remove_file(&pdev->dev, &dev_attr_peri_power);
device_remove_file(&pdev->dev, &dev_attr_peri_sleepm);
}