blob: 98ecd1b8cd1a0c7806ab5516c6a16529353cd3d9 [file] [log] [blame]
/*
* pcm186x.c - Texas Instruments PCM186x Universal Audio ADC
*
* Copyright (C) 2015-2016 Texas Instruments Incorporated - http://www.ti.com
*
* Author: Andreas Dannenberg <dannenberg@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "pcm186x.h"
#define PCM186X_MAX_NR_BUSY_CHECKS 16
static const char * const pcm186x_supply_names[] = {
"avdd", /* Analog power supply. Connect to 3.3-V supply. */
"dvdd", /* Digital power supply. Connect to 3.3-V supply. */
"iovdd" /* I/O power supply. Connect to 3.3-V or 1.8-V. */
};
#define PCM186x_NUM_SUPPLIES ARRAY_SIZE(pcm186x_supply_names)
struct pcm186x_priv {
struct regmap *regmap;
struct regulator_bulk_data supplies[PCM186x_NUM_SUPPLIES];
enum pcm186x_type type;
int irq;
unsigned int sysclk;
unsigned int pllclk; /* 0 if PLL is not used */
unsigned int dai_format;
unsigned int tdm_offset;
unsigned int slots_mask;
};
/*
* The PCM186x DSP register map has holes in it, hence we define a table so we
* can process all locations elements in an iterative manner.
*/
static const u8 pcm186x_dsp_registers[] = {
PCM186X_DSP_MIX1_CH1L,
PCM186X_DSP_MIX1_CH1R,
PCM186X_DSP_MIX1_CH2L,
PCM186X_DSP_MIX1_CH2R,
PCM186X_DSP_MIX1_I2SL,
PCM186X_DSP_MIX1_I2SR,
PCM186X_DSP_MIX2_CH1L,
PCM186X_DSP_MIX2_CH1R,
PCM186X_DSP_MIX2_CH2L,
PCM186X_DSP_MIX2_CH2R,
PCM186X_DSP_MIX2_I2SL,
PCM186X_DSP_MIX2_I2SR,
PCM186X_DSP_MIX3_CH1L,
PCM186X_DSP_MIX3_CH1R,
PCM186X_DSP_MIX3_CH2L,
PCM186X_DSP_MIX3_CH2R,
PCM186X_DSP_MIX3_I2SL,
PCM186X_DSP_MIX3_I2SR,
PCM186X_DSP_MIX4_CH1L,
PCM186X_DSP_MIX4_CH1R,
PCM186X_DSP_MIX4_CH2L,
PCM186X_DSP_MIX4_CH2R,
PCM186X_DSP_MIX4_I2SL,
PCM186X_DSP_MIX4_I2SR,
PCM186X_DSP_LPF_B0,
PCM186X_DSP_LPF_B1,
PCM186X_DSP_LPF_B2,
PCM186X_DSP_LPF_A1,
PCM186X_DSP_LPF_A2,
PCM186X_DSP_HPF_B0,
PCM186X_DSP_HPF_B1,
PCM186X_DSP_HPF_B2,
PCM186X_DSP_HPF_A1,
PCM186X_DSP_HPF_A2,
PCM186X_DSP_LOSS_THRESH,
PCM186X_DSP_RES_THRESH,
};
#define PCM186X_DSP_NR_REGISTERS ARRAY_SIZE(pcm186x_dsp_registers)
static int pcm186x_dsp_access_enable(struct device *dev, struct regmap *map)
{
int i, ret;
unsigned int val;
dev_dbg(dev, "%s()\n", __func__);
/*
* Switch page using the datasheet-recommended special flow for
* accessing the memory-mapped DSP registers.
*/
for (i = 0; i < PCM186X_MAX_NR_BUSY_CHECKS; i++) {
ret = regmap_write(map, PCM186X_PAGE, PCM186X_PAGE_1);
if (ret) {
dev_err(dev, "Error writing device: %d\n", ret);
return ret;
}
/*
* Writing the page register at least twice before start
* checking the MMAP status register for it to become zero.
*/
if (i < 1)
continue;
ret = regmap_read(map, PCM186X_MMAP_STAT_CTRL, &val);
if (ret) {
dev_err(dev, "Error reading device: %d\n", ret);
return ret;
}
if (!val)
return 0;
}
/*
* One reason for encountering a timeout error can be that the PCM186x
* DSPs are not being clocked because the driving clock source has been
* turned off which can happen in a number of different operating
* scenarios.
*/
dev_err(dev, "Timeout accessing DSP memory\n");
return -EBUSY;
return 0;
}
static int pcm186x_dsp_coefficients_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
struct device *dev = codec->dev;
struct pcm186x_priv *priv = snd_soc_codec_get_drvdata(codec);
struct regmap *map = priv->regmap;
int i, j, ret;
unsigned int val;
dev_dbg(dev, "%s()\n", __func__);
ret = pcm186x_dsp_access_enable(dev, map);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(pcm186x_dsp_registers); i++) {
/* Set virtual address */
ret = regmap_write(map, PCM186X_MMAP_ADDRESS,
pcm186x_dsp_registers[i]);
if (ret) {
dev_err(dev, "Error writing device: %d\n", ret);
return ret;
}
/* Issue read request */
ret = regmap_write(map, PCM186X_MMAP_STAT_CTRL,
PCM186X_MMAP_STAT_R_REQ);
if (ret) {
dev_err(dev, "Error writing device: %d\n", ret);
return ret;
}
/* Wait for the DSP register read to finish but not forever */
for (j = 0; j < PCM186X_MAX_NR_BUSY_CHECKS; j++) {
ret = regmap_read(map, PCM186X_MMAP_STAT_CTRL, &val);
if (ret) {
dev_err(dev, "Error reading device: %d\n", ret);
return ret;
}
if (!val)
break;
}
if (j == PCM186X_MAX_NR_BUSY_CHECKS) {
dev_err(dev, "Timeout reading DSP coefficients\n");
return -EBUSY;
}
/* Get, assemble, and populate return data - 24 bits each */
ret = regmap_read(map, PCM186X_MEM_RDATA0, &val);
if (ret) {
dev_err(dev, "Error reading device: %d\n", ret);
return ret;
}
ucontrol->value.integer.value[i] = val;
ret = regmap_read(map, PCM186X_MEM_RDATA1, &val);
if (ret) {
dev_err(dev, "Error reading device: %d\n", ret);
return ret;
}
ucontrol->value.integer.value[i] |= val << 8;
ret = regmap_read(map, PCM186X_MEM_RDATA2, &val);
if (ret) {
dev_err(dev, "Error reading device: %d\n", ret);
return ret;
}
ucontrol->value.integer.value[i] |= val << 16;
}
return 0;
}
static int pcm186x_dsp_coefficients_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
struct device *dev = codec->dev;
struct pcm186x_priv *priv = snd_soc_codec_get_drvdata(codec);
struct regmap *map = priv->regmap;
int i, j, ret;
unsigned int val;
dev_dbg(dev, "%s()\n", __func__);
ret = pcm186x_dsp_access_enable(dev, map);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(pcm186x_dsp_registers); i++) {
/* Set virtual address */
ret = regmap_write(map, PCM186X_MMAP_ADDRESS,
pcm186x_dsp_registers[i]);
if (ret) {
dev_err(dev, "Error writing device: %d\n", ret);
return ret;
}
/* Set data to write - 24 bits each */
ret = regmap_write(map, PCM186X_MEM_WDATA0,
ucontrol->value.integer.value[i] & 0xff);
if (ret) {
dev_err(dev, "Error writing device: %d\n", ret);
return ret;
}
ret = regmap_write(priv->regmap, PCM186X_MEM_WDATA1,
(ucontrol->value.integer.value[i] &
0xff00) >> 8);
if (ret) {
dev_err(codec->dev, "Error writing device: %d\n", ret);
return ret;
}
ret = regmap_write(map, PCM186X_MEM_WDATA2,
(ucontrol->value.integer.value[i] &
0xff0000) >> 16);
if (ret) {
dev_err(dev, "Error writing device: %d\n", ret);
return ret;
}
/*
* Issue write request. Note that DSP Internal memory can only
* be written to when the DSP is running, requesting a WREQ=1
* will have no effect otherwise. This is of relevance if the
* codec is running as a clock slave, and the clocks stop.
*/
ret = regmap_write(map, PCM186X_MMAP_STAT_CTRL,
PCM186X_MMAP_STAT_W_REQ);
if (ret) {
dev_err(dev, "Error to write device: %d\n", ret);
return ret;
}
/* Wait for the DSP register write to finish but not forever */
for (j = 0; j < PCM186X_MAX_NR_BUSY_CHECKS; j++) {
ret = regmap_read(map, PCM186X_MMAP_STAT_CTRL, &val);
if (ret) {
dev_err(dev, "Error reading device: %d\n", ret);
return ret;
}
if (!val)
break;
}
if (j == PCM186X_MAX_NR_BUSY_CHECKS) {
dev_err(dev, "Timeout writing DSP coefficients\n");
return -EBUSY;
}
}
return 0;
}
static const DECLARE_TLV_DB_SCALE(pcm186x_pga_tlv, -1200, 50, 0);
static const struct snd_kcontrol_new pcm1863_snd_controls[] = {
SOC_DOUBLE_R_S_TLV("Analog Gain", PCM186X_PGA_VAL_CH1_L,
PCM186X_PGA_VAL_CH1_R, 0, -24, 80, 7, 0,
pcm186x_pga_tlv),
SND_SOC_BYTES_EXT("DSP Coefficients", PCM186X_DSP_NR_REGISTERS * 4,
pcm186x_dsp_coefficients_get,
pcm186x_dsp_coefficients_put),
};
static const struct snd_kcontrol_new pcm1865_snd_controls[] = {
SOC_DOUBLE_R_S_TLV("ADC1 Analog Gain", PCM186X_PGA_VAL_CH1_L,
PCM186X_PGA_VAL_CH1_R, 0, -24, 80, 7, 0,
pcm186x_pga_tlv),
SOC_DOUBLE_R_S_TLV("ADC2 Analog Gain", PCM186X_PGA_VAL_CH2_L,
PCM186X_PGA_VAL_CH2_R, 0, -24, 80, 7, 0,
pcm186x_pga_tlv),
SND_SOC_BYTES_EXT("DSP Coefficients", PCM186X_DSP_NR_REGISTERS * 4,
pcm186x_dsp_coefficients_get,
pcm186x_dsp_coefficients_put),
};
const unsigned int pcm186x_adc_input_channel_sel_value[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x20, 0x30
};
static const char * const pcm186x_adcl_input_channel_sel_text[] = {
"No Select",
"VINL1[SE]", /* Default for ADC1L */
"VINL2[SE]", /* Default for ADC2L */
"VINL2[SE] + VINL1[SE]",
"VINL3[SE]",
"VINL3[SE] + VINL1[SE]",
"VINL3[SE] + VINL2[SE]",
"VINL3[SE] + VINL2[SE] + VINL1[SE]",
"VINL4[SE]",
"VINL4[SE] + VINL1[SE]",
"VINL4[SE] + VINL2[SE]",
"VINL4[SE] + VINL2[SE] + VINL1[SE]",
"VINL4[SE] + VINL3[SE]",
"VINL4[SE] + VINL3[SE] + VINL1[SE]",
"VINL4[SE] + VINL3[SE] + VINL2[SE]",
"VINL4[SE] + VINL3[SE] + VINL2[SE] + VINL1[SE]",
"{VIN1P, VIN1M}[DIFF]",
"{VIN4P, VIN4M}[DIFF]",
"{VIN1P, VIN1M}[DIFF] + {VIN4P, VIN4M}[DIFF]"
};
static const char * const pcm186x_adcr_input_channel_sel_text[] = {
"No Select",
"VINR1[SE]", /* Default for ADC1R */
"VINR2[SE]", /* Default for ADC2R */
"VINR2[SE] + VINR1[SE]",
"VINR3[SE]",
"VINR3[SE] + VINR1[SE]",
"VINR3[SE] + VINR2[SE]",
"VINR3[SE] + VINR2[SE] + VINR1[SE]",
"VINR4[SE]",
"VINR4[SE] + VINR1[SE]",
"VINR4[SE] + VINR2[SE]",
"VINR4[SE] + VINR2[SE] + VINR1[SE]",
"VINR4[SE] + VINR3[SE]",
"VINR4[SE] + VINR3[SE] + VINR1[SE]",
"VINR4[SE] + VINR3[SE] + VINR2[SE]",
"VINR4[SE] + VINR3[SE] + VINR2[SE] + VINR1[SE]",
"{VIN2P, VIN2M}[DIFF]",
"{VIN3P, VIN3M}[DIFF]",
"{VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]"
};
static const struct soc_enum pcm186x_adc_input_channel_sel[] = {
SOC_VALUE_ENUM_SINGLE(PCM186X_ADC1_INPUT_SEL_L, 0,
PCM186X_ADC_INPUT_SEL_MASK,
ARRAY_SIZE(pcm186x_adcl_input_channel_sel_text),
pcm186x_adcl_input_channel_sel_text,
pcm186x_adc_input_channel_sel_value),
SOC_VALUE_ENUM_SINGLE(PCM186X_ADC1_INPUT_SEL_R, 0,
PCM186X_ADC_INPUT_SEL_MASK,
ARRAY_SIZE(pcm186x_adcr_input_channel_sel_text),
pcm186x_adcr_input_channel_sel_text,
pcm186x_adc_input_channel_sel_value),
SOC_VALUE_ENUM_SINGLE(PCM186X_ADC2_INPUT_SEL_L, 0,
PCM186X_ADC_INPUT_SEL_MASK,
ARRAY_SIZE(pcm186x_adcl_input_channel_sel_text),
pcm186x_adcl_input_channel_sel_text,
pcm186x_adc_input_channel_sel_value),
SOC_VALUE_ENUM_SINGLE(PCM186X_ADC2_INPUT_SEL_R, 0,
PCM186X_ADC_INPUT_SEL_MASK,
ARRAY_SIZE(pcm186x_adcr_input_channel_sel_text),
pcm186x_adcr_input_channel_sel_text,
pcm186x_adc_input_channel_sel_value),
};
static const struct snd_kcontrol_new pcm186x_adc_mux_controls[] = {
SOC_DAPM_ENUM("ADC1 Left Input", pcm186x_adc_input_channel_sel[0]),
SOC_DAPM_ENUM("ADC1 Right Input", pcm186x_adc_input_channel_sel[1]),
SOC_DAPM_ENUM("ADC2 Left Input", pcm186x_adc_input_channel_sel[2]),
SOC_DAPM_ENUM("ADC2 Right Input", pcm186x_adc_input_channel_sel[3]),
};
static const struct snd_soc_dapm_widget pcm1863_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("VINL1"),
SND_SOC_DAPM_INPUT("VINR1"),
SND_SOC_DAPM_INPUT("VINL2"),
SND_SOC_DAPM_INPUT("VINR2"),
SND_SOC_DAPM_INPUT("VINL3"),
SND_SOC_DAPM_INPUT("VINR3"),
SND_SOC_DAPM_INPUT("VINL4"),
SND_SOC_DAPM_INPUT("VINR4"),
SND_SOC_DAPM_MUX("ADC Left Capture Source", SND_SOC_NOPM, 0, 0,
&pcm186x_adc_mux_controls[0]),
SND_SOC_DAPM_MUX("ADC Right Capture Source", SND_SOC_NOPM, 0, 0,
&pcm186x_adc_mux_controls[1]),
/*
* Put the codec into SLEEP mode when not in use, allowing the
* Energysense mechanism to operate.
*/
SND_SOC_DAPM_ADC("ADC", "HiFi Capture", PCM186X_POWER_CTRL, 1, 0),
};
static const struct snd_soc_dapm_widget pcm1865_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("VINL1"),
SND_SOC_DAPM_INPUT("VINR1"),
SND_SOC_DAPM_INPUT("VINL2"),
SND_SOC_DAPM_INPUT("VINR2"),
SND_SOC_DAPM_INPUT("VINL3"),
SND_SOC_DAPM_INPUT("VINR3"),
SND_SOC_DAPM_INPUT("VINL4"),
SND_SOC_DAPM_INPUT("VINR4"),
SND_SOC_DAPM_MUX("ADC1 Left Capture Source", SND_SOC_NOPM, 0, 0,
&pcm186x_adc_mux_controls[0]),
SND_SOC_DAPM_MUX("ADC1 Right Capture Source", SND_SOC_NOPM, 0, 0,
&pcm186x_adc_mux_controls[1]),
SND_SOC_DAPM_MUX("ADC2 Left Capture Source", SND_SOC_NOPM, 0, 0,
&pcm186x_adc_mux_controls[2]),
SND_SOC_DAPM_MUX("ADC2 Right Capture Source", SND_SOC_NOPM, 0, 0,
&pcm186x_adc_mux_controls[3]),
/*
* Put the codec into SLEEP mode when not in use, allowing the
* Energysense mechanism to operate.
*/
SND_SOC_DAPM_ADC("ADC1", "HiFi Capture 1", PCM186X_POWER_CTRL, 1, 0),
SND_SOC_DAPM_ADC("ADC2", "HiFi Capture 2", PCM186X_POWER_CTRL, 1, 0),
};
static const struct snd_soc_dapm_route pcm1863_dapm_routes[] = {
{ "ADC Left Capture Source", NULL, "VINL1" },
{ "ADC Left Capture Source", NULL, "VINR1" },
{ "ADC Left Capture Source", NULL, "VINL2" },
{ "ADC Left Capture Source", NULL, "VINR2" },
{ "ADC Left Capture Source", NULL, "VINL3" },
{ "ADC Left Capture Source", NULL, "VINR3" },
{ "ADC Left Capture Source", NULL, "VINL4" },
{ "ADC Left Capture Source", NULL, "VINR4" },
{ "ADC", NULL, "ADC Left Capture Source" },
{ "ADC Right Capture Source", NULL, "VINL1" },
{ "ADC Right Capture Source", NULL, "VINR1" },
{ "ADC Right Capture Source", NULL, "VINL2" },
{ "ADC Right Capture Source", NULL, "VINR2" },
{ "ADC Right Capture Source", NULL, "VINL3" },
{ "ADC Right Capture Source", NULL, "VINR3" },
{ "ADC Right Capture Source", NULL, "VINL4" },
{ "ADC Right Capture Source", NULL, "VINR4" },
{ "ADC", NULL, "ADC Right Capture Source" },
};
static const struct snd_soc_dapm_route pcm1865_dapm_routes[] = {
{ "ADC1 Left Capture Source", NULL, "VINL1" },
{ "ADC1 Left Capture Source", NULL, "VINR1" },
{ "ADC1 Left Capture Source", NULL, "VINL2" },
{ "ADC1 Left Capture Source", NULL, "VINR2" },
{ "ADC1 Left Capture Source", NULL, "VINL3" },
{ "ADC1 Left Capture Source", NULL, "VINR3" },
{ "ADC1 Left Capture Source", NULL, "VINL4" },
{ "ADC1 Left Capture Source", NULL, "VINR4" },
{ "ADC1", NULL, "ADC1 Left Capture Source" },
{ "ADC1 Right Capture Source", NULL, "VINL1" },
{ "ADC1 Right Capture Source", NULL, "VINR1" },
{ "ADC1 Right Capture Source", NULL, "VINL2" },
{ "ADC1 Right Capture Source", NULL, "VINR2" },
{ "ADC1 Right Capture Source", NULL, "VINL3" },
{ "ADC1 Right Capture Source", NULL, "VINR3" },
{ "ADC1 Right Capture Source", NULL, "VINL4" },
{ "ADC1 Right Capture Source", NULL, "VINR4" },
{ "ADC1", NULL, "ADC1 Right Capture Source" },
{ "ADC2 Left Capture Source", NULL, "VINL1" },
{ "ADC2 Left Capture Source", NULL, "VINR1" },
{ "ADC2 Left Capture Source", NULL, "VINL2" },
{ "ADC2 Left Capture Source", NULL, "VINR2" },
{ "ADC2 Left Capture Source", NULL, "VINL3" },
{ "ADC2 Left Capture Source", NULL, "VINR3" },
{ "ADC2 Left Capture Source", NULL, "VINL4" },
{ "ADC2 Left Capture Source", NULL, "VINR4" },
{ "ADC2", NULL, "ADC2 Left Capture Source" },
{ "ADC2 Right Capture Source", NULL, "VINL1" },
{ "ADC2 Right Capture Source", NULL, "VINR1" },
{ "ADC2 Right Capture Source", NULL, "VINL2" },
{ "ADC2 Right Capture Source", NULL, "VINR2" },
{ "ADC2 Right Capture Source", NULL, "VINL3" },
{ "ADC2 Right Capture Source", NULL, "VINR3" },
{ "ADC2 Right Capture Source", NULL, "VINL4" },
{ "ADC2 Right Capture Source", NULL, "VINR4" },
{ "ADC2", NULL, "ADC2 Right Capture Source" },
};
#define PCM186X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
static int pcm186x_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
dev_dbg(codec->dev, "%s()\n", __func__);
return 0;
}
static int pcm186x_set_pll(struct snd_soc_codec *codec, unsigned int Fref,
unsigned int Fout)
{
struct pcm186x_priv *priv = snd_soc_codec_get_drvdata(codec);
u32 P, R, J, D;
int ret = 0;
/* Ensure automatic clock detection is disabled so we can set PLL */
ret = regmap_update_bits(priv->regmap, PCM186X_CLK_CTRL,
PCM186X_CLK_CTRL_CLKDET_EN, 0);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
/*
* TODO: Implement algorithm to set FLL based on an arbitrary Fref
* rather than using specific sets of fixed values. The below is just
* a stop-gap measure while the overall clock setup approach is being
* finalized.
*/
if (Fref != 12000000) {
dev_err(codec->dev, "unsupported FLL reference frequency: %u\n",
Fref);
return -EINVAL;
}
if (Fout == 90316800) {
/** Fout = (Fref x R x J.D) / P **/
/** Example:*/
/** Fref = 12MHz*/
/** Fout = (12MHz x 1 x 7.5264) / 1 = 90.3168MHz*/
R = 1;
J = 7;
D = 5264;
P = 1;
} else if (Fout == 98304000) {
R = 1;
J = 16;
D = 3840;
P = 2;
} else {
dev_err(codec->dev, "unsupported FLL target frequency: %u\n",
Fout);
return -EINVAL;
}
dev_dbg(codec->dev, "%s() R=%u J=%u D=%u P=%u\n", __func__, R, J, D, P);
/* Program integer divider */
ret = regmap_write(priv->regmap, PCM186X_PLL_P_DIV, P - 1);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
/* Program integer multiplier */
ret = regmap_write(priv->regmap, PCM186X_PLL_R_DIV, R - 1);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
/* Program integer part of the fractional multiplier */
ret = regmap_write(priv->regmap, PCM186X_PLL_J_DIV, J);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
/*
* Program 1/1000th fractional multiplier (0-9999), with the MSB written
* last as required by the device.
*/
ret = regmap_write(priv->regmap, PCM186X_PLL_D_DIV_LSB, D & 0xff);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
ret = regmap_write(priv->regmap, PCM186X_PLL_D_DIV_MSB, D >> 8);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
/* Source PLL by SCK and enable it */
ret = regmap_write(priv->regmap, PCM186X_PLL_CTRL, PCM186X_PLL_CTRL_EN);
if (ret < 0)
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
return 0;
}
static int pcm186x_set_fmt(struct snd_soc_dai *dai, unsigned int format)
{
struct snd_soc_codec *codec = dai->codec;
struct pcm186x_priv *priv = snd_soc_codec_get_drvdata(codec);
unsigned int clk_ctrl, pcm_cfg;
int ret;
dev_dbg(codec->dev, "%s() format=0x%x\n", __func__, format);
switch (format & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
if (!priv->sysclk) {
dev_err(codec->dev, "operating in master mode requires sysclock to be configured!\n");
return -EINVAL;
}
/* Codec is bit/frame clock master */
clk_ctrl = PCM186X_CLK_CTRL_MST_MODE;
break;
case SND_SOC_DAIFMT_CBS_CFS:
/* Codec is bit/frame clock slave */
clk_ctrl = PCM186X_CLK_CTRL_SCK_SRC_PLL;
break;
default:
return -EINVAL;
}
if (priv->pllclk) {
if (!priv->sysclk) {
dev_err(codec->dev, "using PLL requires sysclock to be configured!\n");
return -EINVAL;
}
ret = pcm186x_set_pll(codec, priv->sysclk, priv->pllclk);
if (ret < 0)
return ret;
/* Switch all clock trees to be sourced from the PLL */
clk_ctrl |= PCM186X_CLK_CTRL_SCK_SRC_PLL |
PCM186X_CLK_CTRL_ADC_SRC_PLL |
PCM186X_CLK_CTRL_DSP2_SRC_PLL |
PCM186X_CLK_CTRL_DSP1_SRC_PLL;
} else {
/*
* If PLL is not explicitly configured we rely on the automatic
* clock detection mechanism in both master and slave modes that
* will use either XTAL, SCKI, or BCK as a reference clock. Note
* that unused clock inputs should be connected to GND for the
* automatic clock detection mechanism to work properly.
*/
clk_ctrl |= PCM186X_CLK_CTRL_CLKDET_EN;
}
ret = regmap_write(priv->regmap, PCM186X_CLK_CTRL, clk_ctrl);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
switch (format & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
pcm_cfg = PCM186X_PCM_CFG_FMT_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
pcm_cfg = PCM186X_PCM_CFG_FMT_LEFTJ;
break;
case SND_SOC_DAIFMT_DSP_A:
/*
* Fall through... DSP_A uses the same basic config as DSP_B
* except we need to shift the TDM output by one BCK cycle
* which we'll still need to configure.
*/
case SND_SOC_DAIFMT_DSP_B:
pcm_cfg = PCM186X_PCM_CFG_FMT_TDM;
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(priv->regmap, PCM186X_PCM_CFG,
PCM186X_PCM_CFG_FMT_MASK, pcm_cfg);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
/*
* We only support the non-inverted clocks. Note that clock polarity
* depends on the actual FORMAT.
*/
//if ((format & SND_SOC_DAIFMT_INV_MASK) != SND_SOC_DAIFMT_NB_NF)
// return -EINVAL;
priv->dai_format = format;
return 0;
}
static int pcm186x_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_codec *codec = dai->codec;
struct pcm186x_priv *priv = snd_soc_codec_get_drvdata(codec);
unsigned int first_slot, last_slot, tdm_offset;
int ret;
dev_dbg(codec->dev,
"%s() tx_mask=0x%x rx_mask=0x%x slots=%d slot_width=%d\n",
__func__, tx_mask, rx_mask, slots, slot_width);
//if (!tx_mask) {
// dev_err(codec->dev, "tdm tx mask must not be 0\n");
// return -EINVAL;
//}
tx_mask = priv->slots_mask;
first_slot = __ffs(tx_mask);
last_slot = __fls(tx_mask);
if (last_slot - first_slot != hweight32(tx_mask) - 1) {
dev_err(codec->dev, "tdm tx mask must be contiguous\n");
return -EINVAL;
}
tdm_offset = first_slot * slot_width;
dev_info(codec->dev, "tdm_offset:0x%x\n", tdm_offset);
if (tdm_offset > 255) {
dev_err(codec->dev, "tdm tx slot selection out of bounds\n");
return -EINVAL;
}
priv->tdm_offset = tdm_offset;
//tdm_offset += 1;
ret = regmap_write(priv->regmap, PCM186X_TDM_TX_OFFSET, tdm_offset);
if (ret < 0)
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
static int pcm186x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct pcm186x_priv *priv = snd_soc_codec_get_drvdata(codec);
unsigned int rate = params_rate(params);
unsigned int format = params_format(params);
unsigned int width = params_width(params);
unsigned int channels = params_channels(params);
unsigned int pcm_cfg;
unsigned int master_clk;
unsigned int div_lrck;
unsigned int div_bck;
bool is_tdm_mode;
unsigned int tdm_offset;
unsigned int tdm_tx_sel;
int ret;
dev_dbg(codec->dev, "%s() rate=%u format=0x%x width=%u channels=%u\n",
__func__, rate, format, width, channels);
switch (width) {
case 16:
pcm_cfg = PCM186X_PCM_CFG_RX_WLEN_16 |
PCM186X_PCM_CFG_TX_WLEN_16;
break;
case 20:
pcm_cfg = PCM186X_PCM_CFG_RX_WLEN_20 |
PCM186X_PCM_CFG_TX_WLEN_20;
break;
case 24:
pcm_cfg = PCM186X_PCM_CFG_RX_WLEN_24 |
PCM186X_PCM_CFG_TX_WLEN_24;
break;
case 32:
pcm_cfg = PCM186X_PCM_CFG_RX_WLEN_32 |
PCM186X_PCM_CFG_TX_WLEN_32;
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(priv->regmap, PCM186X_PCM_CFG,
PCM186X_PCM_CFG_RX_WLEN_MASK |
PCM186X_PCM_CFG_TX_WLEN_MASK,
pcm_cfg);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n", ret);
return ret;
}
/*
* In DSP/TDM mode, the LRCLK divider must be 256 as per datasheet.
* Also, complete the codec serial audio interface format configuration
* by setting the appropriate TDM offset. For all other operating modes,
* size the LRCLK period just long enough to fit the used bits.
*/
switch (priv->dai_format & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
is_tdm_mode = true;
tdm_offset = priv->tdm_offset + 1;
div_lrck = 256;
break;
case SND_SOC_DAIFMT_DSP_B:
is_tdm_mode = true;
tdm_offset = priv->tdm_offset;
div_lrck = 256;
break;
default:
is_tdm_mode = false;
tdm_offset = 0;
div_lrck = width * channels;
}
if (is_tdm_mode) {
/* Select TDM transmission data */
switch (channels) {
case 2:
tdm_tx_sel = PCM186X_TDM_TX_SEL_2CH;
break;
case 4:
tdm_tx_sel = PCM186X_TDM_TX_SEL_4CH;
break;
case 6:
tdm_tx_sel = PCM186X_TDM_TX_SEL_6CH;
break;
case 8:
tdm_tx_sel = PCM186X_TDM_TX_SEL_2CH;
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(priv->regmap, PCM186X_TDM_TX_SEL,
PCM186X_TDM_TX_SEL_MASK, tdm_tx_sel);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n",
ret);
return ret;
}
/* Configure 1/256 duty cycle for LRCK */
ret = regmap_update_bits(priv->regmap, PCM186X_PCM_CFG,
PCM186X_PCM_CFG_TDM_LRCK_MODE,
PCM186X_PCM_CFG_TDM_LRCK_MODE);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n",
ret);
return ret;
}
/* (Re-)configure the final TDM offset */
ret = regmap_write(priv->regmap, PCM186X_TDM_TX_OFFSET,
tdm_offset);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n",
ret);
return ret;
}
}
/* Only configure clock dividers in master mode. */
if ((priv->dai_format & SND_SOC_DAIFMT_MASTER_MASK) ==
SND_SOC_DAIFMT_CBM_CFM) {
/* Use PLL output frequency if PLL is enabled */
master_clk = priv->pllclk ? priv->pllclk : priv->sysclk;
div_bck = master_clk / (div_lrck * rate);
dev_dbg(codec->dev,
"%s() master_clk=%u div_bck=%u div_lrck=%u\n",
__func__, master_clk, div_bck, div_lrck);
ret = regmap_write(priv->regmap, PCM186X_BCK_DIV, div_bck - 1);
if (ret < 0) {
dev_err(codec->dev,
"failed to write register: %d\n", ret);
return ret;
}
ret = regmap_write(priv->regmap, PCM186X_LRK_DIV,
div_lrck - 1);
if (ret < 0) {
dev_err(codec->dev, "failed to write register: %d\n",
ret);
return ret;
}
}
return 0;
}
static int pcm186x_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct snd_soc_codec *codec = dai->codec;
struct pcm186x_priv *priv = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s() clk_id=%d freq=%u dir=%d\n",
__func__, clk_id, freq, dir);
priv->sysclk = freq;
return 0;
}
const struct snd_soc_dai_ops pcm186x_dai_ops = {
.startup = pcm186x_startup,
.set_fmt = pcm186x_set_fmt,
.set_tdm_slot = pcm186x_set_tdm_slot,
.hw_params = pcm186x_hw_params,
.set_sysclk = pcm186x_set_dai_sysclk,
};
static struct snd_soc_dai_driver pcm1863_dai = {
.name = "pcm1863-aif",
.capture = {
.stream_name = "AIF Capture",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = PCM186X_FORMATS,
},
.playback = { /*dummy for device node*/
.stream_name = "AIF Playback",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = PCM186X_FORMATS,
},
.ops = &pcm186x_dai_ops,
};
static struct snd_soc_dai_driver pcm1865_dai = {
.name = "pcm1865-aif",
.capture = {
.stream_name = "AIF Capture",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = PCM186X_FORMATS,
},
.playback = { /*dummy for device node*/
.stream_name = "AIF Playback",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = PCM186X_FORMATS,
},
.ops = &pcm186x_dai_ops,
};
static int pcm186x_codec_probe(struct snd_soc_codec *codec)
{
dev_dbg(codec->dev, "%s()\n", __func__);
return 0;
}
static int pcm186x_codec_remove(struct snd_soc_codec *codec)
{
dev_dbg(codec->dev, "%s()\n", __func__);
return 0;
}
static struct regmap *pcm186x_get_regmap(struct device *dev)
{
struct pcm186x_priv *priv = dev_get_drvdata(dev);
return priv->regmap;
}
static int pcm186x_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
dev_dbg(codec->dev, "%s() level=%d\n", __func__, level);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
break;
case SND_SOC_BIAS_OFF:
break;
}
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_pcm1863 = {
.probe = pcm186x_codec_probe,
.remove = pcm186x_codec_remove,
.get_regmap = pcm186x_get_regmap,
.set_bias_level = pcm186x_set_bias_level,
.component_driver = {
.controls = pcm1863_snd_controls,
.num_controls = ARRAY_SIZE(pcm1863_snd_controls),
.dapm_widgets = pcm1863_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(pcm1863_dapm_widgets),
.dapm_routes = pcm1863_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(pcm1863_dapm_routes),
}
};
static struct snd_soc_codec_driver soc_codec_dev_pcm1865 = {
.probe = pcm186x_codec_probe,
.remove = pcm186x_codec_remove,
.get_regmap = pcm186x_get_regmap,
.set_bias_level = pcm186x_set_bias_level,
.component_driver = {
.controls = pcm1865_snd_controls,
.num_controls = ARRAY_SIZE(pcm1865_snd_controls),
.dapm_widgets = pcm1865_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(pcm1865_dapm_widgets),
.dapm_routes = pcm1865_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(pcm1865_dapm_routes),
}
};
static bool pcm186x_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case PCM186X_PAGE:
case PCM186X_DEVICE_STATUS:
case PCM186X_FSAMPLE_STATUS:
case PCM186X_DIV_STATUS:
case PCM186X_CLK_STATUS:
case PCM186X_SUPPLY_STATUS:
case PCM186X_MMAP_STAT_CTRL:
case PCM186X_MMAP_ADDRESS:
return true;
}
return false;
}
/*
* The PCM186x's page register is located on every page, allowing to program it
* without having to switch pages. Take advantage of this by defining the range
* such to have this register located inside the data window.
*/
static const struct regmap_range_cfg pcm186x_range = {
.name = "Pages",
.range_max = PCM186X_MAX_REGISTER,
.selector_reg = PCM186X_PAGE,
.selector_mask = 0xff,
.window_len = PCM186X_PAGE_LEN,
};
const struct regmap_config pcm186x_regmap = {
.reg_bits = 8,
.val_bits = 8,
.volatile_reg = pcm186x_volatile,
.ranges = &pcm186x_range,
.num_ranges = 1,
.max_register = PCM186X_MAX_REGISTER,
/*
* TODO: Activate register map cache. It has been temporarily deactivated to
* eliminate a potential source of trouble during driver development.
*/
/*.reg_defaults = pcm186x_reg_defaults,*/
/*.num_reg_defaults = ARRAY_SIZE(pcm186x_reg_defaults),*/
/*.cache_type = REGCACHE_RBTREE,*/
};
EXPORT_SYMBOL_GPL(pcm186x_regmap);
static irqreturn_t pcm186x_irq(int irq, void *_dev)
{
struct device *dev = _dev;
dev_dbg(dev, "%s()\n", __func__);
return IRQ_HANDLED;
}
int pcm186x_probe(struct device *dev, enum pcm186x_type type, int irq,
struct regmap *regmap)
{
struct pcm186x_priv *priv;
int i, ret;
dev_dbg(dev, "%s()\n", __func__);
priv = devm_kzalloc(dev, sizeof(struct pcm186x_priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->type = type;
priv->irq = irq;
priv->regmap = regmap;
for (i = 0; i < ARRAY_SIZE(priv->supplies); i++)
priv->supplies[i].supply = pcm186x_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(priv->supplies),
priv->supplies);
if (ret != 0) {
dev_err(dev, "failed to request supplies: %d\n", ret);
return ret;
}
/* Reset device registers for a consistent power-on like state */
ret = regmap_write(regmap, PCM186X_PAGE, PCM186X_RESET);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
ret = regmap_write(regmap, PCM186X_PAGE, 0x00);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
/*default L/R GAIN*/
ret = regmap_write(regmap, PCM186X_PGA_VAL_CH1_L, 0x0C);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
ret = regmap_write(regmap, PCM186X_PGA_VAL_CH1_R, 0x0C);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
ret = regmap_write(regmap, PCM186X_PGA_VAL_CH2_L, 0x0C);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
ret = regmap_write(regmap, PCM186X_PGA_VAL_CH2_R, 0x0C);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
/*default ADC1 Input Channel Select*/
ret = regmap_write(regmap, PCM186X_ADC1_INPUT_SEL_L, 0x02);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
ret = regmap_write(regmap, PCM186X_ADC1_INPUT_SEL_R, 0x02);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
/*default ADC2 Input Channel Select*/
ret = regmap_write(regmap, PCM186X_ADC2_INPUT_SEL_L, 0x60);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
ret = regmap_write(regmap, PCM186X_ADC2_INPUT_SEL_R, 0x60);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
/*default GPIO0-1 Config*/
ret = regmap_write(regmap, PCM186X_GPIO1_0_CTRL, 0x00);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
/*default GPIO02-3 Config*/
ret = regmap_write(regmap, PCM186X_GPIO3_2_CTRL, 0x00);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
/*default PULL DOWN Config*/
ret = regmap_write(regmap, PCM186X_GPIO_PULL_CTRL, 0xf0);
if (ret != 0) {
dev_err(dev, "failed to write device: %d\n", ret);
goto err_disable_reg;
}
#ifdef CONFIG_OF
if (dev->of_node) {
const struct device_node *np = dev->of_node;
u32 val;
/*
* If 'pllclk' is provided, we'll configure and use the PLL as
* the main clock source rather than the specified system clock.
* Note that this property may become obsolete once the final
* (automatic) clock setup algorithm is implemented.
*/
if (of_property_read_u32(np, "pllclk", &val) >= 0)
priv->pllclk = val;
if (of_property_read_u32(np, "slots_mask", &val) >= 0) {
priv->slots_mask = val;
dev_info(dev, "slots_mask:0x%x\n", val);
}
}
#endif
if (irq > 0) {
ret = request_threaded_irq(irq, NULL, pcm186x_irq,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"pcm186x", dev);
if (ret) {
dev_err(dev, "failed to request IRQ #%d\n", irq);
goto err_disable_reg;
}
dev_info(dev, "using IRQ #%d", irq);
}
switch (priv->type) {
case PCM1865:
case PCM1864:
ret = snd_soc_register_codec(dev, &soc_codec_dev_pcm1865,
&pcm1865_dai, 1);
break;
case PCM1863:
case PCM1862:
/* Fall through... */
default:
ret = snd_soc_register_codec(dev, &soc_codec_dev_pcm1863,
&pcm1863_dai, 1);
}
if (ret != 0) {
dev_err(dev, "failed to register CODEC: %d\n", ret);
goto err_free_irq;
}
dev_dbg(dev, "registered codec type: %d\n", priv->type);
return 0;
err_free_irq:
if (irq > 0)
free_irq(irq, dev);
err_disable_reg:
regulator_bulk_disable(ARRAY_SIZE(priv->supplies), priv->supplies);
return ret;
}
EXPORT_SYMBOL_GPL(pcm186x_probe);
int pcm186x_remove(struct device *dev)
{
struct pcm186x_priv *priv = dev_get_drvdata(dev);
snd_soc_unregister_codec(dev);
if (priv->irq > 0)
free_irq(priv->irq, dev);
regulator_bulk_disable(ARRAY_SIZE(priv->supplies), priv->supplies);
return 0;
}
EXPORT_SYMBOL_GPL(pcm186x_remove);
#ifdef CONFIG_PM
static int pcm186x_suspend(struct device *dev)
{
struct pcm186x_priv *priv = dev_get_drvdata(dev);
int ret;
dev_dbg(dev, "%s()\n", __func__);
ret = regmap_update_bits(priv->regmap, PCM186X_POWER_CTRL,
PCM186X_PWR_CTRL_PWRDN,
PCM186X_PWR_CTRL_PWRDN);
if (ret != 0) {
dev_err(dev, "failed to write register: %d\n", ret);
return ret;
}
ret = regulator_bulk_disable(ARRAY_SIZE(priv->supplies),
priv->supplies);
if (ret != 0) {
dev_err(dev, "failed to disable supplies: %d\n", ret);
return ret;
}
return 0;
}
static int pcm186x_resume(struct device *dev)
{
struct pcm186x_priv *priv = dev_get_drvdata(dev);
int ret;
dev_dbg(dev, "%s()\n", __func__);
ret = regulator_bulk_enable(ARRAY_SIZE(priv->supplies),
priv->supplies);
if (ret != 0) {
dev_err(dev, "failed to enable supplies: %d\n", ret);
return ret;
}
ret = regmap_update_bits(priv->regmap, PCM186X_POWER_CTRL,
PCM186X_PWR_CTRL_PWRDN, 0);
if (ret != 0) {
dev_err(dev, "failed to write register: %d\n", ret);
return ret;
}
return 0;
}
#endif
const struct dev_pm_ops pcm186x_pm_ops = {
SET_RUNTIME_PM_OPS(pcm186x_suspend, pcm186x_resume, NULL)
};
EXPORT_SYMBOL_GPL(pcm186x_pm_ops);
MODULE_DESCRIPTION("PCM186x Universal Audio ADC driver");
MODULE_AUTHOR("Andreas Dannenberg <dannenberg@ti.com>");
MODULE_LICENSE("GPL");